強度境界での衝突クレーター形成を想定した予備実験

~石膏標的のクレータースケーリング則~

鈴木 絢子^a、長谷川 直^b、嶌生 有理^b、木内 真人^b ^a東洋大学経済学部、^b宇宙航空研究開発機構宇宙科学研究所

1. はじめに

衝突クレーターは、固体天体表面の代表的な地形の一つで、太陽系内の固体天体上で 普遍的に観察されている。一方で、形成環境によって多彩な様相を呈すことも知られて おり、この2つの特徴によって、固体天体の表層特性を制約するプローブとしての役割 が期待されている。

最近、クレーター内の標的の違いを反映したようなクレーターが見つかっている。月 のジャクソンクレーターのメルトポンドとエジェクタ堆積物との境界にある直径100m 程度のクレーターは、歪な形をしており、メルトポンドとエジェクタ堆積物の強度の違 いを反映していると考えられている (e.g., van der Bogert et al., 2017)。

実験で用いる標的では、それぞれの特性が明らかである一様ではない標的を再現す るのは難しい。これまでに、層状構造(標的表面に水平方向の境界)を持つ標的(e.g., Dohi et al., 2012)や内部にコアをもつ標的(e.g., Okamoto and Arakawa, 2008)への衝 突実験は行われてきたが、標的表面に対し垂直な強度境界をもつ標的への衝突実験は実 施されていない。我々は、標的表面に垂直な強度境界をもつ標的への衝突実験を念頭に、 本年度は、異なる石膏標的のクレータースケーリング則を調べる実験を実施した。

2. 実験手法

標的は、吉野石膏販売(株)の焼石膏を用いて自作した。用いた焼石膏はハイストーン HLP型、ハイストーン N型、ハイストーン C-2型Gの3種類で、それぞれをuタイ プ、hタイプ、wタイプと記載する。直径10 cm、高さ6.5 cmの紙管に、焼石膏を既定 量の水と混合したスラリーを流し込み、室温で3週間以上乾燥させた。それぞれの石膏 の強度、密度、空隙率を表1に示した(鈴木ほか,2022)。

衝突実験は宇宙航空研究開発機構(JAXA)宇宙科学研究所に設置されている縦型二 段式軽ガス銃を用いて実施した。弾丸は直径 4.8mm のナイロン球で、各ショットにお ける衝突速度を表2に示した。実験チャンバー内にラボジャッキを設置し、その上にス ポンジを敷いて標的を設置した。実験時のチャンバー内は10Pa以下である。ショット 後に標的を回収し、レーザー変位計(COMS, Map3D)を用いて、200 µm 間隔でクレ ーター形状のグリッドデータを取得した。衝突前標的より低くなっている領域の面積を クレーター断面積、その等価円直径をクレーター直径と定義した。衝突前標的より低く なっている領域において、衝突前標的との差分の最大値をクレーター深さ、差分の合計 をクレーター体積と定義した。

表1:用いた石膏標的の強度、密度、空隙率

	引張強度(MPa)	密度(g/cm3)	空隙率(%)
u タイプ ª	4.90 ± 0.61	1.66 ± 0.02	28
h タイプ ⁵	4.01 ± 0.42	1.52 ± 0.02	34
w タイプ ª	1.38 ± 0.05	1.36 ± 0.02	41

^a鈴木ほか(2022)より引用。^b鈴木ほか(2022)と同じ手法で計測。

3. 結果と考察

各ショットで得られたクレーターの体積、断面積、直径、深さは表 2 のとおりであ る。No. 801 では、標的が弾丸衝突によって砕け散り、衝突クレーターのパラメータを 計測することができなかった。 π グループスケーリング則(Holsapple and Schmidt, 1982; Housen and Holsapple, 2011)に依ると、強度支配域における無次元化されたク レーター体積 Vとクレーター直径 Dは、次のようなベキ乗則で表される:

$$\frac{V\rho}{m} = K_1 \left(\frac{\rho}{\delta}\right)^{-0.2} \left(\frac{Y}{\rho U^2}\right)^{\alpha_1}, \qquad (1)$$
$$D \left(\frac{\rho}{m}\right)^{1/3} = K_2 \left(\frac{\rho}{\delta}\right)^{-0.2/3} \left(\frac{Y}{\rho U^2}\right)^{\alpha_2}. \qquad (2)$$

