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Sequential Data Assimilation:

Online Information Fusion Platform for
Simulation and Observation Data
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Outline

Simulations with uncertainties
Data Assimilation (DA)
Modeling uncertainties

SNk =

1. Ensemble Kalman filter
2. Particle filter

Applications with peta-scale comp
1. Tsunami Simulation model
2. Ocean Tide Simulation

3. Genome Science

7. Next generation of supercomputes
8. Conclusions

i

Sequential DA and generalized state space model
Ensemble-based nonlinear filtering methods
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Construction of Simulation Model

(simplified meteorological model around Japan)

PDE to approximate real pk

-

(continuous time/s
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ot rid point.
temperature
Discrete simulation ' s :((T)@
(discrete time/spac 5 ; = Wind Vector
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State Vector: Contact point between past and future

State of time 7 4—@ F Y (@ State of time 7-/

Simulation Model

'5’1 St RPN NS ATARRN

Al grstroemoe,

‘Simulation model !
X, = E(xz—l) ...................................

X State vector
x, : Initial condition, given ~ (simulation variables)

When x, =«, X, = Fl(a)
Xy = Fz(xl)
xp =Fp (xT—l)

Sequence (x1 Xyttt Xy ) 1s obtained deterministically.

gaTey mﬁl‘ﬁ?ﬂlvsﬁﬁ'&lm
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X

When x, =, —> When x, = «,
x, = F(a), X ~ F(a)
xzze(x1): ‘ xzze(xl)a
x, = F (x,.,) X, = F(x)

Sequence (xl Xyt Xy ) should be evaluated probablistically.

Simulation including uncertainty

= E (xt—l ) ‘ xt ~ E ()Ct_l ) BC, parameters, ...

x, : Initial condition

0l s e

* Emerging subject in meteorology and oceanography.
» Methodology to synthesize numerical simulation model

and

What is Data Assimilation ?

observed data

— |Simulation model|can not represent real phenomena accurately.

« (e.g.) Accurate weather forecast needs good initial conditions.

* Uncertainty in the model (boundary condition, initial condition, unknown
parameters, unknown dynamics...) exists.

—|Observation datalhave some physical/budgetary restrictions.

SN

Correct variables in numerical simulation model
using observation data.

= Data Assimilation

0l st s g
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Objects of Data Assimilation from a viewpoint of

Meteorology and Oceanography

[1] To produce the best (better) initial condition for forecasting. It is actually
realized in the real weather forecast (ex., Japan Meteorological Agency).

[2] To find the best (better) boundary condition in constructing a simulation
model. This procedure includes a setting of appropriate boundary conditions
necessary for dealing with a coupled phenomena.

[3] To attain an optimal parameter vector that appears in an empirical law
(scheme) employed for describing complicated phenomena which possesses
the different time and spatial scales. A validation of the empirically given
values is regarded as this problem.

[4] To inter/extrapolate (estimate) an physical quantity at times and locations
without observations based on a numerical simulation model. This procedure
is called “a generation of re-analysis dataset (product)”. This dataset is used
to discover a new scientific findings by general geophysical researchers.

[5] To conduct an experiment with a virtual observation network and perform a
sensitivity analysis in an attempt to construct an effective observation

network system with less budgetary cost and less consuming time.
(ex. Kamachi et al., 2006)

Modeling uncertainties

*Represent a wide variety of uncertainty in a research
target by distribution function.

*Understand a complex targets, NOT from its simple
statistics such as mean, BUT from its distribution
directly.

Notion of Probability: The machinery of probability
theory is used to describe the uncertainty in model
parameters or choice of model itself.

Probability theory provides a framework for quantification and manipulation of
uncertainty. We will introduce a basic concept of probability theory next.

0l st
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Bayesian View

Central Role in Pattern Recognition and Machine Learning

| It expresses how probable the observed dataset is for different settings of the parameter vector X. |

Data dist. (likelihood function)  Prior dist.

It is independent of data Y, and describes a
conviction degree against X numerically.

