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Abstract 19 

We retrieved and examined the partial-column densities of carbon dioxide (CO2) in the lower (LT, 20 

typically 0–4 km) and upper (UT, typically 4–12 km) troposphere (XCO2
LT and XCO2

UT) collected over 21 

six global megacities: Beijing, New Delhi, New York City, Riyadh, Shanghai, and Tokyo. The radiance 22 

spectra were collected using the Thermal And Near-infrared Sensor for carbon Observation Fourier-23 

Transform Spectrometer (TANSO-FTS) onboard the Greenhouse gases Observing SATellite (GOSAT). 24 

Our retrieval method uniquely utilizes reflected sunlight with two orthogonal components of 25 

polarization and thermal emissions. We defined megacity concentration enhancement due to surface 26 

CO2 emissions as XCO2
LT minus XCO2

UT, allowing us to overcome some of the challenges in the 27 

enhancement analysis using existing column density data. We examined the relationship between the 28 
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XCO2
LT enhancements from the time series of intensive target observations over megacities and the 29 

inverse of simulated wind speed, which could be potentially used to estimate surface emissions. Next, 30 

we attempted to estimate the average emission intensity for each city from the linear regression slope. 31 

We also compared our obtained emission estimates with the Open-Data Inventory for Anthropogenic 32 

CO2 (ODIAC) inventory for evaluation. Our results demonstrate the potential utility of the new partial-33 

column density retrievals for estimating megacity CO2 emissions. More frequent and comprehensive 34 

coverage characterizing the spatial distribution of emissions is necessary to reduce random error and 35 

bias associated with the obtained estimate. 36 

 37 
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 39 

Highlights of the manuscript (5 items): 40 

 CO2 density of the lower troposphere using reflected sunlight and thermal emission 41 

 GOSAT megacity data collection using the target mode with revised spatial pattern 42 

 Enhancements calculated by differencing lower and upper partial-column densities 43 

 Emission estimation from the relationship between CO2 enhancement and wind speed 44 

 Reasonable agreement of obtained emission estimates with an emission inventory 45 

 46 

1. Introduction  47 

1.1 Contribution of greenhouse gas (GHG) satellites to climate monitoring under the Paris Climate 48 

Agreement 49 

The Paris Agreement was adopted at the 21st session of the Conference of the Parties (COP21) in 50 

2015 (https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement). It requires 51 

countries to submit their climate action plans, namely emission reduction targets known as Nationally 52 

Determined Contributions (NDCs), to the United Nations Framework Convention on Climate Change 53 
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(UNFCCC). The global progress of NDCs will be evaluated quinquennially based on national measures 54 

to achieve the global temperature goal by the mid-21st century. The scientific community has been 55 

exploring the use of atmospheric observations to contribute to the successful implementation of the 56 

UNFCCC (e.g., Pacala et al., 2010; Jacob et al., 2016; Pinty et al., 2017). Global Earth observations 57 

provided by satellites have played a key role in monitoring the status and progress of international 58 

compliance with emission reduction agreements, such as the Montreal Protocol (UNEP 2020). The 59 

global stocktake in 2023 (GST 2023) (https://unfccc.int/topics/science/workstreams/global-stocktake-60 

referred-to-in-article-14-of-the-paris-agreement) is expected to be the first opportunity to demonstrate 61 

the utility of carbon observation satellites in monitoring global compliance with GHG emission 62 

reductions. Monitoring significant emission sources from space provides information that contributes to 63 

this reduction. 64 

Cities are responsible for more than 70% of global GHG emissions (UN-Habitat, 2012). Over the 65 

past decade, the scientific community has expanded its observational capability of cities by using various 66 

ground-based observation platforms (Davis et al., 2017; Verhulst et al., 2017; Xueref-Remy et al., 2018; 67 

Sargent et al., 2018; Mueller et al., 2018), aircraft (Mays et al., 2009; Brioude et al., 2013; Ahn et al., 68 

2020; Ren et al., 2018; Umezawa et al., 2020), and satellites (Kuze et al., 2009; Crisp et al., 2004; Kiel 69 

et al., 2021). Notably, the availability of space-based observations of GHG has enabled the examination 70 

of GHG emission information from cities and estimate of their emissions where possible (e.g., Kort et 71 

al. 2012, Janardanan et al., 2016; Schwandner et al., 2017; Wu et al., 2018; 2020, Ye et al., 2020; Yang 72 

et al., 2020).  73 

 74 

1.2 Anthropogenic emission estimations obtained using satellite data 75 

Remote sensing by satellites captures an entire emission plume vertically and horizontally from 76 

the top of the atmosphere. Japan’s Greenhouse gas Observing SATellite (GOSAT), launched in 2009, 77 

is the first satellite dedicated to measuring GHGs (Kuze et al., 2009). The Thermal And Near-infrared 78 

Sensor for carbon Observation Fourier-Transform Spectrometer (TANSO-FTS) onboard GOSAT 79 

observes reflected sunlight with two orthogonal components of polarization and thermal emissions 80 
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simultaneously. GHG data obtained from GOSAT have provided an increased number of scientific and 81 

research opportunities to develop, improve, and enhance the ability to retrieve and analyze high-quality 82 

GHG data. The collected GHG data and analyses can provide valuable insights to advance carbon cycle 83 

science at different scientific and policy-relevant scales (e.g., Ganshin et al., 2012; Kort et al., 2012; 84 

Oda et al., 2013; Turner et al., 2015; Janardanan et al., 2016; Ganesan et al., 2017; Varon et al., 2018; 85 

Maksyutov et al., 2021). Significantly, the pointing capability of GOSAT has enabled GHG data 86 

collection over sizable intense point sources worldwide, such as cities and power plants and 87 

examinations of their emission information. Kort et al. (2012) first observed carbon dioxide (CO2) 88 

domes over megacities, such as Los Angeles and Mumbai. Several modeling studies, such as those by 89 

Turner et al. (2015) and Janardanan et al. (2016), have also demonstrated the potential utilities of 90 

GOSAT observations for detecting potential biases in inventory-based emission estimates. Combining 91 

the observations with data from other platforms, Ganesan et al. (2017) demonstrated the feasibility of 92 

the objective evaluation of national reported emissions, as stated in the recent refinement of the revised 93 

IPCC guidelines (IPCC, 2019; Matsunaga and Maksyutov, 2018). Japan launched its second GHG 94 

satellite, GOSAT-2 (2018-), which observes carbon monoxide (CO), CO2, and methane (CH4) (Suto et 95 

al., 2021). There is a plan to launch a third GHG satellite, the Global Observing SATellite for Greenhous 96 

gases and Water cycle (GOSAT-GW) (Hirabayashi, 2020). It is intended as Japan’s contribution to 97 

global efforts to achieve the Paris Climate Agreement goals. The GOSAT mission’s global observations 98 

of CO2 and CH4 are ongoing and provide the world’s longest CO2 and CH4 time series from a single 99 

satellite (2009-present). It is expected to play a vital role in the emission and climate monitoring 100 

activities, such as the upcoming GST, with other satellites under the Committee of Earth Observation 101 

Satellites Atmospheric Composition Virtual Constellation (CEOS-AC-VC) (Crisp et al., 2018).  102 

Space-based GHG observing spectrometers launched more recently than those as mentioned 103 

above are, for example, NASA’s Orbital Carbon Observatory (OCO)-2 and OCO-3 onboard the 104 