ここで ρ , Yは標的の密度と強度、 δ , m, Uは弾丸の密度・質量・衝突速度、 K_1 , K_2 , α_1 , α_2 は係数である。各ショットで得られたクレーターの体積と直径を、式(1)、(2) に従って描画した(図1)。図1において y 軸の値が小さいほどクレーター効率が悪い ことを意味しており、空隙率が高いほどクレーター効率が悪いという先行研究の結果

(Poelchau et al., 2014)と整合的である。石膏標的へのクレーター形成実験を行った先 行研究(Yasui et al., 2012; Suzuki et al., 2018)のクレーター効率は、w タイプと似てい る。図1において、標的ごとに $y = Bx^a$ の形の式で近似し、 $K_1, K_2, \alpha_1, \alpha_2$ を得るこ とができた(表 3)。今後、標的表面に垂直な強度境界をもつ標的への衝突クレーター 形成実験を実施し、本実験で得られたスケーリング則と比較・検討し、強度境界がクレ ーターサイズに及ぼす影響について調査する。

		衝突速度	クレーターパラメータ			
No.	標的	(m/s)	体積(mm ³)	断面積(mm ²)	直径(mm)	深さ(mm)
795	u-001	2293	2514	1128	38	6.0
796	h-001	2407	1218	649	29	7.3
797	w-001	2403	1314	484	25	9.7
798	u-002	1154	224	202	16	4.0
799	h-002	1168	132	91	11	4.8
800	w-003	1190	363	150	14	6.3
801	u-003	6337	a	a	a	a
805	h-003	4570	3597	1397	42	10.6
806	w-002	4533	5536	1619	45	13.3

表2:各ショットの衝突条件とクレーターパラメータ

^a標的が破壊され、衝突クレーターの計測ができなかった。

図 1: 無次元化強度に対してプロットしたクレーターの無次元体積と直径。S+18 と Y+12 はそれぞれ Suzuki et al. (2018)と Yasui et al. (2012)の意。

	$\kappa_{\scriptscriptstyle 1}$	α_1	<i>K</i> ₂	α2
uタイプ	a	a	a	a
hタイプ	0.0019 ± 0.0001	-1.218 ± 0.007	0.147 ± 0.008	-0.503 ± 0.007
w タイプ	0.0048 ± 0.0003	-1.017 ± 0.008	0.154 ± 0.010	-0.444 ± 0.008

表3:標的ごとのスケーリングパラメータ

*近似に用いることのできるデータが2点しかないため、求めていない。

参考文献

Dohi, K. et al., 2012. Icarus 218, 751-759. doi:10.1016/j.icarus.2012.01.018

- Holsapple, K.A. and Schmidt, R.M., 1982. J. Geophys. Res. 87, 1849–1870. doi:10.1029/JB087iB03p01849
- Housen, K.R. and Holsapple, K.A., 2011. *Icarus* 211, 856–875. doi:10.1016/j.icarus.2010.09.017
- Okamoto, C. and Arakawa, M., 2008. *Icarus* 197, 627–637. doi:10.1016/j.icarus.2008.05.015

Poelchau, M.H., et al., 2014. Icarus 242, 211-224. doi:10.1016/j.icarus.2014.08.018

Suzuki, A. I. et al., 2018. *Icarus* 301, 1–8. doi:10.1016/j.icarus.2017.10.019

van der Bogert, C. H. et al., 2017. Icarus 298, 49-63. doi:10.1016/j.icarus.2016.11.040

Yasui, M. et al., 2012. Icarus 221, 646-657. doi:10.1016/j.icarus.2012.08.018

鈴木絢子ほか, 2022. 東洋大学紀要自然科学篇 第 66 号, 1-4.