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As a graduate student working at NASA Ames Research Center I was well 
exposed to both the EFD and CFD communities. 

At the time, they didn’t always get along but we were on the same team.

Background

3

Despite 30 years of advances in CFD, we now understand that it is nothing more than 
the third approach. CFD synergistically complements pure theory and experiments but it can 
never replace either of these other approaches. 

4

Background
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Figure:  Notional NASA air breathing hypersonic aircraft design

The future advancement of fluid dynamics will rest upon a proper balance of all three methods.  

Design of future aircraft and spacecraft will require even greater coupling between physical disciplines 
and better fidelity of their respective models (e.g., hypersonic aircraft) 

Background

5

Inlet Compression
Lift

Pitching Moment Nozzle Thrust
Lift

Pitching Moment

Airframe
Fuel 

Payload

 Strong interactions between vehicle components
 Aerodynamics, propulsion, control, structure, tank, thermal protection, etc.
 Highly integrated engine and airframe
 Much

Hypersonic Aircraft Example : 

 of vehicle is engine inlet / nozzle
 Large propulsive lift and pitching moments – strong contributor to trim, stability & control
 Large Mach number and dynamic pressure variations in flight
 Severe aerodynamic heating
 Thermal protection must be integrated with structure
 High fuel mass fraction required - majority of volume accommodates fuel

Background

6
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We can develop a framework by which this synergy is accessible through the use of 
tools from scattered data approximation machine learning tools  and Generalized 
Regularization (GR) 

[A.N. Tikhonov and V.Y. Arsenin, , 1977]

[M. Ulbrich, TUM-M9810, 1998]

Solution of  Ill - Posed Problems

7

Background

Specifically, mathematical analysis of experimental data is treated as an ill-posed problem. 
Its regularization involves the introduction of additional information regarding the physical system. 

We can then utilize a-priori mathematical models of physical systems at appropriate orders of 
fidelity for regularization. We can then investigate its potential in reducing uncertainty in 
EFD and CFD. 

8

Background
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What are some of the potential applications of a fusion of mathematical models, computational methods, 
and experimental data? 

       Filling in the blanks in experiments (including reducing uncertainty in EFD)
       Accelerating through test matrices (steering and predicting the amount of data needed)
       Accelerating CFD solutions using data (including reducing uncertainty in CFD)
       Noise filtering of data 
       Knowledge discovery through parameter estimation 

9

Motivation

[Kurt Long, NASA Ames] [Gloria Yamauchi, NASA Ames] [Gary Sivak, Air Force Research Lab]

Approach

1, ,

th

To begin, define: 
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Approach

2

1

Basic Problem: 

The construction of a response surface from the minimization of the standard square error, 

                                      ( )

constitutes an 

s

e i a i
i

f x F u x

ill-posed problem since  is nonunique and sensitive to the noise in data . a eu f
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Approach
Solution: 

The general idea in GTR is the minimization of     

 is a scalar measure of the agreement between  and e

A B

A f F u . In Bayesian terms  is related to
  knowledge. 

 is a stabilizing functional (i.e. regularizing operator) and is related to  information. 

 is a positive scalar known as the regu

a A
a posteriori

B a priori

larization that controls the relevance of 
the  and  information to the approximation . aa posteriori a priori u

12

Generalized Tikhonov 
Regularization

Tikhonov
Regularization

Bayesian 
Estimation
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Approach

The regularizing operator, ,  is classified as either quantitative or qualitative.  

Can range from systems of time-dependent nonlinear 

A B

B

partial differential equations, 
to statistical correlations, to heuristics. 

Finding an approximate solution reduces to 
(a) finding regularization operators  and 
(b) determining the regularization par

B
ameter  from supplementary information pertaining 

to the problem, e.g., pertaining to the noise level in  . 

 is not unique and depends on the type of physical process and the data type. 

ef

B

13

Approach

In this context, the GTR formulation acts as a Swiss Army knife and gives us access to 
a number of popular methods in inverse problems. 

Popular inverse problem methods include: 
  Regularization by no

2

1

ise filtering
  Regularization by projection

  Conventional Tikhonov regularization ( ) and  is a  

    smoothing functional in variational form.  
  Scattered data approximation 

s

e i a i
i

A f x F u x B

for Response Surface Modeling RSM includes 
    support vector machines, radial basis functions, artificial neural networks
  Kalman Filter
  Bayesian Estimation 

14
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Approach

With  2 log | ,  2 log ,  and  1,  then  becomes the figure-of-merit 
function from Bayesian estimation theory. 
Therefore, one can think of the GTR framework as a 

a e aA p f f B p f

determ

Bayesian Estimation :

form of Bayesian estimation. 

