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Abstract: Since the launch of Sputnik, orbital debris population continues to increase due to ongoing space activities, on-orbit explosions, and 
accidental collisions. In the future, a great deal of fragments can be expected to be created by explosions and collisions. In spite of prevention of 
satellite and rocket upper stage explosions and other mitigation measures, debris population in low Earth orbit may not be stabilized. To better limit 
the growth of the future debris population, it is necessary to remove the existing debris actively. This paper studies about the effectiveness of active 
debris removal in low Earth orbit where the collision rate with and between space debris is high. This study does not consider economic problems, 
but investigates removing which debris may stabilize well the current debris population based on the concept of Japan Aerospace Exploration 
Agency.
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 2 Debris removal candidate. 
Altitude Inclination
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 5 Future debris growth crossing 200-2000 km altitude of “W_ADR” 

and “W/O_ADR” scenarios. Each curve is the average of 60 LEODEEM 

Monte Carlo runs based on no new launches assumption. 

 6 Future debris growth crossing 900-1000 km altitude “W_ADR” 

and “W/O_ADR” scenarios .  Each curve is the average of 60 

LEODEEM Monte Carlo runs based on no new launches assumption. 

 3 The Effective Reduction Factors (ERFs) for the 10 cm and larger 

LEO populations from the ADR scenarios. 

 With ADR scenarios
Number of LEO objects 
Removed via ADR (A) 100

Reduction of LEO objects by 
2206 (B) 2794

ERF by 2206 = (B) / (A) 27.9
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 7 Comparison of spatial density distributions for objects 10 cm and 

larger “W_ADR” and “W/O_ADR” scenarios .
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