International Space Station, have provided opportunities to examine the use of satellite data for city 105 

emission estimation (Crisp et al., 2004; Eldering et al., 2019; Kiel et al., 2021). Notably, studies based 106 

on the OCO-2 and OCO-3 data have illustrated unique challenges. As discussed in Pacala et al. (2010), 107 

the size of the GOSAT’ footprint (10.5 km in diameter) is larger than that of the OCO-2 instrument (1. 108 
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29 × 2.25 km2), which may limit its ability to observe relatively weaker CO2 enhancements due to local 109 

sources, such as mid-sized power plants. In addition, the large footprint and severe geophysical 110 

difficulties (e.g., clouds and aerosols) have reduced the data yield to a value lower than that required for 111 

robust emission estimations (Suto et al., 2021). Sparse pointwise observation patterns have allowed the 112 

collection of useful data for large-scale flux inversions, although interpolating data is necessary to 113 

capture potential emission plumes from city areas or significant point sources, as compared with 114 

spatially denser OCO-2 data (e.g., Schwandner et al., 2017; Nassar et al., 2017; Reuter et al., 2019). 115 

Some of these difficulties have been mitigated by the intelligent pointing of GOSAT-2 and will be 116 

overcome on future missions, such as GOSAT-GW and ESA’s CO2 monitoring mission (CO2M) (Sierk 117 

et al., 2019). However, challenges, such as determining background and boundary inflow (Schuh et al., 118 

2021), potential local vegetation impact (Miller et al., 2020), and consequently estimating local 119 

enhancement, are shared by current space-based approaches and thus need to be considered. 120 

 121 

1.3 Objectives of this study 122 

Previous studies on megacity observations using GOSAT data, such as Kort et al.(2012), presented 123 

enhancement by differentiating GOSAT data obtained in source areas (e.g., cities) from the surrounding 124 

areas. From the early years of the GOSAT observations until 2015, the spatial pattern of sampling was 125 

relatively sparse, and the number of clear-sky data was limited to estimating emissions (Kuze et al., 126 

2016). This study presents the first partial-column density retrievals obtained for six megacities. We 127 

estimated average emissions from satellite observations and wind speed simulations, assuming CO2 128 

remains locally at the boundary layer during winter months. Retrieving the CO2 density of the lower 129 

troposphere (LT) improves the detectability and removes the inflow into the upper troposphere (UT). 130 

Satellites offer another advantage of obtaining frequent and long-term global observations, although 131 

single soundings have a more considerable uncertainty (typically 2 ppm or better) than ground and in 132 

situ observations. Kuze et al. (2020) first applied the partial-column products to detect a CH4 at Aliso 133 

Canyon in Southern California. After filtering by using wind direction simulation data, the time series 134 

data of the TANSO-FTS target observations showed a large enhancement that decreased with time after 135 
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its initial blowout, because single-day and single-point data have large uncertainties in estimating the 136 

CH4 leak quantitatively. In this study, we examined the utility of our partial-column CO2 density 137 

retrievals to estimate emissions from megacities by using multiple-day data, which are assumed to 138 

constant with time. 139 

Existing space-based spectrometers cover a limited area of Earth’s surface when acquiring 140 

sufficient photons and spectral resolution to retrieve CO2 precisely. Most anthropogenic CO2 emissions 141 

are believed to originate from cities and point sources, which occupy a small percentage of Earth’s 142 

surface. A crucial question regarding satellite operation is whether allocating observation resources to 143 

more city areas can improve the understanding of local flux. Since the global area coverage by GOSAT 144 

is less than 1% because TANSO-FTS uses one pixel in each band, and it has an acquisition time of 4.6 145 

s, the resource allocation to target observations is limited. Therefore, we prioritized observation over 146 

global megacities. The simulated wind speed and emission inventory analyzed the partial-column CO2 147 

density data collected at several global megacities. We selected winter months (January-March) data 148 

when vertical convection and CO2 uptake by plants were expected to be low. We used data from 2019 149 

and 2020 to compare year- to-year variation. 150 

 In this study, Section 2 describes the partial-column density of LT by combining reflected 151 

sunlight with two orthogonal components of polarization and thermal emission data from TANSO-FTS. 152 

The target observation patterns sampled over the selected megacities are discussed in Section 2. Section 153 

3 calculates the CO2 concentration enhancement from the GOSAT retrieval data and characterizes the 154 

observed enhancements by using simulated wind speed and emission estimates from an emission 155 

inventory. Section 4 discusses the limitations of this study and future research directions. 156 

 157 

2. GOSAT instruments, partial-column density retrievals for CO2, and target observations 158 

GOSAT employs the FTS technology to prioritize the multiplex advantage of wide spectral 159 

coverage and spectral resolution at the expense of imaging capability. The combination of reflective 160 

optics and a beam splitter made of an uncoated ZnSe can cover the spectral range from 0.76 μm in the 161 

near-infrared to 15 μm in the thermal infrared region to observe both reflected sunlight with two 162 

This document is provided by JAXA.



 
7 

 

orthogonal components of polarization and thermal emissions simultaneously (Kuze et al., 2009). 163 

TANSO-FTS has three narrow shortwave infrared (SWIR) bands at 0.76 μm for oxygen (O2), 1.6 μm 164 

for CO2 and CH4, and 2.0 μm for CO2, and one wide thermal infrared (TIR) band with a spectral 165 

sampling interval of 0.2 cm-1. All spectral bands have a common field stop to acquire a signal from the 166 

same geophysical location. The optical throughput advantage of FTS can collect sufficient photons to 167 

improve the signal-to-noise ratio with a circular footprint of 10.5 km in diameter.  168 

A two-axis agile pointing system with onboard memory can observe wide cross-track (CT) areas 169 

and specify the observation locations with a pointing accuracy better than 1 km. GOSAT started the 170 

original grid observation with a three-day revisit cycle at a local time of 13:00. Since 2016, we have 171 

allocated more soundings for target observations over significant anthropogenic emission sources, such 172 

as megacities and CH4 point emission sources (Kuze et al., 2016). When a satellite speed of 7 km/s, 4.6 s 173 

sampling interval, and a pointing range of ±20°, in the along-track (AT) and ±35° in CT, a maximum of 16 target 174 

locations are accessible within a city area in every orbit. In theory, GOSAT can cover 42 × 42 km2 for intense 175 

square observations, as illustrated in Fig. 1. In November 2018, a solar-paddle-rotation incident occurred and was 176 

recovered by December. Since the TANSO-FTS observation restarted, pointing has been stable and accurate 177 

through 2019 and 2020, the period we selected for analysis in this study. 178 

The National Institute for Environmental Studies (NIES) has developed and provided column 179 

density of CO2 as operational GOSAT Level 2 product (Yoshida et al., 2013). Like many existing 180 

products (Butz et al., 2011; Parker et al., 2011, O’Dell et al., 2012, and Crisp et al., 2012), the 181 

NEIS product only uses radiance spectra from the three SWIR bands by combining two orthogonal 182 

components of polarization bands into single radiance spectra. Their products’ standard deviation and 183 

bias of the CO2 retrievals are 2.09 ppm or 0.5% and -1.48 ppm, respectively, when validated with the 184 