Assume the measurement errors are Gaussian. The probability density functions act as if a 
differential operator is used to form B and operates on  

inistic

u

Kalman Filter :

0 0

0 0

,  where  is the solution 
to a mathematical model of the time-dependent physical system of interest. The solution 

to the resulting Euler-Lagrange equation is , where ,

a

a cor cor k e k k

u u

u u u u t F u t u t

2
0

.

The basis functions for  are the Green's function to a dynamic equation and  is 

computed to minimize during the time marching. 

cor

a

u

u u
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Approach

0

Back to Generalized Tikhonov Regularization 

         ,       and        0,    

One approach to determining the correct value for  is assuming the error is random,

a a ef x f x f x f x

2
2 2 2

1 1 1

statistically independent and uniformly distributed in the interval ,  . This will give,

( ) ( ) Var
3

where  denotes the operat

s s s

e i a i e i a i i
i i i

f x F u x E f x F u x E s s

E or of mathematical expectation. 

Otherwise you can determine  such that  Max ( )

Note in both formulations,   is solved for iteratively and requires the solution of  ( ) 
within each itera

e i a i

a

f x F u x

f x
tion.

The direct solution of  is still an area of active research.

16
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Approach

0

Back to Generalized Tikhonov Regularization 

         ,       and        0,    

One approach to determining the correct value for  is assuming the error is random,

a a ef x f x f x f x

2
2 2 2

1 1 1

statistically independent and uniformly distributed in the interval ,  . This will give,

( ) ( ) Var
3

where  denotes the operat

s s s

e i a i e i a i i
i i i

f x F u x E f x F u x E s s

E or of mathematical expectation. 

Otherwise you can determine  such that  Max ( )

Note in both formulations,   is solved for iteratively and requires the solution of  ( ) 
within each itera

e i a i

a

f x F u x

f x
tion.

The direct solution of  is still an area of active research.
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 0,    a0, fa0,    0, fa

Interesting
Property
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Approach

0

GTR can use physical model in nonvariational form in place of   A large class of
mechanics problems can be described by the equations: 

,    

B. 

L u x g x x

0

1

      0,          

Without a proxy, the minimum of   satisfies 

( ) ( )2  ,        

               0,       

a

s
e i a i

a i
i

a

u x x

u

u x u xL u x g x x x x

B u x

0Where  is the solution to the differential equation.  

x

u x
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Approach

1

0 0
1

,

The analytical solution to this modified mathematical model is  

1,     with     
2

where ,  is the Green's function to  ,  ,

s

a i i i e
i i

i j i j

u x u x G x x c c

G x x L G x x

G I u u

G

0

0

, and  is a diagonal matrix.

Note that with 0  we have    but the slope and curvature of  is used 

for interpolation. This means we can use the qualitative information from  and are

i

a i e iu x u x u x

u x

I

not
constrained by the quantitative properties. 

In other words, additional information of  fidelity can be used. any

19

Approach

GTR possesses a number of useful properties. However:

           The Green's functions for practical models are usually unavailable. Is it possible  
              to use existing numerical solutions i

2

n the literature for fusion?  

           Is it possible to find a value for  that satisfies  without the trouble of solving for 
3

               ( ) explicitly? 

           Rather than using a s

a

s

u x

ingle value for  is it possible to use a distributed one?
           Is the full data set required to accomplish data-model fusion?  
           Is it possible to do all of this with minimal user interaction?
           Can we accelerate through experiments with incomplete mathematical models or no 
              model at all Black-Box modeling ?  
           Can we reduce uncertainty in EFD and CFD?

20
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Approach #1

                                     

We can also determine the minimum of  through a conventional computational mechanics 
form using the Method of Weighted Residuals (MW

a

A B

u

1 1

1

R). 

2 ( ) ( ) ( ), ( ),  

                                                               2 ( ) ( ) , ( )   for  1, ,

with the constraint  ( )

N s

j i k i j k a k
j i

s

e i k i k
i

e i a i

x x c x L u x b x q

f x x g x k N

f x F u x
2

2

1 3

s

i
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The MWR can be described as a numerical approximation method that solves for the
coefficients  by setting the inner product of the weighted residual equation to zero: 

, 0,    1,  ...,      

where

i

k

c

R k s

   L[ ]     and    

weighting function  

a

k

u g R

Figure: Distribution of the equation residual R.

