Research on Bounce Behavior of Spherical Target Marker with Spikes

32th Workshop on JAXA Astrodynamics Symposium and Flight Mechanics

Shun YASUDA
 Tetsuya KUSUMOTO
 Yoshiki SUGAWARA
 Osamu MORI

- 1. Introduction
- 2. Method
- 3. Behavior analysis
 - A) Model without spikes
 - B) Model with spikes
- 4. Summary

- 1. Introduction
- 2. Method
- 3. Behavior analysis
 - A) Model without spikes
 - B) Model with spikes
- 4. Summary

Sample Return (Hayabusa, Hayabusa2)

Target Marker was used for safe landing

Hayabusa

Hayabusa 2

Target Marker ©JAXA

How to Use Target Marker

Target Marker must be accurately placed at target point

- No bounce
- Do not move horizontally

Structure of Target Marker

Target Marker

 $\widehat{\mathbb{D}}$ Contain multiple beads (like a beanbag)

Hard shell

Multiple beads

2 Have spikes to prevent rolling

Purpose

Problems

- Shock absorption mechanism is not clear
- No studies have been conducted on the effects of spikes
- The combined model has not been discussed

Purpose

Analyze the behavior of spherical Target Marker with spikes

- 1. Introduction
- 2. Method
- 3. Behavior analysis
 - A) Model without spikes
 - B) Model with spikes
- 4. Summary

Non-smooth DEM: Contact Determination

- Treat particles individually
- Contact forces between particles are a function of relative velocity

Objects are modeled as circles

Contact determination

$$\begin{cases} d \le r_j + r_i & \longrightarrow & \text{Contact} \\ d > r_j + r_i & \longrightarrow & \text{No contact} \end{cases}$$

d: Particle distance

r: Particle radius

Non-smooth DEM: Transfer Equation

- Treat particles individually
- Contact forces between particles are a function of relative velocity

Convert impact force into impulse

Transfer equation

$$\mathcal{W}_{nn}^{\alpha\alpha} f_{n}^{\alpha} + \mathcal{W}_{nt}^{\alpha\alpha} f_{t}^{\alpha} = (1 + e_{n}) \frac{1}{\delta t} u_{n}^{\alpha} + a_{n}^{\alpha}$$

$$\mathcal{W}_{tt}^{\alpha\alpha} f_{t}^{\alpha} + \mathcal{W}_{tn}^{\alpha\alpha} f_{n}^{\alpha} = (1 + e_{t}) \frac{1}{\delta t} u_{t}^{\alpha} + a_{t}^{\alpha}$$

$$\mathcal{W}_{tt}^{\alpha\alpha} f_{t}^{\alpha} + \mathcal{W}_{tn}^{\alpha\alpha} f_{n}^{\alpha} = (1 + e_{t}) \frac{1}{\delta t} u_{t}^{\alpha} + a_{t}^{\alpha}$$

 α : Contact point

:Relative velocity

t :Time

:Jacobian

e:Coefficient of Restitution

:Contact force

:Normal vector

:Tangent vector

Non-smooth DEM: Complementarity Condition

Signorini's condition

$$\begin{cases} \delta_n > 0 \Longrightarrow f_n = 0 \\ \delta_n = 0 \land \begin{cases} u_n > 0 \Longrightarrow f_n = 0 \\ u_n = 0 \Longrightarrow f_n \geqslant 0 \end{cases}$$

 δ_n : Normal relative distance

 u_n : Normal relative velocity

 f_n : Normal contact force

Coulomb's law

$$\begin{cases} u_t > 0 \Rightarrow f_t = -\mu f_n \\ u_t = 0 \Rightarrow -\mu f_n \le f_t \le \mu f_n \\ u_t < 0 \Rightarrow f_t = \mu f_n \end{cases}$$

 u_t : Tangential relative distance

 f_t : Tangential relative velocity

 μ : Coefficient of friction

- 1. Introduction
- 2. Method
- 3. Behavior analysis
 - A) Model without spikes
 - B) Model with spikes
- 4. Summary