Po(s;eiror P ‘ = p(y | x) 2 (x) X:Parameter vector
ist.

p(y) ™~ Y:Data

Bayes, Theorem p . \ Probability of data (Since data is
(X: & y | 'x : p(x) given (the glctually observed one), it

takes some value.)

= (x’ y ) | Joint dist.

We are interested in estimating a posterior
distribution in most of circumstances.

We would like to be able to quantify our expression of uncertainty and make a precise revisions of uncertainty in the light of new
evidence, as well as subsequently to be able to take optimal actions/decisions as a consequence.

0l = re

Generative Model, Inversion with Bayes’ theorem,

and Data Assimilation

Observation: y
Simulation Fitness of Simulation to Data
Prior distribution :Forward Data distribution :Forward Posterior distribution:

Inverse

p(ylx) x>y p(x|y) x<y

p(x) —>x

Build a generative model and Use Bayes’ theorem

P -t

‘ Latent Variables: y |

0l =t s
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Data Assimilation in Generalized State Space Model

At :sampling time of observations
ot : simulation time step
At=1>> 0t

State Vector (Simulation variables)
L = L:nonlinear map

Stochastlc simulation

é %F(x 5 V,) fation

y / Hx / + W y Observation model
Measurement model

|
Bayesian Approach

Data Assimilation |

Large-scale observation

| Simulation system |

Fep | i
X Vi EE= 4
f E s
0] et BT

Conditional Distribution Re CurSive formula

Pleslebic deniny, plx g o e o1

. . Today’ nomic situation
s e s e
: data up to today

Today’s economic situation analyzed

Smo Other denSity: p(xt le) by using all available data when we
look back on the today in future

J :

yl:t = {yl7"’9yl}

P 1 ¥y)

prediction

P [ V)= P, | Yy)
| filtering

k p(x, | y,) =p(x "y )

p( n+1 |y1:n+1) NS

moothm
< P(X, | Vi) € Xt | Vi) <+ p(xT|y1T)
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Prediction

p(xt | yl:t—l)
= J‘p('xl‘ s xt—l | yl:t—l )dxt_l
- _[ p (xt | X5 Vi )p(x,_l | Va1 )dxt_l
m

p(x, | X, 1, ,1) = p(x, | x,,)] Markov property (1)

v
a ECAET EORE
Z

Filter pdf at time #-/

15

filtering

JZEARN Posterior, Belief
=p(X | Y Vi)
_ P, Y, [ V)
P Vi)
_ PO X V) PO | V)

p(yt | xtﬂylzt—l) = p(yt | xt)
P, | Vi) 2
ASARANZCA R

PO, | Vi)
_ p(yt |xt)'p(xt |y1:l—1)
[EEARD AR r

Markov Property (2)
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Smoothing

p(x, | yir)

= [ P %, | Y1)l

= [ P05 [5003y)- P i e,
= | (x| xm,yt) PO | M),y
[ P0G %, 0 [ )

p(x,,
[ p(xt | yl:t) ’ p('xt+l | xt,’-yl:t)

- p(X | Vi Y,
1 | y lzt)

Filter Dist.

- P(X | Vi ddx,
P | V) /
Smoothing Dist.

= p(xt |y1:t)

P | X,)
i J 1 V) p(xt - |y1:T)dxt+1
p (xt+1 | y lzt) Prediction Dist. 17

Sequential Data Assimilation

Estimate PDF of state vector X, or its moments (mean, variance, ...)
sequentially on each observation

}— Vi

P(X [ Vi)

(p('xi | Vi) = p(x Iyl,yz,---,yk))

il ﬂﬁmﬁ&ﬂl'sﬂf&lm
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Challenging problem: Huge dimension and inversion

 Data Assimilation = Estimation problem of state vector X,

(system model) X, = F; (x,_l@‘@

(observation model) )V, = H,xt +W, or yl‘ — hl‘ (xl‘ )+Wt

— X, : All variables in simulation model
— ), : All observed variables

— v, : Stochastic part to represent uncertainty of model (boundary

condition, ...)
— W,: Observation error
— V., W, : Normally Gaussian  xo: Initial condition

dimension | X,:1 )4~1(06 V: 102~10° dim(x,) >>dim(y,)

i ﬂnmﬂ“&?ﬂl&ﬂ&i’hlm
9 ez ramme

Numerical representation of distribution

p (‘xt | y l:t—l)’ p ('xt | y l:t)’ p (‘xt | y LT ) T'IAe distribution

Monte Carlo approximation

Represent pdf by the actual realizations. -

N: # of particles

~
(N)