22

Approach #1
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In this context, the MWR gives us access to many of the popular computational methods 
in a single framework.

1 in  
Finite volume method:              

0 outside  
k

k
k

Collocation method:               where  is the Dirac delta function

Least-squares method:               

Method of moments:   

Generalized Galerkin method:

k k

k
k

k
k

x x

R
c

x

    finite elements

The form of the bases ( ) and the integration quadrature can also give us access to the 
finite difference and spectral methods. 

k k

i

F

x

23

Approach #1

2
2

1

So our numerical formulation can be written as the well-conditioned system 

   with ( )
3

       matrix containing the independent variable

s

e i a i
i

f x F u x sH M c e p

H information of the measurement points
       conventional discretization matrix from computational mechanics 
        vector representing the observational data
       forcing term vector of the a

M
e

p  mathematical model with boundary conditions

           You can use the numerical method of your choice
            acts as a penalty coefficient
           The data is embedded in the equatio

 priori

n solution and acts an initial and/or 
               boundary condition.  We have the potential to steer the CFD solution using EFD.

24

Approach #1

This document is provided by JAXA.



第 2回 EFD/CFD融合ワークショップ 27

2
2

1

So our numerical formulation can be written as the well-conditioned system 

   with ( )
3

CFD:
           We control the approximation method

s

e i a i
i

f x F u x sH M c e p

 and its discretization. 
           We use  to balance cost and fidelity of the  model against the cost of  
               the experimental data in the approximation.
EFD:
           We contr

a priori

ol the quality and distribution of the experimental data - DoE. 
           We balance the cost of the experimental data against the  model 

 in the approximation. 
a priori

25

Approach #1
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CFD EFD Fusion

Differential Equation Fused with Empirical Data
[B. Zeldin and A. J. Meade, AIAA J., 35 (11) (1997)]

Interpolation of data with noise. 
Dashed curve – regularized analytical solution. 
Dashed-dot curve – regularized ANN model 
with 7 RBFs

Interpolation with insufficient data

2

2

2
2

1

0

0,    0,1 ,    0 1 0    

   with
3

1.0 for  and 1.3 for  with 0.014.  

s

e i a i
i

i

d ua x x u u
dx

u x u x s

a u x a u x

H M c e p

26

Approach #1 Results

Response of regularized ANN system with insufficient 
data. 1 – response of the mechanical system, 
2 – regularized response = 0, 
3 – regularized response = 0.3, 
4 – regularized response = 3.0, 
5 –response of a-priori mathematical model
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The earliest and most common application of data/physical model fusion is in the dynamic modeling 
of weather. 

Recognition by V. Bjerknes in 1904 that weather forecasting is fundamentally an initial-value 
problem and basic system of equations already known 

  L. F. Richardson's (1922) attempt at practical Numerical Weather Prediction 

  Late 1940s: First successful dynamical-numerical forecast made by Charney et al. 

  1960s: Edward Lorenz shows the atmosphere is chaotic and its predictability 
    limit is about two weeks

  1980s: Kalman Filtering applied to meteorology

27

Approach #1 Results

Kalman Filtering for Numerical Weather Modeling
[SIAM News, 36 (8) (1997)]

Kalman filter are provably optimal if the 
differential equations for the system are linear. 
Excellent for real-time linear computations. 

SIAM 1997 article stated that the Kalman filter 
doesn't handle any serious nonlinearity 
and proposed remedies were just too complicated. 
This resulted in the modern Ensemble Kalman Filter. 

28

Approach #1 Results
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The Inhomogenous Duffing’s Equation Merged with Empirical Data
[A. J. Meade and R. Moreno, Intl. Journal of Smart Engineering System Design, 1 (1998)]

Chaotic phase space trajectory of the a-priori 
model for omega = 0.86

Response of the model empirical merging.Desired nonchaotic trajectory.

2
3

02

2 2

1

12 cos
2

   with     
3

s
e a

i i
i

d x dx x x F t
dt dt

dx dxt t s
dt dt

H M c e p

29

Approach #1 Results

We have also had success with this formulation using a Thin-Layer Navier-Stokes solver in 
finite difference form fused with experimental surface pressure and boundary layer profile.

30

CFD Code Merged with Empirical Data
[W. Wang,  M.S. Thesis, August 1998)]

Approach #1 Results

  with data as the BCsH M c e p
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Approach #2

GTR questions:

           The Green's functions for practical models are usually unavailable. Is it possible  
              to use existing numerical solutions in the literature for fusion?  