Total Carbon Column Observing Network (TCCON) column density data retrieved from the direct solar 185 

radiation on the ground (Wunch et al., 2011). Janardanan et al. (2016) used the NIES product for  186 

calculating concentration enhancement due to fossil fuel emissions using transport model simulations 187 

and reported potential biases in emission inventory estimates. 188 

As a separate independent effort, we developed a retrieval algorithm for a partial column density  189 

of two tropospheric and three stratosphere layers and  a total column density by combined use of the 190 
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SWIR and TIR bands by the maximum a posteriori solution method (Kikuchi et al., 2016). Kulawik et 191 

al. (2017) presented a retrieval method using the pressure broadening of the CO2 absorption spectra in 192 

the GOSAT SWIR bands. Such analyses require accurate characterization of the instrument line shape 193 

function. Instead, we used the TIR radiance spectra of thermal radiation emitted from atmospheric CO2 194 

at different altitudes by simultaneously retrieving the vertical temperature gradient. The number of 195 

vertical layers was limited for obtain robust retrievals. We can obtain the difference between the CO2 196 

density of two individual layers of LT and UT (XCO2
LT and XCO2

UT) by constraining the total column 197 

density (XCO2) accurately. Three stratosphere layers are used for converging retrieved partial-column 198 

densities.  199 

We propose to estimate CO2 emissions from megacities by calculating the enhancement in LT, 200 

where surface emission hotspots are located. The concept of simultaneous observations and our partial-201 

column retrieval is illustrated in Fig. 1. Because scattering by aerosols and clouds is largely polarized 202 

and the surface reflection is less polarized than that, the independent use of two orthogonal components 203 

of polarization in the three SWIR bands allows us to remove aerosol and thin cloud contamination 204 

instead of the combined use of polarization spectra adopted by many other existing retrieval algorithms. 205 

We define each vertical layer by the retrieved surface pressure (Psurf) retrieved from the O2 A band for 206 

each sampling point, rather than the retrieved vertical temperature with large uncertainty. The LT and 207 

UT partial-columns were defined as 0.6–1 Psurf and 0.2–0.6 Psurf, respectively. The sizes of the airmass 208 

of the LT and UT columns determined by retrieved Psurf are approximately the same. In the ocean case, 209 

the typical vertical range of the LT column is approximately 0–4 km. The degrees of freedom for the 210 

signal of XCO2 and XCO2
LT  are typically 1.2 and 0.6, respectively. Retrieved XCO2 was validated using 211 

TCCON data (Kikuchi et al., 2016). A subset of the retrieved XCO2
LT was validated using spiral flight 212 

data over Railroad Valley in Nevada, USA (Tanaka et al., 2016). 49 spiral flights were performed from 213 

the surface (25 m or lower) to 8,500 m at the time of GOSAT overpasses. 214 

(https://www.eorc.jaxa.jp/GOSAT/GHGs_Vical/ghg_vical_trace_gas.html). The comparison shows 215 

that bias, standard deviation, and expected retrieval error for XCO2
UT and ones for XCO2

LT are 2.4, 1.6, 216 

1,7, 1.1, 1.6, and 1.4 ppm, respectively. By assuming that the LT comprises the entire boundary layer in 217 
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winter months, analysis using XCO2
LT should allow us to focus on local emissions. Kuze et al. (2020) 218 

demonstrated the advantages of using the partial-column density product for detecting local CH4 219 

emissions from a point source.  220 

Typically, 1000 sampling points (5% of the total daily GOSAT observation points) are allocated to 221 

target observations (Kuze et al., 2016). Since 2016, we have added more than 10 megacities (Beijing, 222 

Cairo, Dhaka, Istanbul, Mexico City, Mumbai, New Delhi, New York City, Riyadh, Tokyo, and 223 

Shanghai) and implemented revised target observations every six days with smaller spatial gaps. Each 224 

city has a maximum of 16 sampling locations per orbit. In this study, we focused on six megacities 225 

(Beijing, New Delhi, New York City, Riyadh, Tokyo, and Shanghai) where a sufficient number of clear-226 

sky and successful retrievals was available (listed in Table 1). Fig. 2 shows the center of the GOSAT 227 

footprint over the selected megacities superimposed with emissions taken from the year 2020 version of 228 

the Open-source Data Inventory for Anthropogenic CO2 (ODIAC) inventory (Oda and Maksyutov, 229 

2011; Oda et al., 2018). Beijing and New Delhi have square areas with 4 × 4 intense sampling points to 230 

cover significant emission sources. New York City, Riyadh, and Shanghai have modified squares to 231 

avoid water bodies (e.g. bays and rivers), where the surface reflectance in SWIR is low. However, 232 

megacities with a widely spread pattern such as Greater Tokyo Area, tend to have sparse sampling points. 233 

We retrieved XCO2
LT and XCO2

UT from the calibrated radiance spectra of Level 1 version 220 and 234 

analyzed the retrieved data between January 2019 and March 2020. First, we only used wintertime data 235 

because data from other seasons are expected to be heavily affected by vertical convection (thicker 236 

boundary layer) and carbon uptake by plant photosynthesis (Lauvaux et al., 2016; Miller et al., 2020). 237 

We also selected days when more than 40% of the sampling points were successfully retrieved.  238 

 239 

3. Examining XCO2
LT enhancement over megacities 240 

3.1 GOSAT XCO2
LT enhancement over megacities  241 

Fig. 3 shows the target observation locations and spatial distribution of the monthly averaged 242 

XCO2
LT in March 2019 in (a) Beijing, (b) New Delhi, (c) New York City, (d) Riyadh, (e) Shanghai, and 243 

This document is provided by JAXA.



 
10 

 

(f) Tokyo. Beijing and Shanghai exhibited high CO2 concentrations above 420 ppm. We also obtained 244 

high CO2 values over Tokyo, but the sampling density was extremely low compared to other megacities. 245 

The area-averaged enhancement in 2 ( , )LT
aaveXCO i d∆  of target city i and observation day d is defined 246 

by Eq. (1). To mitigate the impact of the annual CO2 increase and seasonal variations, we used the 247 

monthly area-averaged 2 ( , )UT
amaveXCO i m  of month m calculated using Eq. (2) for a reference. Because 248 

XCO2
UT is much less impacted by local surface emissions compared to XCO2

LT and has smaller day-to-249 

day variations, we used area and monthly averaged data. Notably, we assume that the boundary layer is 250 

below the UT and LT boundaries during the winter months. The advantage of partial-column products 251 

is that we define references for the concentration enhancement calculation from simultaneous 252 

observations.  253 

 254 

 2 2 2( , ) ( ( , , ) / ( , ) )
N

LT LT UT
aave amave

k
XCO i d XCO i d k N XCO i m∆ = −∑  Eq. (1) 

2
2

( , )( , )
UTM N

UT aave
amave

d k

XCO i dXCO i m
MN

=∑∑  Eq. (2) 

where 2 ( , )UT
aaveXCO i m , k, and N denote the XCO2

 UT monthly average over city i, the sampling point, 255 

and the total number of successfully retrieved data for the city, respectively. M is the number of clear-256 

sky datasets per month after screening cloud-contaminated data.  257 

To confirm our assumption that emissions from megacities remain within LT, we compared  258 

XCO2
LT to the transport model outputs from the CarbonTracker (Peters et al., 2007) and NICAM-TM 259 

(Niwa et al., 2011). The two models used the ODIAC inventory for prescribing fossil fuel emissions. In 260 

February 2018, the CarbonTracker 2019B model at a 3° × 2° resolution covering  selected megacities 261 

showed that enhancements were located no higher than 600 hPa, as described in Appendix A1. The 262 

