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Current Status of EFD/CFD Techniques for
Road Vehicle Aerodynamics
and
Development of the Unsteady Aerodynamic
Simulator

Makoto. Tsubokura
(Hokkaido Univ.)

Second Workshop on Integration of EFD and CFD

2009.2.24, JAXA

* Automotive Development

= Competitive
» More than 10 companies in Japan!, around 20 worldwide major.

= Fast
» 4 years from the kick-off to the market
(About a year shorter than typical Europe or US company).

= Parallel
» 20 to 30 new models per year in Japan.
» Every company develops several models in parallel.

= Toward Green Mobility
= Major source of CO2 emission
(around 20% by vehicle driving in Japan).
= Around 50% less for the next 10 years!

This document is provided by JAXA.
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= Still smaller Cd is required.
= Cd=0.26 to 0.20 can reduce F.C. to 10% less at 100km/h drive.

= Cd~0.15 in 2030 by an active control or an innovative

aerodynamic devices. o
Breakthrough is indispensable!

Severe Aerodynamic Development for Road Vehicle

= Complexity
» Bluff-body flow.................. complicated turbulence.
» Interactions among flow, heat and mass, vehicle body...
...... complicated physics.
= Wide variety of types......... complicated geometry.

= Wide range of problems

» Aerodynamic performance, engine cooling, ventilation,
aerodynamic noise, soiling

Performance , Stability Flow Field in Detail

Hucho, Aerodynamics of Road Vehicle

This document is provided by JAXA.
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Requirement of Coupled Aerodynamics

= Coupled effects to be considered from the initial stage.

Monotonic analysis Coupled analysis

Side lorce / C ,D
I Road bump Steering action

LY e i Vehicle body in motion

Drag ‘ [

“Rolling
Thermal management

Integral forces and moments
Aero-acoustic noise

Unsteady Aerodynamic Simulator

= Unsteady aerodynamics for innovative aerodynamic Design.

Uniform flow w 1 T T I
A am W -am
- Crosswind
—CQLR — -
oad bump

Steering action

= To provide additional data which wind-tunnel is difficult to measure.
= To eliminate the gap between wind-tunnel and on-road measurements!

» Large Eddy Simulation (LES)

Reynolds Averaged Navier-Stokes Large Eddy Simulation
(LES)

(RANS)

This document is provided by JAXA.
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High-Performance Computing for Vehicle Aerodynamics
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Numerical Methods
Governing Equations and Physical Models

= Spatially Filtered Navier-Stokes Equation
ou; .
8.’13i =0

ou; o _ _ oP 0 -

ot or; (ui;) = “an T 2873, (v +vsas) Sij

» Standard Smagorinsky’s model

vsas = (CsfsD)*1/28:;5;; C=0.15
_t
fs=1—exp % :Wall damping function (Van-driest)

A = (AzAzoAzy)'? :Grid width

= Wall-layer models on the solid surface (Log-law)
= First grid point with a log-layer (y+~100)

This document is provided by JAXA.
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Numerical Methods

Unstructured Finite Volume Methods

s Vertex-centered Finite Volume Methods

tetrahedral pyramid

7

,’3 v

1 1

_Prism hexahedral
Spatial discretization: 2nd-order central FD

Convective Term: Blend of upwind scheme

Pressure-Velocity coupling: SMAC method
Pressure-Poisson: ICCG
Front Flow/red 85821

Bavaatiosary Semudatian Saftware

Sudden Crosswind
Problem and Method

!
ing Vertices

: “~
Neighbor

polyhedral

(several %)

Time Marching Method: 2nd-order Adams-Bashforth
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Sudden Crosswind

model
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Transient forces and moments
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Target and Validation (Fixed-yaw cases)

Wind tunnel measurements at Toyama Univ.
Tanaka et al., #20 CFD Symp. A6-2 in Japanese

(2005)

Fixed yaw: 30 degree
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Sudden Crosswind
Eddy Structures around the Vehicle