2

  Is it possible to find a value for  that satisfies  without the trouble of solving for 
3

             ( ) explicitly? 

           Rather than using a single value for  is it possible to use a

a

s

u x

 distributed one?
           Is the full data set required to accomplish data-model fusion?  
           Is it possible to do all of this with minimal user interaction?
           Can we accelerate through experiments with incomplete mathematical models or no 
              model at all Black-Box modeling ?  
           Can we reduce uncertainty in EFD and CFD? 

31

Approach #2

An alternative method has been developed in hope of addressing the remaining concerns.

Starting with a straightforward reformulation using the solution to a numerical model, 
( ),  from the literaturCFDu x

1

e

( ) ( )               ( ) ( ) 0 2  ,        

               ( ) ( ) 0,         

where  and  are now 

s
e i a i

a CFD i
i i

a CFD

u x u xL u x u x x x x

B u x u x x

L B l  operators. inear

32
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Approach #2

1

If we define  ( ) ( ) ( )    

and use      , , 

then our solution to this modified form is  

( ) ( ) ( ) ( ) ( ) ( )  

This indicates that we need an approxima

e CFD

i i

N

i i a CFD CFD
i

e x u x u x

G x x x

x c u x u x u x u x e x x

1 2

tion technique that can also address ( ). 

We will construct a  i.e. response surface method  from 

the data ( ),  ( ),  , ( )  and build to a tolerance  equal to the mas

x

scattered data approximation

e x e x e x ximum 

estimated measurement error max | |  . i

33

Approach #2

    These scattered data approximation techniques include: 

  Kriging method trouble with over 20 inputs and over 1000 data sets

  Artificial neural networks, specifically radial basis function networks RBFN , 

    generalized regression neural networks GRNN ,  and support vector machines (SVM). 

  Greedy algorithms.  This includes algorithms like Proper Orthogonal Decomposition (POD). 
   We have developed our own greedy algorithm we call Sequential Function Approximation SFA .

34
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Approach #2

Our SFA algorithm is a variation of Orr's Forward Selection training method and 
Platt's Resource Allocating network from machine learning that seeks to improve the 
computational efficiency through the

2

 MWR. 

For convenience, we use the Gaussian radial basis function since it is unaffected by 
the dimensions  

We set 

          ( , , ) exp   so then

         (

n n
n n

n

n

d.

x x x x
x x

R ( ) ( 1)

1

, , ) ( ) ( ) ( ) ( ) ( , , )
                            

n n
n n a a n n n

n n n

x x u x u x u x u x c x x
R c

35

Approach #2

2
1 1 1

The objective is to determine , ,  and  that minimize the residual . Through the MWR 
we can reformulate the residual equation as a minimization problem, 

, , 2 , ,   whi

n n n n

n n n n n n n n n n

c x R

R R R R c R c 1

2
1

12 2
1 1 1 1

1 2

,
ch for an optimum ;  

,

, ,
    becomes      1       or     sin

, , ,

where  is the angle between  and .  So this formulation should give 

n n
n n

n n

n n n n
n n n

n n n n n n

n n n n

R
c c

R R R
R R

R R R R

R R 1 2

as long as . 
2

n

n

R

36
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Approach #2
This formulation has characteristics similar to Proper Orthogonal Decompositon POD , 
empirical basis function method, and the Krylov method. 

We've used the SFA algorithm successfully with differential equations and conventional 
finite element basis functions in the mesh-free solution of differential equations. 

We plan on using this mesh-free approach to determine whether or not CFD solutions 
can be steered by EFD results during calculations. 

37

[A. J. Meade et al., Communications in Numerical Methods in Engineering, 13 (1997)]

Approach #2

38
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Discrete Ordinate Method (DOM) Thermal Radiation Problem

Non-dim. temp. approx. using 21 exp. 
bases by meshless method

Non-dim. temp. approx. using 40401 
finite volume bases
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Approach #2

[D.L. Thomson et al. International Journal of Thermal Sciences, 40 (6) (2001)]

39

Approach #2

2

The solution for  data sets is the nonlinear minimization of   

( ) ( )  1     with    ,   
( )( ) ( )

The parameters ,  ,  and  are solved for the 

n

n n n

discrete

c

c x

n 1 n n 1 n

n n n 1 n 1 n n

R R
R R

th  basis function sequentially. 