CarbonTracker model in August shows enhancement from the surface and a higher density inflow in the 263 

UT. NICAM-TM provides a 0.125° × 0.125°  resolution spatial data and shows the local enhancement 264 

also within LT. 265 

 266 
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3.2 Relation between wind speed and emission estimates  267 

We next examined the utility of XCO2
LT for estimating emissions from megacities. Remote 268 

sensing from space offers the advantage of capturing a snapshot of the entire emissions. The local CO2 269 

emissions from the footprint of the satellite observations can be expressed using the relationship between 270 

CO2 enhancement and wind speed using equation Eq. (3). 271 

2 2
p LT

CO
s

A V
f XCO

L
= ∆  Eq. (3) 

where 
2COf , Ap, V, Ls, and 2

LTXCO∆  denote CO2 emissions from an emission source, LT partial air 272 

mass, wind speed, the distance between the emission source of the footprint and its downwind edge and 273 

enhancement by emissions, respectively. The city area is often much larger than a single GOSAT 274 

footprint. In addition, individual observational data has a significant random error. Therefore, we 275 

averaged the XCO2
LT values of a single day within a city to reduce random errors and cover the entire 276 

emission plume. We did not consider within-city emission gradients. By detailing the relationship in Eq. 277 

(3) and considering the inflow from upwind locations, the XCO2
LT enhancement over megacities from 278 

the GOSAT observations can be expressed with the following model for a spatially spread city area: 279 

 280 

( )
2

2 2

( , ) ( )
( , ) ( )

( , )
CO CLT LT

aave upwind
C Cp

F i d L i
XCO i d XCO i

V i d A i
∆ = + ∆  Eq. (4) 

where 
2
( , )COF i d , LC(i) , VC(i,d), and ACp(i)  are the CO2 emissions, the average distance between the 281 

center of the city area and the edge of the downwind, wind speed, and the partial air mass of LT for the 282 

selected area of city i and day d, respectively. We use the Hybrid Single-Particle Lagrangian Integrated 283 

Trajectory model (HYSPLIT) for Vc(i,d) (Stein et al., 2015) as described in Appendix A2. 284 

2 ( )LT
upwindXCO i∆ is the LT enhancement upwind of city i. 285 

Because XCO2 (i.d) LT enhancement is a function of emissions and the inverse of wind speed, we 286 

could use a least-square linear fit of the screened datasets for deriving emission estimates. We added 287 

one piece of virtual data with uncertainty of 5 ppm with infinite wind speed to constrain the linear fit. 288 

Fig. 4. The values are assumed to be constant in our study and estimated using the ODIAC inventory 289 
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product and the typical wind direction in winter per HYSPLIT as described in Appendix A3. Table 2 290 

shows relations by introducing the coefficient 2( ) ( ) ( ) / ( )CO C Cpi F i L i A iα =  in Eq. (4) for the six 291 

selected megacities. The point of origin of the vertical axis represents the 2 ( )LT
upwindXCO i∆ , which is 292 

the level of infinite wind speed. Calculation methods using Eq. A3 to estimate emissions are described 293 

in Appendix A4. The uncertainty in ( )iα was calculated using Eq. A4 from the uncertainty of 294 

△XCO2(i.d) LT, which is modeled as a summation of the wind-speed-dependent error, retrieval error and 295 

inflow in Appendix A5. All six megacities show positive relations between megacity XCO2
LT 296 

enhancement and the inverse of wind speed. Table 2 summarizes the coefficients ( )iα  for the six 297 

megacities and their uncertainties using the winter months (January–March) of 2019 and 2020. Errors 298 

due to averaging an inhomogeneous distribution of XCO2
LT such as those for Riyadh are not included in 299 

the uncertainty assessment. 300 

Beijing shows a good relationship between XCO2
LT enhancement and wind speed among the six 301 

megacities with an uncertainty of 50% (listed in Table 2) and its emissions are high. The wind direction 302 

in the winter months is stable, and no large cities and upwind northwest. Many successful CO2 retrievals 303 

achieved from a clear-sky dataset and an intense sampling pattern over the city minimized random errors. 304 

We assumed that both photosynthesis and vertical convection between UT and LT are low in winter. 305 

Another challenge is that 42 × 42 km2 sampling is not wide enough to cover the entire megacity 306 

emission area, especially in the northeast, as shown in Fig. 2 (a) of the ODIAC inventory. For a more 307 

accurate estimation, the horizontal distribution of △XCO2
 LT must be considered. New Delhi also has a 308 

sampling pattern similar to that of Beijing. The estimated coefficient (3.5 ppm m/s) is lower than Beijing 309 

(21.1 ppm m/s) and has a much larger uncertainty. One of the possible reasons is that the uptake by 310 

photosynthesis cannot be ignored. Cloud-free scenes in New York City are minimal. Riyadh is an 311 

isolated city, but its emissions are lower than the uncertainty. Shanghai had the largest uncertainty. What 312 

contributed most to Shanghai’s largest uncertainty were its lowest number of clear-sky datasets, the 313 

largest uncertainty in inflow due to other cities upwind (2.50 ppm), and the widely spread city. The city 314 

area of Tokyo is widely spread, and sparse sampling causes large uncertainty resulting in a large bias in 315 
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emission estimation, even although 13 observations after screening cloud-contaminated data were 316 

available for analysis in winter 2019.  317 

The analysis in the other seasons is expected to be more complicated than that in winter, possibly 318 

due to plant photosynthesis and vertical convection. We used Beijing, Riyadh, and Tokyo, which have 319 

a sufficient number of clear-sky datasets observations for analysis over both winter (>10) and year-320 

round (>30) (listed in Table 1). Fig. 5 shows the relationship between CO2 enhancement and wind speed 321 

using year-round data. The wind direction varies much more in the summer than in the other seasons, 322 

especially in Riyadh. All three megacities show lower coefficient of determination (R2). Advanced 323 

analysis methods that consider meteorological information and biological activities are necessary for 324 

emission estimates for seasons other than winter. 325 

The quantitative value of the averaged CO2 emissions 
2
( )CO aveF i  from city i can be calculated 326 

from the coefficient ( )iα expressed in Eq. (4). We used the partial air mass factor ACp(i) for the entire 327 

city area. In the case of Beijing, the coefficient in Eq (4) is 21.1 ppm m/s in winter months 2019 and 328 

2020, and the estimated emissions from the city area as defined in Fig. 2 (1) are 1.98 MtC/month/city.  329 

To demonstrate the effectiveness of this analysis, we plotted the coefficient ( )iα from XCO2
LT 330 

enhancement for winter 2019 and 2020 separately. Fig. 6 shows the difference between winter months 331 

2019 and winter months 2020, and Table 3 compares the estimated CO2 emissions of winter 2019 and 332 

winter 2020 with nitrogen dioxide (NO2) density averaged over the selected megacities. NO2 is emitted 333 

together with high-temperature fossil fuel combustion, and its densities for selected megacities are 334 

calculated by averaging monthly data over the area defined in Fig. 2 acquired by the TROPOspheric 335 

Monitoring Instrument (TROPOMI) onboard the Sentinel-5 Precursor satellite (Veefkind et al, 2012). 336 