~ —|+D )
P (xz | Y 1:t—1) = )(t|t—1 = xt|t—1 ft-12°* ’9xt|t—1
~ — (2) (N)
p(xt |y1:t):)(t|t =[x IR

This document is provided by JA

A,



%62 [0 EFD/CFD @g T —27 v a v/ 141

Sequential DA Methodology

» Ensemble Kalman Filter (EnKF) 1s widely used.

— Conditional PDF is approximated by a set (ensemble) of
realizations.

— Kalman Filter is used for filtering.
» Application of Particle Filter (PF) is rare.
— This 1s also ensemble based.

I th member

!
MR S 0y U x(l)
p(xfl;vl;z_l):N; (% = X0 {x(’) } )t

tlt—1 i=1
] & . AN Time Time step of used
p(xt | yl:t) = NZé‘(xt — x;;)) {xt(|lt) } step observations
i=1 i=1
21
IcM

Prediction Step (Common in EnKF and PF)

(i) (i) i
State X f;(xt71|t,1,Vt ) — xt(l?—1
(i) }N W
{xt—llt—l i=1 {xtlt—l i=1
, 4 2
X
0 V-1
X1 ! "
@ ‘
xt—l\t—l;’

i . : ensemble member of predictive PDF
1.(D) . ,
’xt|t—1 ' : ensemble member of filtered PDF

) |

xt—1|t—1‘\‘ ,,' (N) —
‘ K1 Prediction step
> Time
_t —_ 1 22
IcM
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State X

A

Filtering step of EnKF

‘ : ensemble member of filtered PDF

: ensemble member of predictive PDF

~

nln—1

\

Observation: V,,

/@: - 1H (Hz oy b +R)_

Kalman Ga|n

2
% Sample Covariance Matrix : |/
/
T 1
X (l) (l) (i) _ (l)
t|t - t|t l@yt +W t|t 1)

X

Filtering Step

> Time
23

IcM

Filtering Step of PF

State X

A

N .
4, lIkelihood

. : ensemble member of filtered PDF

Calculate
likelihood for
each particle

: ensemble member of predictive PDF

Observation: )/,

P X))
Z p(yz | xz(\;)l

Filtered by a resample proportional to likelihood

Filtering step

- I > Time

P
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Projects in progress

* Coupled Ocean-Atmosphere model
Genta Ueno (ISM/JST CREST)
T. Kagimoto (JAMSTEC, FRCGC), N. Hirose (Kyushu Univ., RIAM)
* Tsunami model
Kazuyuki Nakamura (JST CREST)

N. Hirose (Kyushu Univ., RIAM)

* Ocean tide

Daisuke Inazu (JST CREST)

T. Sato, S. Miura (Tohoku Univ.), and others (Alaska Univ.)
*3D structure of ring current

Shin’ya Nakano (JST CREST),
Y. Ebihara (Nagoya Univ.) , M.-C Fok (NASA)
S.-I. Ohtani, P.C.Brandt(Johns Hopkins Univ.)

* Genome informatics

Ryo Yoshida (ISM/JST CREST) R
Miyano lab. (Tokyo Univ./IMS) %.I—I s BRI PR

Time and Spatial Scale
1AU
Near Earth Space Ocean and
Atmosphere
1,000knT—

\ Data Assimilation in

Ocean and Atmospheric
Sciences <—Leading area
Im in DA researches)
Genome Informatics

lecm nd

prote essions) | | |

T 1 —>

|
Hour Da Month Year 100 years
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Reuvisit : What is Data Assimilation?

* Emerging subject in meteorology and oceanography.

» Methodology to synthesize numerical simulation model
and observed data
— |Simulation model|can not reflect real physics accurately.