Before subjected to a crosswind After subjected to a crosswind

Sudden Crosswind
Formula-car case (1)

Before subjected to a crosswind After subjected to a crosswind

This document is provided by JAXA.
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Sudden Crosswind
Formula-car case (2) N 2008 010007000y

» Overshoot and Undershoot during rushing into crosswind
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Just before T Nose rushing in Tail rushing in Whole body immersed in
Eddy Structures
Target and Experimental Setup
Full-scale model with detailed «Grids
geometry type :tetrahedron
length(L) :4.670[m] nodes : 6,579,897
width(W):1.954[m)] elements 37,870, 527

hight(H) :1.594[m]
wheel base:2.666[m]

Tsubokura et al., Computers & Fluids, vol.38,
981-990(2009)
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Eddy Structures
Wake Structures (total pressure distribution)

Experiments

| 250mm behind
«glgs | -

Present LES

Eddy Structures
Side and Underbody Structures (total pr

[]

XY-section at 100mm
above the ground

Experiments

This document is provided by JAXA.
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Eddy Structures
Schematics of Overall Structures around the Vehicle

Trailing edge vortices

Iso-surface of Cp=0.7
Front pillar structure

-
Side-body structure

under-body structure

Several vortices appear,
which rotate like gearwheels
engaging each other!

Dynamic Yaw-angle Motion
Target

= Vehicle in yaw motion 6
Sliding Mesh % 2
0 0.05 o Lim:';;ec_] 0.2 0.25 0.3
*Grids
type :tetra+hexa hybrid
nodes : 7,229,633 v
elements: 39,285,753 Snapshots of pressure distribution

This document is provided by JAXA.
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Dynamic Yaw-angle Motion
Transient Force and Moment

Lateral Force (Y-direction) Rolling Moment (X-axis)
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Dynamic Yaw-angle Motion

Time Response of Flow Structures

T=0.2 [s] i iii

T=0.15 [s] 5 deg.

u

Rapid response to
- the vehicle motion!

Structures above the
rear window.

0 deg. 0 deg.

e ——
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Dynamic Yaw-angle Motion
Time Response of Flow Structures

5 deg.

5deg. T1=02

T=0.15[s]

Slow response to the
@ vehicle motion!
\j_ JF

Structures under the 5.

z
body. ;| -
0 deg. i

"
Tims

0 deg.

T=0.25[s]

T=0.1[s]

Dynamic Pitch-angle Motion
High-Speed Stability No-2006.01 0006(2008) ©

= Two simplified models with different pillar shape.
= Type A: Unstable
= Type B: Stable
s L:210mm x W:80mm x H:65mm

Type A Type B

Edged front-pillar Rounded front-pillar
Rounded rear-pillar Edged rear-pillar

This document is provided by JAXA.
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Dynamic Pitch-angle Motion
Flow Structures above the Trunk Deck

Type A (Unstable) Type B (Stable)

Dynamic Pitch-angle Motion
Forced Oscillation

= ALE Method
= Forced Sinusoidal oscillation: ¢ = 6, + 6, + sin 27 ft

This document is provided by JAXA.



128 FHITZENTFERA TR R IR TAXA-SP-09-003

Dynamic Pitch-angle Motion
Transient Pitch Moment
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Type A (Unstable)
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Dynamic Pitch-angle Motion
Vortex Structures above the Trunk Deck

= Type A is more continuous, Type B is more intermittent?
Type A (Unstable) ~Type B (Stable)

Time: 0.2556[sec] Time: 0.2556(sac]
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Summary and Acknowledgements

= Severe process of road-vehicle development requires an

innovative aerodynamic technique.
= Reduction of drag, establishment of driveability and comfort.

= Optimization to new power train (fuel cell...).
= Weight saving enhances the importance of vehicle aerodynamics.
= Establishment of the coupled analysis between
aerodynamics and heat/mass, acoustics, vehicle motion is
a current issue.
= Unsteady aerodynamics will be a key for the innovation.

@ @ QSI.I:IL(I m;n.
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