The data showed reductions in 2020 except for Riyadh NO2. Analysis using a longer time period is 337 

necessary because the effect of economic slowdown due to COVID-19 differs among CO2-relevant 338 

source sectors. For example, emissions from the transport sector were reduced, but emissions from 339 

power plants (the energy sector) did not change much (Le Quéré et al., 2020). The small change in New 340 

Delhi in 2020 may be due to the large-scale natural CO2 changes, but the change is near the detection 341 

limit, and there is no clear evidence.  342 
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 343 

3.3 Comparison with the ODIAC inventory 344 

A comparison with a CO2 emission inventory provides an opportunity to demonstrate the 345 

effectiveness of the estimates using satellite data. The integrated emissions per month for each city are 346 

listed in Table 2. Fig. 7  presents the correlation between our estimated megacity emissions ( )iα  and 347 

area-integrated emission values from the ODIAC inventory Ec(i) in Eq. A1 in Appendix A2. i denotes 348 

an individual city. We used the ODIAC inventory as a reference to characterize the obtained CO2 349 

enhancements. The calculated correlation coefficient (p) was 0.83. Megacities with a sufficient number 350 

of clear-sky datasets and various wind speeds, such as Beijing and Tokyo, presented a smaller   351 

uncertainties of 50% and 89% (Table 2) in coefficient ( )iα  than other megacities. Emission estimates 352 

for New York City and Shanghai have large uncertainties. Emission for Riyadh was possibly 353 

underestimated by averaging GOSAT data over a much wider area than the actual enhanced area. The 354 

result from the linear fitting shows that the bias was within the range of uncertainties, but the amounts 355 

are smaller than those in the ODIAC inventory. Possible cause of the difference is bias in the wind speed 356 

at 500 m by HYSPLIT in slow cases. The actual speed near the surface may be more complicated than 357 

that in the HYSPLIT simulation. 358 

 Conversely, the inflow contribution estimated from the intercept of relationship between XCO2
LT 359 

enhancement and the inverse of wind speed was overestimated. There are no significant emission 360 

sources in upwind area in Beijing. The GOSAT footprint requires additional coverage over these areas 361 

to determine the inflow. Retrieval of 2
LTXCO∆  and 2

UTXCO∆ are partially-averaged. ODIAC 362 

emissions might have had a bias. Oda et al. (2019) reported that the typical emission uncertainty for the 363 

ODIAC inventory is 30–40% over city areas. 364 

 365 
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4. Discussion 366 

4.1 Current limitations for emission estimation. 367 

We examined the information contained in XCO2
LT from GOSAT target observations over 368 

selected global megacities. The uniqueness of our method is that by assuming that vertical 369 

convection is negligible, the partial-column density of the LT is usable for studying local 370 

emissions under the uncertainty of CO2 retrieval. XCO2UT can be used for the background level 371 

estimate, which is difficult to determine using models or other methods accurately. A challenge 372 

is extending the analysis season to include summer when vertical convection is not negligible. Our 373 

analysis assumes that a wind speed of 500 m represents the plume motion, of which actual local 374 

dynamics are more complicated. 375 

To improve the accuracy of our emission estimation, random errors and the bias of △XCO2(i,d) 376 

LT
aave in Appendix A5 must be reduced. In addition to observation uncertainties such as instrument noise 377 

and calibration uncertainties, the forward calculation of the radiative transfer in the atmosphere used in 378 

our retrieval method has both common bias and random errors. A major portion of errors were caused 379 

by uncertainties in absorption line parameters and light path modifications caused by aerosols and thin 380 

clouds. The current standard deviation Sr of the XCO2
 LT in our retrieval method described in Appendix 381 

A5 cannot be significantly reduced. Because single XCO2
LT data had a large uncertainty even after 382 

averaging the data over a city area, we instead introduced a linear regression to estimate emissions from 383 

multiple-day data at various wind speeds. Vertical profiles of wind speed above a city are challenging 384 

to validate. They are regularly measured at limited locations such as airports. Instead, we tested the 385 

backward trajectory at the three heights of 500 m, 1000 m, and 2000 m above ground level (AGL) to 386 

represent the wind speed of plumes in LT. The coefficient of determination for emissions estimated from 387 

the density enhancement derived from Eq. 4 and wind speed Vd(i,d) in Beijing are 0.33, 0.32, and 021 388 

for AGL 500 m, AGL 1000 m, and AGL 2000 m, respectively. In this study, we used the wind speed at 389 

an AGL 500 m simulated by HYSPLIT. An additional upwind observation point can reduce the bias of 390 

2 ( , )LT
inflowXCO i d∆  in Eq. A6.  391 
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Among the megacities selected in this analysis, Beijing, Riyadh, and Tokyo have sufficient 392 

emissions exceeding the estimation limit (Table 2 and Fig. 7). Uncertainties for Tokyo and Riyadh are 393 

small because there was a sufficient number of clear-sky dataset: however, their sampling patterns have 394 

not been optimized. The sampling patterns of New York City and Shanghai require more points to be 395 

allocated and longer-term data should reduce the estimation uncertainty. New Delhi has a complicated 396 

flux, namely larger uptake than other 5 megacities, and emission enhancement is near the detection limit. 397 

The number of sampling points over Tokyo with various source sectors must be increased to cover the 398 

densely populated areas and industrial zones around Tokyo Bay. 399 

 400 

4.2 Future perspectives and implications: GOSAT-2 and GOSAT-GW 401 

This study focused on the utility of the enhancements calculated from the partial-column density. 402 

Based on what we obtained from, we suggest future applications for estimating emissions from 403 

megacities. Averaging with more sampling points per day and more frequent observations per month 404 

can reduce random errors in the estimation. More frequent observations will also provide various wind 405 

speeds that reduce estimate uncertainty. Instead of assuming a spatially uniform emission within the city, 406 

weighing the emission area and having a wider spatial coverage can mitigate the existing challenges by 407 

compromising the spatial and temporal resolutions of emission estimates. A wider spatial coverage can 408 

be applied to estimate inflow from other locations. TANSO-FTS-2 onboard GOSAT-2, which is the 409 

successor of GOSAT, has an advanced pointing system with an AT pointing range twice as wide as that 410 

of TANSO-FTS (Suto et al., 2021). It has started more intensive observations with 36 target points over 411 

Beijing to cover the entire emission and upwind areas (highlighted in Fig. 2). We have also added more 412 

sampling points to New York City to improve sampling density. The observation frequency is similar 413 

to that of GOSAT. This study does not use spatial distribution information with a GOSAT observation 414 

pattern, which assumes spatially uniform emission. Considering the spatial inhomogeneity of emission 415 

locations and their plumes within megacities, imaging spectrometers with higher spatial resolution and 416 

more sampling points such as OCO-3 are necessary (Kuze et al., 2019). 417 
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In our study, small enhancements of XCO2
LT with a 10.5 km footprint is not sufficient to 418 

characterize the spatial distribution from the single-day observation data. Co-located short-lived NO2 419 

allows us to pinpoint source locations and depict emission plumes. Burdens between long-lived CO2 420 

and short-lived NO2 are correlated (Fujinawa et al., 2021). The quantitative correlation between long-421 

lived CO2 and short-lived NO2 shows significant uncertainty, but NO2 distribution can help to 422 

make the spatial distribution of CO2 enhancement more precisely. For example, the northern part 423 

of Beijing has significant NO2 emissions acquired by the TROPOMI instrument and GOSAT data show 424 

higher enhancement in summer than that in other parts. TANSO-3 onboard GOSAT-GW has an imaging 425 

