Suzaku Observation of the Radio Galaxy 4C 50.55 (IGR J 21247+5058)

Fumie Tazaki¹, Yoshihiro Ueda¹, Yukiko Ishino¹, Satoshi Eguchi¹, Naoki Isobe¹, Yuichi Terashima², and Richard F. Mushotzky³

¹ Department of Astronomy, Kyoto University, Kyoto 606-8502, Japan

² Department of Physics, Ehime University, Matsuyama, Ehime 790-8577, Japan

³ Astrophysics Science Division, NASA's Goddard Space Flight Center, Greenbelt, MD 20771, USA

E-mail(FT): tazaki@kusastro.kyoto-u.ac.jp

Abstract

We present preliminary results from a 100 ksec Suzaku observation of 4C 50.55 (IGR J 21247+5058). 4C 50.55 is the brightest broad line radio galaxy in the hard X-ray (> 10 keV) band detected with INTEGRAL and Swift, which is located close to the Galactic plane. From a combination of the XIS and HXD, we are for the first time able to obtain simultaneous broad-band spectra of this source. A rapid flux increase by ~ 20% is found in the XIS light curve in the last 20 ksec exposure. The spectra before the flux rise can be well represented by a partially absorbed cutoff power law with a reflection component. The cutoff energy is found to be 46^{+3}_{-6} keV (with a photon index of $1.60^{+0.04}_{-0.08}$), which is lower than that observed in normal AGNs. The variable component shows a softer spectrum than the averaged spectrum, which may contain the jet emission.

KEY WORDS: galaxies: active — galaxies: individual (4C 50.55) — X-rays: galaxies

1. Observations

Since 4C 50.55 (z = 0.02) lies in the Galactic plane, this radio galaxy has not been recognized to be a bright hard X-ray emitter until its discovery with *INTEGRAL* and *Swift*. The hard X-ray luminosity is found to be $L = 10^{44.1}$ erg s⁻¹ in the 14 – 195 keV band (Tueller et al. 2008). By assuming that it does not exceed the Eddington luminosity, the black hole mass is estimated to be more than $10^7 M_{\odot}$.

We observed 4C 50.55 with Suzaku in 2007 April for a net exposure of 100 ksec. This provides us with the best opportunity to investigate its simultaneous broad band spectra. Since the detection significance with the HXD/GSO was found to be marginal, we only utilize the data of the XIS and HXD/PIN in this paper. An analysis of the XMM and INTEGRAL data is reported by Molina et al. (2007).

2. Light Curve

Figure 1 shows the light curve of XIS-0 in the 2–10 keV band. The flux increases rapidly by ~ 20% in the last 20 ksec exposure. The time scale of variability is found to be ~ 10³ sec, indicating that the emission region is within ~ 10 $r_{\rm g}$ ($r_{\rm g} \equiv \frac{GM}{c^2}$ is the gravitational radius) for a black hole mass of $M > 10^7 M_{\odot}$ if relativistic beaming is not important. We separate the observation period into two, epoch 1 (0–1.4×10⁵ sec) and epoch 2 (1.4×10⁵-1.7×10⁵)

Fig. 1. The light curve in the 2–10 keV band obtained with XIS-0. We define epoch 1 as the period before the flux rise $(0-1.4 \times 10^5 \text{ sec})$, and epoch 2 after it $(1.4 \times 10^5 - 1.7 \times 10^5 \text{ sec})$.

sec), for the following spectral analysis.

3. Spectral Analysis

We firstly apply a standard model consisting of a direct component, a reflection component, and an iron-K emission line, modified by the Galactic absorption and intrinsic absorption(s). The direct component is represented by a cutoff power law, in the form of $E^{-\Gamma} \times \exp(-E/E_{\text{fold}})$, where E_{fold} is a cut off energy and Γ is a photon index. We use the PEXRAV model for a reflection component from cold matter (Magdziarz &

Fig. 2. (Upper) The folded spectra of 4C 50.55 observed with the XISs (1-9 keV) and HXD/PIN (12-50 keV). (Lower) The unfolded spectra in units of EI(E). The cross points represent the observed data. The dotted line corresponds to a cutoff power-law component, the dash-dot lines are the reflection component with an iron-K emission line, and the solid line is the total. The best-fit parameters are summarized in Table 1.

Zdziarski 1995).

We finally adopt a partial covering model, where 100f%of the total continuum is absorbed with $N_{\rm H}^1$ and the rest is absorbed with $N_{\rm H}^2$, since a significant improvement is found from a single absorber model. The best-fit parameters for epoch 1 are summarized in Table 1 and the unfolded spectra are plotted in Figure 2. The contour plots between Γ and E_{fold} are shown in Figure 3.

Fig. 3. The error contours between Γ and $E_{\rm fold}$ at $\Delta\chi^2$ of 2.3, 4.61, and 9.21. The solid lines represent the constraint from the Suzaku data in epoch 1, and the dotted lines that from Swift/BAT.

In the same figure, we also plot the same result obtained from the Swift/BAT spectrum in the 14 - 195keV band averaged over 2 years; the Suzaku spectrum of epoch 1 prefers a significantly lower cutoff energy than the BAT data.

The difference spectrum of XIS between epochs 1 and 2 is plotted in Figure 4. It has a photon index of $1.84^{+0.28}_{-0.26}$, slightly softer than the averaged spectrum of epoch 1.

Fig. 4. The difference spectrum of XISs (FI) between epochs 1 and 2. The photon index is found to be ≈ 1.8 .

The variable component may contain a contribution from the jet emission as suggested for the radio galaxy 3C 120 (Kataoka et al. 2007).

Table 1.

	Epoch 1
Г	$1.60^{+0.04}_{-0.08}$
$E_{\rm fold} \; [\rm keV]$	46^{+3}_{-6}
R	$0.28^{+0.04}_{-0.05}$
f	0.20 ± 0.01
$N_{\rm H}^{1} [{\rm cm}^{-2}]$	$(8.5^{+1.1}_{-0.9}) \times 10^{22}$
$N_{\rm H}^{2} [{\rm cm}^{-2}]$	$(0.74 \pm 0.01) \times 10^{22}$
$N_{\rm H}^{\rm gal} [{\rm cm}^{-2}]$	1.0×10^{22} (fixed)
$E\overline{W}$ [eV]	22 ± 5
χ^2 / d.o.f.	928.2/802
(*Errors are 90% confidence level for a single parameter)	

 Γ ; photon index: E_{fold} ; cutoff energy

 $R(=\Omega/2\pi)$; reflection strength: f; covering fraction $N_{\rm H}^1, N_{\rm H}^2$; intrinsic absorption: $N_{\rm H}^{\rm gal}$; Galactic absorption EW; equivalent width of iron-K line (6.4 keV)

Summary 4

We have presented the broad band spectra of the brightest broad-line radio galaxy 4C 50.55 by simultaneously covering the 1–50 keV band for the first time. We find that the spectrum prefers a lower cutoff energy compared with normal AGNs. We may see a transient phase of its spectral evolution, with variable components including the jet emission. The reflection intensity is found to be weak, $R = 0.28^{+0.05}_{-0.05}$ in epoch 1, consistent with a truncated disk geometry.

References

- Kataoka, J. et al. 2007, PASJ., 59, 279
- Magdziarz, P. & Zdziarski, A. A. 1995, MNRAS., 273, 837
- Molina, M. et al. 2007, MNRAS., 382, 937
- Tueller, J. et al. 2008, ApJ., 681, 113