The iterative process continues until either a pre-determined tolerance is reached 

i.e., max     or     or     .  
3

A conservative estimation of the

n

s n sn n nR R R

1 2 convergence rate gives:      exp

This approach has been used successfully with RBF in the approximation and analysis of 
high-dimensional scattered data problems. 

C C nn nR R

40
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Use of Scattered Data Approximation in Side-Stepping 

Interpolation of data with noise ( 0.014) with a = 1.3. 
Dashed curve – regularized ANN model with 1 RBF using SFA

3 3

0 0
1

 ,  ,
6 6

N

a i i
i

x x x x
u x u x u x u x x c

a

41

Approach #2 Results

Interpolation  with noise ( 0.05 and 0.014) and a = 4. 
Dashed curve – regularized ANN model with 1 RBF using SFA

Regression / Fusion for An Airfoil Table 
[J. Navarrete and A. J. Meade, AIAA 2004-0952]

We have used this approach to combine experimental airfoil coefficient data with numerical 
data in an effort to construct airfoil performance tables (C81 Tables) given limited data sets. 

42

Approach #2 - Results
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Regression / Fusion of CFD Codes for Design 
[D. Toal et al., AIAA J., 46 5 (2008)]

The use of scattered data approximation in side-stepping  has also been quite popular 
in computational aerospace design where it has been used in the construction of models by 
the fusion of multiple CFD solvers. 

43

Approach #2 - Results

Approach #3

44

GTR questions:

           The Green's functions for practical models are usually unavailable. Is it possible  
              to use existing numerical solutions in the literature for fusion?  

2

  Is it possible to find a value for  that satisfies  without the trouble of solving for 
3

             ( ) explicitly? 

           Rather than using a single value for  is it possible to use a

a

s

u x

 distributed one?
           Is the full data set required to accomplish data-model fusion?  
           Is it possible to do all of this with minimal user interaction?
           Can we accelerate through experiments with incomplete mathematical models or no 
              model at all Black-Box modeling ?  
           Can we reduce uncertainty in EFD and CFD? 
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Approach #3

Bayesian estimation is by far the most popular technique in empirical information fusion 
Black Box problems, i.e., data fusion without mathematical models . This approach has 

been used in everything from defense related decision codes to condition-based maintenance. 

However, some practical difficulties do arise in a Bayesian framework in setting the 
 probabilities since noninformative priora priori s can cause erroreous bias to further reasoning. 

45

Approach #3
I am a strong supporter of using scattered data approximation for aerospace problems since:  
a  it is a more straightforward numerical technique 

b  we already have an idea of the reliability of the sensors used in measurements

c  setting the  probabilities are replaced with simply mapping the inputs to 
      the known outputs. 
d  we showed in a previous paper that for a set basis function, this

a priori

method should give us the 
      best approximation.  

We have applied our SFA algorithm to a Black-Box problem, a with proxy variable, 
in accelerating through an experiment. 

46
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Figures: HH-60H  and U.S. Navy 
Amphibious Assault Ship

Physical experiments, especially flight tests, can be very expensive and tedious. 

Design of launch/recovery envelope for a U.S. Navy helicopter requires:
4-5 days of ship-board flights
4 pilots, 2 aircrew, 4 test engineers, 5 maintenance personnel
Manuvering the ship to simulate various sea conditions
Hundreds of thousands of US$

Identification / Classification of Naval Rotorcraft Recovery 
[A. Srivastava et al. Proc. of the 2007 Infotech@Aerospace Conference, 2007. ]

Approach #3 - Results
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Reverse and Separated Flow at Bow

Turbulent Gusts Separating 
from Unsteady Bow Flow

“Wingtip” Vortex Emanating from Deck Edge
(Generally at deck edge, for bow winds)

Turbulent Wake
Flow Behind Island

“Necklace” Vortex Around 
Base of Ship

(Generally below deck edge 
and very weak)

“Necklace” Vortex Around 
Base of Island

Approach #3 - Results
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Effort to replace the standard two-dimensional launch/recovery envelope.  The SFA approach is used 
to construct a response surface that approximates the quality ratings of several HH-60H command pilots 
after recovery from Navy amphibious carriers. 

 369 data sets
   13 dimensions
     4 classes 

CAUTION:
UNRESTRAINED FLIGHT DECK SAFETY
NETS MAY RISE UPRIGHT FOR WINDS
035-325 EXCEEDING 30 KTS.

Entire Envelope:  day.
Shaded Area:  night.