capability with a much higher spatial resolution than TANSO-FTS and TANSO-FTS-2. It 426 

simultaneously observes CO2 and NO2. However, our partial-column retrieval method cannot be applied, 427 

because it has no TIR band. Coincident observations by TANSO-FTS or TANSO-FTS-2 are required to 428 

obtain XCO2
LT. A finer spatial distribution estimated from the NO2 data will also provide sector 429 

information for individual sources. The classification of emissions from the source sectors is required 430 

to monitor human activity. Locations of major point sources such as power plants and steel factories are 431 

often known, but their emission amounts and spatial distributions at very fine resolutions (1 km or less) 432 

must be estimated from observations. Higher-resolution data from lower altitudes, such as that from 433 

aircraft, will further improve emission estimation from source sectors by combining data to detect and 434 

estimate fine-resolution emissions. 435 

This study demonstrates the potential utility of partial-column data to estimate city-level 436 

emissions during the winter months from the GOSAT XCO2
LT data. For year-round analysis, CO2 uptake 437 

by photosynthesis should be considered. GOSAT also observes solar-induced chlorophyll fluorescence, 438 

but further studies are necessary for a quantitative discussion. Our future perspectives are to improve 439 

local and global flux estimation and reach better agreement with inventories and reported emissions. 440 

The spatial distributions of the existing inventory, which are often based on the assumptions of emission 441 

disaggregation (Oda et al. 2019), are other challenges. Global flux has been estimated by combining 442 

atmospheric greenhouse gases by satellites with an atmospheric composition transport model, but still 443 
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has significant uncertainties due to satellite data, meteorology, and a priori information (Deng et al., 444 

2014). 445 

 446 

5. Conclusions 447 

TANSO-FTS onboard GOSAT has a multiplex advantage that enables simultaneous observations 448 

of solar reflected light with two orthogonal components of polarization and thermal emissions. Using a 449 

full spectral range, we obtained XCO2
LT enhancement with XCO2

UT for a reference, which is twice as 450 

large as the enhancement often obtained from the existing column density. The agile pointing system of 451 

TANSO-FTS can target megacities with smaller spatial gaps between the soundings. We presented 452 

megacity XCO2
LT enhancement from the time series of targeted GOSAT data over Beijing, New Delhi, 453 

New York City, Riyadh, Shanghai, and Tokyo and the linear relation with the inverse of the simulated 454 

wind speed. We estimated the emissions from Beijing with an uncertainty of 50% in winter by intensive 455 

observations with a significant high clear-sky ratio, and small upwind inflow. Uncertainties in emission 456 

estimation increase because of smaller number of clear-sky datasets, sparse sampling, contamination of 457 

inflow from other megacities and due to uptake by plant photosynthesis and vertical convection during 458 

other seasons. We also compared our estimates to data from the ODIAC inventory. These results 459 

demonstrate the utility of the new partial-column density retrievals for estimating megacity CO2 460 

emissions. We also discussed current limitations in obtaining robust emissions, such as limited data and 461 

atmospheric transport. To reduce random errors and bias, more frequent, wider coverage and a 462 

characterization of the spatial distribution within a city are necessary. 463 
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 476 

Appendix  477 

Fig A1. Shows the flowchart of the study. The appendix describes the detailed analysis method used in 478 

this study. 479 

 480 

A1. Comparison with CarbonTracker 481 

We used the CarbonTracker 2019B model to confirm the enhancement distribution from a 482 

megacity in winter and summer. Because the data for 2019 and 2020 are not available, we used data 483 

from February and August 2018. Fig. A2 shows the vertical profiles of CO2 at a local time of around 484 

13:00. The model data show enhancement within LT, where a typical boundary is 600 hPa. Some of the 485 

Beijing data in August suggest the effect of vertical convection and uptake by plants. 486 

 487 

A2. Wind speed and meteorology model 488 

As shown by Eq. (3), XCO2
LT enhancement is a function of CO2 emissions and wind speed. 489 

Unfortunately, there were no vertical profile measurements of the wind to cover city areas of interest, 490 

and there were often only limited data available at airports. Thus, we used the HYSPLIT model to 491 

represent the wind over the selected megacities. HYSPLIT was driven by the Global Data Assimilation 492 

System (GDAS) 1° data at 1-h intervals. We also used the simulated wind for the backward trajectory 493 

to estimate the inflow from the upwind. Because of the low boundary layer in winter, we used the wind 494 

data at AGL 500 m to represent the transport. 495 

 496 
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A3. Calculating CO2 emission estimates for selected megacities and inflow using an inventory 497 

The ODIAC inventory distributes up-to-date country fossil fuel CO2 emission estimates using 498 

power plant information and satellite-observed nightlights at 1 × 1 km2 resolution (Oda and Maksyutov 499 

2011, 2015, Oda et al., 2010; 2018; 2019). The ODIAC inventory was originally developed for CO2 flux 500 

inversion analyses of GOSAT Level 4 product development (e.g., Oda and Maksyutov 2011; Maksyutov 501 

et al., 2013). Since its establishment, The ODIAC inventory has been used in global and regional 502 

traditional surface flux inversions (e.g., Takagi et al., 2011; Saeki et al., 2013; Houweling et al., 2015; 503 

Feng et al., 2017; Crowell et al., 2019; Palmer et al., 2019). The global high-resolution emission field 504 

in ODIAC has also been successfully used in city emission studies (e.g., Oda et al., 2013; Lauvaux et 505 

al., 2016; Hedelius et al.; 2018; Martin et al., 2018; Reuter et al., 2019; Wang et al., 2019; Wu et al., 506 

2018; 2020; Yang et al., 2020; Ye et al., 2020; Ahn et al., 2020). Further details of the ODIAC inventory 507 

can be found elsewhere (Oda and Maksytuov 2011; Oda et al., 2010; 2018; 2019).  508 

To compare the megacity emission estimate obtained from the GOSAT data, we aggregated the 509 

1 × 1 km2 emissions to a 0.1° × 0.1°, summed up the emission values over the city areas defined in Fig. 510 

2 and calculated the total carbon emission per month Ec(i) for selected city i by using the following 511 

equation: 512 

 513 

( ) ( , )=∑∑C ODIAC
lon lat

E i E lat lon                                            Eq. A1,  514 

where EODIAC(lat,lon) is the carbon emission per 0.1° cell (ton C/cell). The area in Fig. 2 shows the 515 

coverage of the GOSAT footprints and the surrounding city area upwind. The number of ODIAC cells 516 

used in these calculations for Beijing, New Delhi, New York City, Riyadh, Shanghai, and Tokyo were 517 

25, 20, 21, 20, 22, and 39, respectively. The city area of greater Tokyo is widely spread and GOSAT 518 

sampling spatial density is sparser than that in other megacities. We integrated a wider area but excluded 519 

the industrial area in the southeast, located downwind of the city. 520 

The inflow in LT to the selected area creates a positive bias in calculating the XCO2
LT 521 

enhancement in the selected city. We calculated the background level for a selected city far upwind by 522 

using the ODIAC inventory and a simple contribution model that is constant over time. The wind 523 
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direction for this calculation for each city is that most frequently used by the HYSPLIT backward 524 

trajectory in the winter months (listed in Table 1). The wind direction was stable in winter, with a 525 

variation of 20°. Observation points upwind are too sparse, and we do not estimate the inflow solely 526 

from the GOSAT data. We integrated the ODIAC inventory under the backward trajectory by using 527 

