Current Status of EFD/CFD Techniques for Road Vehicle Aerodynamics and Development of the Unsteady Aerodynamic Simulator

Makoto. Tsubokura (Hokkaido Univ.)

Second Workshop on Integration of EFD and CFD

2009.2.24, JAXA

Competitive

- More than 10 companies in Japan!, around 20 worldwide major.
- Fast
 - *4 years from the kick-off to the market* (About a year shorter than typical Europe or US company).

Parallel

- 20 to 30 new models per year in Japan.
- Every company develops several models in parallel.
- Toward Green Mobility
 - Major source of CO2 emission (around 20% by vehicle driving in Japan).
 - Around 50% less for the next 10 years!

- Still smaller Cd is required.
 - Cd=0.26 to 0.20 can reduce F.C. to 10% less at 100km/h drive.
 - Cd~0.15 in 2030 by an active control or an innovative aerodynamic devices.

Breakthrough is indispensable!

Severe Aerodynamic Development for Road Vehicle

Complexity

- Bluff-body flow.....complicated turbulence.
- Interactions among flow, heat and mass, vehicle body...

.....complicated physics.

- Wide variety of types.....complicated geometry.
- Wide range of problems
 - Aerodynamic performance, engine cooling, ventilation, aerodynamic noise, soiling

Hucho, Aerodynamics of Road Vehicle

Requirement of Coupled Aerodynamics

Coupled effects to be considered from the initial stage.

Numerical Methods Governing Equations and Physical Models

Spatially Filtered Navier-Stokes Equation

$$\begin{aligned} \frac{\partial u_i}{\partial x_i} &= 0\\ \frac{\partial \overline{u}_i}{\partial t} + \frac{\partial}{\partial x_j} \left(\overline{u}_i \overline{u}_i \right) = -\frac{\partial \overline{P}}{\partial x_i} + 2 \frac{\partial}{\partial x_j} \left(\nu + \nu_{SGS} \right) \overline{S}_{ij} \end{aligned}$$

Standard Smagorinsky's model

$$\nu_{SGS} = (C_s f_s \Delta)^2 \sqrt{2\overline{S}_{ij}\overline{S}_{ij}} \qquad C_s = 0.15$$

$$f_s = 1 - \exp \frac{-y^+}{25} \qquad \text{:Wall damping function (Van-driest)}$$

$$\Delta = (\Delta x_1 \Delta x_2 \Delta x_3)^{1/3} \qquad \text{:Grid width}$$

- Wall-layer models on the solid surface (Log-law)
 - First grid point with a log-layer (y+~100)

Main flow

0.5

0.6

Before subjected to a crosswind

After subjected to a crosswind

Before subjected to a crosswind

After subjected to a crosswind

Eddy Structures Target and Experimental Setup

Full-scale model with detailed geometry length(L) :4.670[m] width(W):1.954[m] hight(H) :1.594[m] wheel base:2.666[m]

•Grids type : tetrahedron nodes : 6,579,897 elements: 37,870,527

Tsubokura et al., Computers & Fluids, vol.38, 981-990(2009)

Eddy Structures Side and Underbody Structures (total pressure distribution)

Present LES

Time-0.302

Time -0.302

Dynamic Pitch-angle Motion Forced Oscillation

ALE Method

• Forced Sinusoidal oscillation: $\theta = \theta_0 + \theta_1 + \sin 2\pi ft$

 $\theta_0 = \theta_1 = 2.0$ [deg.], f = 10[Hz]

Dynamic Pitch-angle Motion Vortex Structures above the Trunk Deck

 Type A is more continuous, Type B is more intermittent? Type A (Unstable)
 Type B (Stable)

Summary and Acknowledgements

- Severe process of road-vehicle development requires an innovative aerodynamic technique.
 - Reduction of drag, establishment of driveability and comfort.
 - Optimization to new power train (fuel cell...).
 - Weight saving enhances the importance of vehicle aerodynamics.
- Establishment of the coupled analysis between aerodynamics and heat/mass, acoustics, vehicle motion is a current issue.
- Unsteady aerodynamics will be a key for the innovation.