PITCH(+/-) 5
ROLL(+/-) 8
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PRS #
Pilot Effort Rating Description

1
Slight

No problems; minimal pilot effort
required to conduct consistently safe
shipboard evolutions under these
conditions.

2
Moderate

Consistently safe shipboard
evolutions possible under these
conditions.  These points define fleet
limits recommended by NAWCAD
Pax River.

3
 Maximum

Evolutions successfully conducted
only through maximum effort of
experienced test pilots using proven
test methods under controlled test
conditions.  Loss of aircraft or ship
system likely to raise effort beyond
capabilities of average fleet pilot.

4
Unsatisfactory

Pilot effort and/or controllability
reach critical levels.  Repeated safe
evolutions by experienced test pilots
are not probable, even under
controlled test conditions.

Table: Pilot Rating Scale (PRS) Figure: HH-60H Operational Recovery Envelope
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Input
Index

Abbreviation Definition (Units)

1 Ship Type USN Ship Type: DD 967 (1), DDG 61 (2) DD 971 (3), DD976 (4)
2 WOD Spd Wind Over Deck Speed. Relative wind speed (kts).
3 WOD Dir Wind Over Deck Direction. Relative wind direction (degrees)
4 Long CG Longitudinal CG station of helicopter. Length aft of datum (in).
5 Wfuel Weight of fuel aboard helicopter (lb).
6 GW Gross Weight of helicopter (lb).
7 Qavg Average hover torque required during evolution (%).
8 Qmax Maximum hover torque required during evolution (%).
9 Pitch Pitch angle of ship during evolution (degrees)
10 Roll Roll angle of ship during evolution (degrees)
11 OAT Outside Air Temperature (degrees)
12 Hp Pressure altitude (ft).
13 Hd Density altitude (ft).

Table: Classification Model Inputs

Approach #3 - Results

This example was used to demonstrate that Black-Box fusion can be used for accelerating experiments 
and reducing uncertainty in experiments. This was thought to be a more rigorous test since there are
no known models for the launch and recovery problem to fuse with the data and we are using a proxy 
variable. 

We used DoE tools to select a small subset of the test matrix. 
We imaged that the results from this first day of tests were then used to map the PRS to the inputs. 
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Approach #3 - Results

The resulting approximation was then used to predict the results of the next subset. Errors in 
predictions were used to update the PRS model. Because the SFA is a numerical technique 
with a known convergence rate, we can use this convergence rate to conservatively estimate 
how many more data points are necessary for the surrogate to reach some desired accuracy. 

Applying sensitivity analysis to the PRS model we can also get an idea of which inputs are 
relevant to the test and eliminate those that have little effect on the PRS. 

Figure: Average input sensitivities 
in the prediction of pilot ratings.Figure: Decrease in error equivalent to the 

theoretical convergence rate.
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This convergence rate for black-box modeling also means that our prediction accuracy 
increases in a known manner, thereby reducing the uncertainty as more data is added 
to our approximation. 

Figure: Average input sensitivities 
in the prediction of pilot ratings.Figure: Decrease in error equivalent to the 

theoretical convergence rate.
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It has been demonstrated that through the use of regularization, scattered data approximation, and 
meshless methods it is possible to seamlessly fuse mathematical models, computational methods, 
and experimental data. Possible benefits include: 

       Noise filtering of data (reducing the error bars)   
       Filling in the blanks in experiments (including reducing uncertainty in EFD)
       Accelerating CFD solutions using data (including reducing uncertainty in CFD)
       Accelerating through test matrices (steering and predicting the amount of data needed) 
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The Generalized Tikhonov Regularization framework shows promise as a way to merge theory,
experimental observations, and computational fluid dynamics in a deterministic manner. 

Further investigation of the method and the applications are required: 

  Perform meshfree solution of ( ) with the  of ( ) combined with ( ).  
   This would produce meshless and data-driven computational m

a CFD e iu x solution u x u x
echanics solvers. 

  Investigate the method in designing better experiments and accelerating through them. 

  Investigate the method with aerodynamic proxy data. 

                                      Suggested reading :
Keane & Nair 

               and Kapio & Somersalo :
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I would like to see us as a community, using whatever tools become suitable, to routinely drive 
and merge experiments with various CFD solvers and have this become a regular part of our 
student's education and research thinking. 

In addition to archiving our CFD results in journals, these models can then be used as international 
databases that can be further refined with advances in CFD and EFD. As a result, work does not 
have to be needlessly reproduced and uncertainty can be reduced in future experiments. 
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Questions?
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