Numerical Computation and Experimental Measurement of Aerodynamic Noise

Present and Future

Center for Research on Innovative Simulation Software

Chisachi Kato, University of Tokyo

Outline

- Background
- Numerical Prediction of Aerodynamic Noise
- Applications at Present
- Perspectives and Future Roles of Measurements

Background

Prediction and Reduction of Aerodynamic Noise

Aerodynamic Noise

- Generated from deformation of vortices
- > Drastically increase with increasing flow speed

Reduction of Aerodynamic Noise

Crucial in development of various fans, airplane, automobiles, etc.

Expectations for Numerical Predictions

- Cost and/or time reduction for prototyping
- Reduction of noise by identifying essential mechanism for noise generation
- > Prediction of noise under installation conditions

平成21年9月3日

The second s

- Direct Computation of Aerodynamic Noise
 Provide information regarding detailed mechanism of noise
 - Applicable to feedback noise
 - Limited to simple geometries, particularly for noise from low speed flows

Decoupled Methods

generation

- Based on acoustic analogy
- No feedback assumed
- > Applicable to relatively complex geometories
- Various methods have been proposed

Applications at Present

Noise Generated from an Axial-flow Fan Subjected to Inflow Turbulence

Collaborator: Siegen University in Germany

Computational Model

Ducted Fan Subjected to Turbulence Ingestion Computational Grids on Blade Surface

Fluctuations of Instantaneous Static

平成**21**年9月3日

Comparisons of Turbulence Statistics behind Grid

12

Comparison of Turbulence Intensity

0.15

Incoming Turbulence Intensity

Measured by Hot Wire

w/un

Computed by LES

Root-mean-square Value of C_{P}

Clean Inflow Case

Turbulent Inflow Case

Comparison of Radiated Sound Pressure Levels

Far-field Sound Pressure Level

Clean Inflow

Turbulent Inflow

Bypass Transition of Flat Boundary Layer and Resulting Sound

CIS:

Computational Model

Instantaneous Vortical structure

CIS

This document is provided by JAXA.

Skin Friction Coefficient

Shape faction

NACA0012: Angle of attack=9 deg, Re=2.0x10⁵

Vortical Structure near L. E.

Effects of Reynolds Number on Transition Process (left: 2.0 x 10⁵, right: 2.0 x 10⁶)

平成21年9月3日

Effects of Reynolds Number on Surface

NACA0012: Angle of Attack = 9 deg.

This document is provided by JAXA.

CISS

Comparison of Surface Pressure Fluctuations

This document is provided by JAXA.

CISS

Approaching TBL and Flow in Actual Car Gap

平成**21**年9月3日

Stretching of Vortices and Acoustical Source on Surface

Stretching of Vortices at the Edge

Aeroacoutsical Sources at 4.8 Hz

CIS

CIS:

Sound Radiated from a Small Propeller Fan

This document is provided by JAXA.

Instantaneous Flow Fields

Effects of Grid Resolutions

Coarse Mesh

Fine Mesh

キャビティ音の直接数値解析

■ フィードバック機構の詳細解明

$$D/L = 0.5 (St = 0.8)$$

D/L = 1.7 (St = 0.4)

Perspectives and Future Roles of Measurements

91

Numerical Predictions of Aerodynamic Noise

will partially replace protoryping and/or model tests up to Reynolds number O(10⁶)

Future Role of Measurements

- Provide accurate and detailed data for validating numerical methods
- Extract Essential Physical Phemomena