押し付け動作のみでの把持を実現する トラス構造把持エンドエフェクタの研究

An end-effector for gripping truss structures requiring only a pushing motion

O Hiroki NAKANISHI
 Naoki KAWAGUCHI
 Keisuke TAGA
 Tokyo Institute of Technology

Astrodynamics Symposium 2022. July 25

Background and Purpose

• Design Concept & Development

Performance evaluation

Conclusion

Background

• The number of spacecraft is increasing Demand for **On-Orbit Services** is also increasing

Repair and Inspection

©JAXA

Required technologies for
 On-Orbit Services

Space debris removal

The establishment of technology is essential

Non-cooperative targets

- Cooperative docking mechanism
- : 6-DOF constraint mechanism using paired geometries

Non-Cooperative:

- Losing control
- No target marker
- No cooperative

- Targets of On-orbit services : **Non-cooperative**
 - Debris and existing satellites don't have cooperative docking mechanism

Previous research on non-cooperative mechanisms

JAXA PAF capture concept ©JAXA

Figure 10. CAD image of HKK

©NASA

LAR Capture Tool ©MDA

Figure 11. image of developed HKK HKK©JAXA

Gecko Gripper ©NASA On robot

SENER's clamping mechanism ©ESA

Capture targets

• Target parts: Truss structure

- Trusses are used in various parts of the spacecraft.
- Geometric constraints of up to 4 DOF for a single cylinder

4-DOF

Our research group is developing "Low Contact Force grasping Hand (LCFH)" for cylindrical structures.

Low Contact Force Grasping Hand

Features

Low contact stiffness and Quick capture

So, Grasping is possible by pushing away against the cylindrical structure

- Position and attitude errors can be tolerated.
- Retry motion available
- Electric actuator-less

Retry motion

Approach and capture motion (LCFH-1)

Each state of the LCFH's grasping claw unit

Waiting state to Fixed state

- 1. CDL is held in mechanical singularity by the stopper and spring.
- 2. Cylinder contacts CDLs and displacement occur.
- 3. Direction of the torque is reversed and the CDLs are closed.
- 4. Enclosure possible.
- 5. The motor drives the linkage and become Fixed state.

CDL: contact detection link

Waiting state to Fixed state

- 1. CDL is held in mechanical singularity by the stopper and spring.
- 2. Cylinder contacts CDLs and displacement occur.
- 3. Direction of the torque is reversed and the CDLs are closed.
- 4. Enclosure possible.
- 5. The motor drives the linkage and become Fixed state.

CDL: contact detection link

Waiting state to Fixed state

- 1. CDL is held in mechanical singularity by the stopper and spring.
- 2. Cylinder contacts CDLs and displacement occur.
- 3. Direction of the torque is reversed and the CDLs are closed.
- 4. Enclosure possible.
- 5. The motor drives the linkage and become Fixed state.

Schematic diagram

Waiting state to Fixed state

- 1. CDL is held in mechanical singularity by the stopper and spring.
- 2. Cylinder contacts CDLs and displacement occur.
- 3. Direction of the torque is reversed and the CDLs are closed.
- 4. Enclosure possible.
- 5. The motor drives the linkage and become Fixed state.

CDL: contact detection link

• Waiting state to Fixed state

- 1. CDL is held in mechanical singularity by the stopper and spring.
- 2. Cylinder contacts CDLs and displacement occur.
- 3. Direction of the torque is reversed and the CDLs are closed.
- 4. Enclosure possible.
- 5. The motor drives the linkage and become Fixed state.

CDL: contact detection link

Basic Specification

Size (w/o separate mechanism): 310mm x 165mm x 50mm

Weight (w/o separate mechanism): 458g

Required clearance to inaccesible area: 100mm

Acceleration capacity (before capture motion): 9.8m/s²

Load tolerance (after capture): > 110N

Capture capability

Target diameter: 30 ~ 60mm Misalignment capability Target Offset: ± 50mm , ± 5deg (roll, pitch, yaw) 310 mm 165 mm

offset ←>

Initial Contact force

Target diameter: 60mm Target Offset: S_D 50mm

Dynamics collation ①

- Purpose: To evaluate the model of the mechanism by experiment and analysis
- Method:
 - Collision of a target in 2D microgravity
 - Calculate the target motion, joint displacement, and force when push away

Microgravity experimental setup

Model in contact with truss

Dynamics collation ②

Nakanishi Lab

Result

Experiments show that the collision model is valid.