Behavior Analysis: Model without Spikes

Analysis condition

Time step [s]	0.0001]
Simulation time [s]	3	
Gravity acceleration [m/s²]	0	
Outer shell		=
Mass [kg]	55×10 ⁻³	\bigcap
Diameter [m]	100.8×10 ⁻³]
Horizontal initial position [m]	0.1	1
Vertical initial position [m]	0.1	Actual size
Inner ball		
Mass [kg]	3.0×10 ⁻³	
Diameter [m]	14.8×10 ⁻³	
Particle number	22	= Actual fill rate
Mass ratio	1.2	= Whole particle/Outer shell
Coefficient of restitution	and friction	
Horizontal coefficient of restitution	0.7	
Vertical coefficient of restitution	0.7	
Coefficient of friction	0.5	13

Vertical Drop (0.1 m/s)

Mechanism of Collision with the Ground

Change the Number of Particles & Particle Size

Rebound coefficient = $-\frac{\text{Velocity after bounce}}{\text{Velocity before bounce}}$

- The higher the fill rate, the better the shock absorption
- Smaller particle size is better
- When the number of particles is small, results are inconsistent
- Shock absorption performance is worse when fill rate is 0.3 (r=3 mm, 7 mm)

Effect of particle placement on ground impact

- 1. Introduction
- 2. Method
- 3. Behavior analysis
 - A) Model without spikes
 - B) Model with spikes
- 4. Summary

Behavior Analysis: Model with Spikes

Modeled by placing particles at the tips of spikes

Spike length: 35 mm, 100 mm

Spike mass: 5 g

$$\mathcal{W}_{nn}^{\alpha\alpha} = \frac{1}{m_1} + \frac{1}{m_2} + \frac{(c_{1t})^2}{I_1} + \frac{R^2}{I_2}$$

$$\mathcal{W}_{tt}^{\alpha\alpha} = \frac{1}{m_1} + \frac{1}{m_2} + \frac{(c_{1n})^2}{I_1}$$

$$\mathcal{W}_{nt}^{\alpha\alpha} = \frac{c_{1n}c_{1t}}{I_1}$$

$$R : \text{Ground particle radius}$$

Basic Bounce Behavior

Monte Carlo Simulation

Spike length: 35 mm, 100 mm

Spike mass: 5 g

Initial velocity $V_{x0} = N(0, \sigma_x^2)$ $V_{y0} = N(-0.1, \sigma_y^2)$ $\dot{\theta}_{G0} = N(0, \sigma_\omega^2)$

 σ^2 : Variance

 σ : Standard deviation

Trial bins	100
Time step [s]	0.01
Gravity acceleration [m/s ²]	0.0001
Horizontal initial position [m]	0
Vertical initial position [m]	0.3
Initial angle (3 $\sigma_{ heta}$) [rad]	0
Horizontal standard deviation (3 σ_x) [m/s]	6×10^{-2}
Vertical standard deviation (3 σ_y) [m/s]	1× 10 ⁻²
Standard deviation of angular velocity (3 σ_{ω}) [rad/s]	1

Effect of Spikes

Final resting horizontal position

Variance is small Static performance is high

Spikes restrain horizontal movement

Length of Spikes: Final Resting Position

Final resting horizontal position

Result of changing the length of the spikes

- > 35 mm: About the same as actually used
- ➤ 100 mm: Extremely long

- Results for extremely long cases are dependent on the number of particles
- Results for the spike length of 35 mm are stable and not affected by the number of particles

Length of Spikes: Rebound Coefficient

Rebound coefficient

Rebound coefficient =
$$-\frac{\text{Max. velocity after bounce}}{\text{Velocity before bounce}}$$

 At 35mm the bounce is significant and at 100mm there is no difference between the case without the projection

- 35mm is still not long enough
 - Expected to be bounded by the length of the spike

- 1. Introduction
- 2. Method
- 3. Behavior analysis
 - A) Model without spikes
 - B) Model with spikes
- 4. Summary

Summary

- Analyzed the behavior of Target Markers with spikes used Non-smooth DEM
- Shock absorption performance is better with
 - A) smaller particle size
 - B) higher fill rate
- Spikes are effective in controlling horizontal movement
- Optimal length for spikes may exist, considering shock absorption performance