* (e.g.) Accurate weather forecast needs good initial conditions.

* Uncertainty in the model (boundary condition, initial condition,
unknown parameters, unknown dynamics...) exists.

—|Observation datalhave some physical/budgetary restrictions.
Correct variables in numerical simulation model
using observation data. = Data Assimilation

Simulation model Observation data

Shallow water equations

Tide gage data

i ﬂnmgl&]nwsxﬂmm
i e = e o

Tsunami Simulation Model

* Based on PDE—Shallow water equations [Choi ef al. 01]

Normal sea surface

» Discretized temporally and spatially.

— 4 physical variables at each grid 7 .
* Flow vector (longitudinal/latitudinal) : (U, V) 4. Tunami :c}med
« Displacement of sea surface height: 77; N
* Water depth at each grid: ¢ «— Uncertainty in measured water depth!

— # of grid points: 192 (longitude) X 240 (latitud °

e Half of them are on the sea.

 Dimension of state vector is about 9 X 10*
» Propagation speed depends on water depth.
— Deep water makes tsunami propagation faster.;

Ml st e RR
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Numerical Simulation (Not DA)

e Simulation of Okushiri Tsunami

— Simulation based on topographies made by different
organizations.

— It looks similar, but time series of sea surface displacement  (From Japan Coast Guard)

at a point (@) is ...

Okushiri SKKU : 1

v
+ 1 -
| 8s.

ml ﬂﬂmﬂ.&?ﬂﬂ'ﬁl'ﬁh“m
0] =P e

Comparison of Sea Surface Displacement

. —— DBDBV
Displacement at @ (cm) ——  SKKU
20 : .
10
0
-10 + 5
_20 L - -
10 20 30 40 .
Time (minute)
i ﬂnmmléﬁ) 2T AR
W0l st E 2R
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Observation Data

» Tide gage data:
— (Linear/Nonlinear) Response to

sea surface displacement at
instrument installation site.

— One dimensional time series.

» Number of tide gage stations:

— 30 points
ex) p
Okushiri 40!
tsunami — .
(1993) 0 {0
Tide gage (cm) ° ' 1
-20

-

-40

0 50  100--_150_..200 250 .
50 Time (min)

o Installation site

i

ﬂﬂmﬂl‘;} AN SATLREN

Wt BOIRTR SRR

Application to Real Data

* Analysis by real tsunami occurred in the Japan Sea in 1993.

*The depths in and around Yamato Rises
(area A) varies among 4 bottom topography 45

*Uncertainty is introduced into South h
Rises and around area as linear

combination of |4 data sets.

I —
data set. H 5

kL]

J : number of data sets

dy) =% wid,, . wi~N(0.250" JNEN
J

SD/Depth(%)

o Used tide gauge

i

ﬂ*mﬁl.;gﬂlvixﬂhlm
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DA result

Deep
*South Rise might be shallower than public data.

-Deeeer area exists in south sloee.

i ﬂﬂmﬂlé}ﬂ.'ﬁlfh"m
P

Personalized Simulation:

A boundary condition is assimilated to local information.

We introduce a local/personal information into a

numerical simulation model and personalize the
simulation for each location/person.

Motion Eq.:v 8—V+(V°V)V+fXV=—gV77
t

-‘—g‘ + A4, Vv

P Sea Bottom Sea depth
_ | fricti
Continuous Eq.: 877 +V. (VH) :|§| riction

{

coefficient

Time=0.00(hour)

2-dimensional flow vector
Water surface height

V:
n:
H: Water depth, f: Coriolis parameter

Ocean tide simulation by
our CREST project

ml ﬂ*mﬁléﬂ.ﬂﬂ'ix‘fh“m
TS e
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Water level and Flow vectors

Time=0.00(hour)

Sea level range is About =5 m. Current sBeed is Smuch! more than 1 m‘s at the mouth

of Chatham Strait. %ﬁ %g}ﬁ;ﬂﬁ%?ﬁ

Water level and flow vectors (Closeup)

Time=0.00(hour)

il ﬂﬁmﬁl‘;?ﬂl'sﬂf&lm
Al G =TT o

This document is provided by JAXA.