HYSPLIT to estimate inflow. The area for integration is between the edge of the city area and 540 km 528 

from the city center, which is 10 times larger than the diagonal distance of the selected city area. The 529 

integrated area had a sector angle of 20°. The inflow model portion in 2 ( )LT
upwindXCO i∆  is calculated 530 

using the following equation: the apex of the sector is located at the edge of the city, where the GOSAT 531 

footprint is 10.5 km wide.  532 

 533 

2 ( , ) ( ) ( , )LT
inflow Odiac

lon lat
XCO i d l E lat lonγ η∆ = ∑∑                            Eq. A2, 534 

Where ( )lη  is the contribution from the emission source along the trajectory as a function of the 535 

distance l from the center of the city (defined in Fig. 2), which becomes zero at 540 km. Hubeny’s 536 

distance formula was used to calculate distance. γ  is the conversion factor from the amount of CO2 537 

inflow to the partial-column density of LT over the selected city considering its LT air mass and 538 

assuming that inflow remains for 1 h within a city. The cross-section spreads as the distance increases 539 

and is normalized by a Gaussian curve. Fig. A3 shows the area of integration and emission distribution. 540 

The calculated results are presented in Table 2. 541 

 542 

A4. Estimated emission and its uncertainty 543 

We estimated the emissions by using a least-square fit of enhancement 2 ( , )LT
aaveXCO i d∆  and the 544 

inverse of wind speed Vd(i,d). The linear slope and its uncertainty were calculated using Eqs. A3 and 545 

A4. The uncertainties ( , )ds i d  in 2 ( , )LT
aaveXCO i d∆  are functions of wind speed, retrieval error, and 546 

inflow (described in Appendix A5).  547 

 548 
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 2 2
2 2 2 2

( , ) ( , )1 1 1( )
( , ) ( , ) ( , ) ( , ) ( , ) ( , )

LT LTY Y Y Y
aave aave

d d d di d d d d d d

XCO i d XCO i di
W s i d V i d s i d s i d V i d s i d

α
 ∆ ∆

= − 
 
∑ ∑ ∑ ∑      Eq. A3. 549 

2
1 1( ) ( )

( , )

Y

di d

i sqrt
W s i d

α∆ = ∑                                                      Eq. A4 550 

where 
2

2 2 2 2
1 1 1

( , ) ( , ) ( , ) ( , ) ( , )

Y Y Y

i
d d dd d d d d

W
s i d V i d s i d V i d s i d

 
= − 

 
∑ ∑ ∑ . 551 

 552 

For Eq. A5, the LT enhancement upwind for each city can also be calculated as the intercept of 553 

infinite speed, which is larger than that calculated in Appendix A2.  554 

 555 

2 2
2 2 2 2 2 2

( , ) ( , )1 1 1( )
( , ) ( , ) ( , ) ( , ) ( , ) ( , ) ( , )

LT LT
LT aave aave

LT upwind
i d d d d d d d

X CO i d XCO i dX CO i
W s i d V i d s i d V i d s i d V i d s i d

 ∆ ∆
∆ = − 

 
∑ ∑ ∑ ∑  Eq. A5. 556 

 557 

A5. Uncertainty in the XCO2
LT

 enhancement 558 

Wind speed simulation models of the global scale with a 1° grid can be justified in a geostrophic 559 

wind condition, and they generally has a large uncertainty, especially for slower wind speeds. We apply 560 

the least-square fit with errors to estimate emissions from a city (described in Section 3.2). We converted 561 

the wind speed-dependent error to uncertainty in △XCO2(i.d) LT
aave for each day. The uncertainty 562 

( , )ds i d  of city i and day d associated with wind speed dependency, retrieval errors sr in XCO2
LT, and 563 

the inflow of each day and city (described in Appendices A2 and A3) are expressed as follows: 564 

 565 

2( , ) ( , )
( , )

LTw
d r inflow

d

ss i d s XCO i d
V i d

= + + ∆                          Eq. A6,  566 

where Sw denotes uncertainty when wind speed is 1 m/s. Fig. A4. shows the uncertainty model used in 567 

this study as a function of wind speed. Sr is the standard deviation of the difference between XCO2
LT and 568 

XCO2
UT and remains constant at 2. 09 × √2 = 3.0 ppm, assuming the standard deviation of the partial-569 
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column product is 2.09 ppm. More vertical profile data using aircrafts and radiosondes for characterizing 570 

random errors and bias are necessary for a future quantitative estimation. 571 

 572 
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6-1533-2013.Figure captions. 895 

Fig.1. Example of a typical target observation pattern such as Beijing by GOSAT pointing and 896 

simultaneous observation of solar reflected light over the surface and thermal emissions from the 897 

Earth’s atmosphere. 898 

 899 

Fig. 2. GOSAT target points (red crosses) and megacity areas in this study (highlighted). (a) Beijing, 900 

(b) New Delhi, (c) New York City, (d) Riyadh, (e) Shanghai, and (f) Tokyo. We used the 1 × 1 km2 901 

ODIAC inventory map. 902 

 903 

Fig. 3. Spatial distributions of XCO2
LT (circles) obtained from target observations in March 2019 for 904 

(a) Beijing, (b) New Delhi, (c) New York City, (d) Riyadh, (e) Shanghai, and (f) Tokyo.  905 

 906 

Fig. 4. XCO2
LT enhancement plotted against the inverse of simulated wind speed from HYSPLIT using 907 

January–March 2019 data with coefficient of determination (R2) for (a) Beijing, (b) New Delhi, (c) New 908 

York City, (d) Riyadh, (e) Shanghai, and (f) Tokyo. Dashed lines and triangles show the linear fit and 909 

modeled background, respectively. The vertical lines show uncertainty for  XCO2LTaave 910 

enhancement 911 

 912 

Fig. 5. XCO2
LT enhancement against the inverse of simulated wind speed from HYSPLIT using full-913 

year 2019 data with coefficient of determination (R2) for (a) Beijing, (b) Riyadh, and (c) Tokyo. The 914 

vertical lines show uncertainty for  XCO2LTaave enhancement. 915 

 916 

Fig. 6. XCO2
LT enhancement against the inverse of simulated wind speed from HYSPLIT for Janunary–917 

March 2019 (circle and solid lines) and Jananuary–March 2020 (diamonds and dotted lines) with 918 

coefficient of determination (R2) for (a) Beijing (b) New Delhi (c) Riyadh, (d) New York (e) Shanghai, 919 

and (f) Tokyo. Triangles show the modeled background for individual megacities. 920 
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 921 

Fig. 7. CO2 emission estimates of a city area from GOSAT against the city-wide ODIAC inventory 922 

estimates. Error bars show uncertainties in the emission estimate for an individual city by a least 923 

square regression. The calculated correlation coefficient (p) was 0.83. 924 

 925 

Fig. A1. Flowchart of this study. Critical data are the GOSAT XCO2
LT data products, wind speed from 926 

the HYSPLIT transport model, and the ODIAC inventory. 927 

 928 

Fig. A2. CarbonTracker 2019B model at a local time of around 13:00 in February 2018 (left) and 929 

August 2018 (right) covering (a) Beijing, (b) New Delhi, (c) New York City, (d) Riyadh, (e) Shanghai, 930 

and (f) Tokyo. 931 

 932 

Fig. A3. Impact of the inflow calculated by integrating the ODIAC inventory over the upwind area for 933 