Considerations from Collision experiment

- Purpose: Evaluate the success of the grasping motion with the required work
 - External work is applied that exceeds the elastic energy of the spring

• Elastic energy threshold W_s

$$W_s = \int_0^{2\theta_s} T_s \, d\theta + D$$

- θ_s : Mounting angle of tension spring T_s : Torque by tension spring D: Dissipated energy
- Relative kinetic energy of EE and target W_k

$$W_k \leq \frac{1}{2} m_t (\boldsymbol{v}_E - \boldsymbol{v}_t)^T (\boldsymbol{v}_E - \boldsymbol{v}_t)$$

 v_E : EE velocity v_t : Target velocity m_t : Target mass

Low Contact Force Grasping Hand

	LCFH-1	LCFH-2	LCFH-3
Purpose	 Space debris removal (using EDT*) * Electrodynamic tether 	 Space debris removal (using thruster) 	 Refueling Repair etc
DOF	Geometric 2	Geometric 4+friction 2	Geometric 6
Appearance			

LCFH-1

Root of gripper can separated from end-tip of the manipulator

Debris structure

 S_D

Capture State

Spring for capture

Singularity of the link maintains the gripper state

When the debris contact with this point, the singularity is broken and the capture motion is started by spring.

Reset motion to initial state

Capture motion

LCFH-2

• For Space debris removal (using thruster)

Contact detection and enclosure

Grasp and tighten

Return to initial state

Concept of LCFH-3

• Target parts: Truss structure

- Trusses are used in various parts of the spacecraft.
- Geometric constraints of up to 4 DOF for a single cylinder

4-DOF

Concept of LCFH-3

• Target parts: Truss structure

- Trusses are used in various parts of the spacecraft.
- Geometric constraints of up to 4 DOF for a single cylinder
- 6-DOF constraint is possible by using a V-shaped intersection

Design a mechanism to capture V-shaped structures using LCFH

6-DOF constraint is possible with 3 or more constraint points

Conceptual study of the grasping system

- Proposed grasping method:
- 2 cylinders of the truss are fixed by symmetrically placed fingers.

it is impossible to use the LCFH as-is for the Grasping module.

Grasping module Design Problem

 Problem : Position and attitude error results in different Truss cross-section of Grasping plane

- Fixing motion of LCFH-1,2 causes relative motion to the truss.
- Fixation must be adapted to the **position and shape** of cross section

Underactuated grasping is needed to match the position and shape of the Truss cross-section

Grasping module Design Problem

 Problem : Position and attitude error results in different Truss cross-section of Grasping plane

- Fixing motion of LCFH-1,2 causes relative motion to the truss.
- Fixation must be adapted to the **position and shape** of cross section

Adaptive grasping is needed to match the position and shape of the Truss cross-section

Design requirements for end-effectors

Design requirements from robotic satellite systems

Requrement	Design value		
Relative position and attitude error tolerance	 Position error: ±10 mm Attitude error: ±1.0 deg Adaptive grasping required 		
Continuous gripping and fixation	 when no voltage is applied High gripping force and no back- drivability 		

Both Adaptive grasping and High ripping force are required.

Design of Grasping module

Grasping module consists of Grasping claw unit and Driving unit

Grasping claw unit

Design based on LCFH

- Low contact stiffness and Quick capture
- Position and attitude errors can be tolerated.
- Retry motion available

Driving unit

Design in a new way

• Adaptive grasping and High gripping force

Driving unit configuration

Adaptive grasping

: Differential gear makes 1 input into 2 outputs. (underactuated mechanism)

High gripping force

: Utilizes Self-locking of Worm gear.

Prototype specifications

Movement of Caging to Fixed state

- Method: Grasping the cylinder on the linear guide
- Result:

Y-axis direction offset: 0 mm

Waiting

Caging

Y-axis direction offset: 66 mm

Fixed

Movement of Fixed to Waiting state

- Method: Under gravity environment
- Result:

Y-axis direction offset: 0 mm

Y-axis direction offset: 66 mm

Movement of Waiting to Fixed state

- Purpose: Concept experiment
- Method: Collision in 2D microgravity

• Result:

Tolerance region analysis

Result

400	30 20	Axis	Maximum permissible error	Satellite endpoint accuracy
E 200		X [mm]	<u>+</u> 27.5	± 10
	Mg -10	Y [mm]	<u>+</u> 51.5	± 10
-400 Truss	-20 -30	Z [mm]	<u>+</u> 89.2	±10
-400 -200 0 100	-20 0 50	Roll [deg]	<u>+</u> 42.5	± 1.0
y axis [mm] 400 -100 x axis [mm]	pitch [deg] roll [deg]	Pitch [deg]	<u>+</u> 8.5	±1.0
Position error area	Attitude error area	Yaw [deg]	<u>+</u> 8.5	±1.0

Satisfy the setting requirement value

Satellite system study can be performed based on the calculated values

Conclusion

- Proposed method and design requirements for 6-DOF constraint of the truss structure
- Clarified the design method of the grasping mechanism for the truss structure.
- Grasping by pushing away was shown to be possible.