(a) Beijing, (b) New Delhi, (c) New York City, (d) Riyadh, (e) Shanghai, and (f) Tokyo. 934 

Fig. A4. Uncertainty model for XCO2
LT enhancement. Uncertainty was assessed as a function of wind 935 

speed. 936 
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 938 
Tables 939 

 940 

Table 1  941 

Selected megacities and the number of cloud-free data collected with GOSAT between 2019 and 942 

2020. 943 

 Number of 
sampling 

points per city 

the number of clear-sky datasets  
after screening cloud-contaminated 

data 

Typical wind direction 
in winter at the time of 

GOSAT overpass 
winter 2019 
 (J–M) 

2019  
(J–D) 

winter 2020  
(J–M) 

Beijing 16 11 36 13 Northwest 
New Delhi 16 6 N/A 7 Northwest 
New York City 15 2 N/A 5 West 
Riyadh 15* 11 34 12 West 
Shanghai 13 3 N/A 1 Northwest 
Tokyo 5 13 31 9 West 

* Four before 2020. 944 
 945 
Table 2 946 

Coefficient ( )iα from six megacities, their uncertainties, our estimated emissions using both winter 947 

months 2019 and 2020 data, emission estimates based on the ODIAC inventory, the inflow estimated 948 

from the intercept of relationship, and XCO2
LT upwind by inflow based on the ODIAC inventory. 949 

 ( )iα   
(ppm m/s) 

Uncertainty 
in ( )iα  

Estimated 
emission 

(MtC/month/
city) 

Integrated 
CO2 

emission 
inventory 
(ODIAC ) 

(MtC/month/
city) 

Estimated 
inflow 
(ppm) 

using Eq. 
A5 

XCO2
LT 

upwind 
by inflow 

(ppm) 
using Eq. 

A2 

Beijing 21.1 50% 1.98 4.0 3.9 0.26 
New Delhi 3.5 257% 0.33 2.2 2.1 0.33 
New York City 8.8 155% 0.83 1.2 1.8 0.58 
Riyadh 6.6 149% 0.62 2.2 2.2 0.09 
Shanghai 19.8 120% 1.86 4.8 2.6 2.50 
Tokyo 13.3 89% 1.25 2.7 1.7 0.78 

 950 

  951 
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 952 

Table 3 953 

Coefficient ( )iα from XCO2
LT enhancement and NO2 density differences between winter 2019 954 

(January-March) and winter 2020 (January-March). 955 

 956 
 ( )iα  (ppm m/s) Changes  NO2 (mol/m-2) by 

TROPOMI 
Changes  

 Winter 
2019 

Winter 
2020 

Winter 
2019 

Winter 
2020 

Beijing 28.5 19.9 -30% 2.4 ×10-4 1.8 ×10-4 -26% 
New Delhi 3.8 3.3 -11% 1.6×10-4 1.3×10-4 -19% 
New York City 50.0 8.6 -83% 1.6×10-4 1.4×10-4 -8% 
Riyadh 16.3 4.4 -73% 1.1 ×10-4 1.4 ×10-4 +21% 
Shanghai 20.9 18.2 -13% 2.4×10-4 1.7×10-4 -31% 
Tokyo 16.5 10.8 -34% 1.5 ×10-4 1.4 ×10-4 -9% 

 957 

  958 
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 959 

1. Figures 960 

 961 

 962 

 963 

 964 

Fig. 1. Example of a typical target observation pattern such as Beijing by GOSAT pointing and 965 

simultaneous observation of solar reflected light over the surface and thermal emissions from the Earth’s 966 

atmosphere. 967 

 968 
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 970 

(a)  (b)  971 

(c)  (d)  972 

(e)  (f)  973 

 974 

Fig. 2. GOSAT target points (red crosses) and megacity areas in this study (highlighted). (a) Beijing, 975 

(b) New Delhi, (c) New York City, (d) Riyadh, (e) Shanghai, and (f) Tokyo. We used the 1 × 1 km2 976 

ODIAC inventory map. 977 

 978 

979 
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(a)  (b)  980 

(c)  (d)  981 

(e)  (f)  982 

 983 

 984 

Fig. 3. Spatial distributions of XCO2
LT (circles) obtained from target observations in March 2019 for 985 

(a) Beijing, (b) New Delhi, (c) New York City, (d)Riyadh, (e) Shanghai, and (f) Tokyo.  986 

 987 

  988 
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 989 

(a)  (b)  990 

(c)  (d)  991 

(e)  (f)  992 

 993 

Fig. 4. XCO2
LT enhancement plotted against the inverse of simulated wind speed from HYSPLIT using 994 

January–March 2019 data with coefficient of determination (R2) for (a) Beijing, (b) New Delhi, (c) New 995 

York City, (d) Riyadh, (e) Shanghai, and (f) Tokyo. Dashed lines and triangles show the linear fit and 996 

modeled background, respectively. The vertical lines show uncertainty for  XCO2LTaave 997 

enhancement. 998 
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 1001 

(a) (b)  1002 

(c)  1003 

 1004 

Fig. 5. XCO2
LT enhancement against the inverse of simulated wind speed from HYSPLIT using full-1005 

year 2019 data with coefficient of determination (R2) for (a) Beijing, (b) Riyadh, and (c) Tokyo. The 1006 

vertical lines show uncertainty for  XCO2LTaave enhancement. 1007 

  1008 
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 1009 

(a) (b)  1010 

(c) (d)  1011 

(e)  (f)  1012 

 1013 

Fig. 6. XCO2
LT enhancement against the inverse of simulated wind speed from HYSPLIT for January–1014 

March 2019 (circle and solid lines) and January–March 2020 (diamonds and dotted lines) with 1015 

coefficient of determination (R2) for (a) Beijing (b) New Delhi (c) Riyadh, (d) New York (e) Shanghai, 1016 

and (f) Tokyo. Triangles show the modeled background for individual megacities. 1017 
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 1020 

 1021 

 1022 

Fig. 7. CO2 emission estimates of a city area from GOSAT against the city-wide ODIAC inventory 1023 

estimates. Error bars show uncertainties in the emission estimate for an individual city by a least square 1024 

regression. The calculated correlation coefficient (p) was 0.83. 1025 
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 1027 

 1028 

Fig. A1. Flowchart of this study. Critical data are the GOSAT XCO2
LT data products, wind speed from 1029 

the HYSPLIT transport model, and the ODIAC inventory. 1030 

1031 
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 1032 
 1033 
Fig. A2. CarbonTracker 2019B model at a local time of around 13:00 in February 2018 (left) and 1034 

August 2018 (right) covering (a) Beijing, (b) New Delhi, (c) New York City, (d) Riyadh, (e) Shanghai, 1035 

and (f) Tokyo. 1036 

  1037 

(a)
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 1038 

(a)  (b)  1039 

 (c) (d)  1040 

(e) (f) .  1041 

 1042 

Fig. A3. Impact of the inflow calculated by integrating the ODIAC inventory over the upwind area for 1043 

(a) Beijing, (b) New Delhi, (c) New York City, (d) Riyadh, (e) Shanghai, and (f) Tokyo. 1044 
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 1046 

 1047 

 1048 

Fig. A4. Uncertainty model for XCO2
LT enhancement. Uncertainty was assessed as a function of wind 1049 

speed. 1050 

 1051 
 1052 
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