%62 [0 EFD/CFD @g T —27 v a v/ 149

M,component tide

Result with GINA z
) ]
. S 40 d
GENA shows a great performance in = 1
representing an ocean tide. E 20 o i
M2 (amplitude) 1 ® .
L]
- 0 e
58N .. '_ 270_; 3
) E 240 2
Amplitude 7" S 1 .
g 209 L op % ¥ "
2 180 3
55N Q q
) ®s| E 150 4 5
~136E ~134E ~132E -130E < 120 _; -* H
K mm— ]
Milphei?l 100 150 200 250 7 T T T T T ‘* T
360 1 1 L L 1 L L L
0k -
£ 320 * d
Phase 2 300 :
[i+1 4
£ 20] * % * x4 |
260 g
T T T T T T T

0 1 2 3 4 5 6 7 8
Station number

Genomic Data Assimilation

Statistical framework to link simulation model and data

P-P interaction

expression

Simulation model Biological data

Formulated by the generalized State Space Model
X, = f(x,_l,v,ﬂ) System model

y, = th +w, Observation model

: state vector at time t, f @ simulation devise, 1= 1’ e, T

y. : system noise, @ - parameter vector,

y ; . observation vector at time A ,» [ : observation matrix,

w, ~ N(0,057): observation noise i ol b

| Bt IR
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Circadian Rhythm Model with HFPN

HFPN (Hybrid Functional Petri Net) : A graphical programming language suitable
to model biological pathways and can be used for simulations

Circadian Model Represented by HFPN

Circadian Rhythm Model
of Mouse $ o
JJ- e o 5 FER _ \\ il
_.,‘/ gt ey ;_=. N 1 .
'_"/ 4 ,;I \‘L E?F‘“E'L,)'_ {:‘ an = "‘;_ -
o v AL A
T g e o iy T /e sy cgroety,
T s N ”l / — ¥ It i
B— "—L_"‘!gr: # 2 B",ﬁ"
5 ‘.°.£ e ek e T =) ey
Fuijii et al. 2005 o ul ol
Parameters
45 parameters (12 states), m(0),...,m(0) Initial values
4 observations ki,ky,k;,k,  :Speeds

8158558558, :Thresholds
:Noise variances
;5 Iﬂ.—\ m ;ﬂ_ﬂﬂllé? uux

iy g

2 2
T ,0
B RENTA—F(REEH(14) EBEE(7) RUDHHE(12)) 33, KEA12

100,009,000 particles (1&%‘\) 10_0,000 pir}icles:1gw75

i i
i i i
' | ; ‘ ; ‘ ; ‘
; R Tl ’ _
E e e ER ek Ema
i i i H s i
i i i
i i H i
' s i
Pl | i Lk 2
1
E— ....... e 5 E AT I. T m % :
o nEwsN i £ =y ey B
i i i i i
. i i i
i i i £ ! H
; i
i i ] i H ‘
“ i " H
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oy ceck £ ;IJI:MI Tl e
3 5 i L L L
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i i i . ; ;
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''''' Manita Carlo sampies
Manta Carlo samples
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Prediction

100,000,000 particles (11&) 100,000 particles:105
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Next-Generation of Supercomputer in Japan at Kobe

Japanese Government will spend more than
1 billion USS$ for this national project.

= | rrEa

REA—N—T Y E1—Z 1R TR X — 7 E

B Grand Challenge:
-- Nanotech (Institute for Molecular Science)

:. -- Life Science (RIKEN)
' 0l T s e Tz
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Development for next-generation simulation

software for whole human bod

TEAP—RAR

(BAERE BARNIZRAI

.Next-Generation simulation R&D group for

Riken Next- G neratio 1ntegrat1ng llfe form simulations

Supercomputer R&D ¢enget— =
(Hln“l‘,:gﬂ*ii ‘.l“a;wb:l",
!’a"Jw-‘Il‘)ﬂ-#zT.-f-v!-')—’?ﬂliml AR
- et N T ] ERRRAT
T
; éﬁ ?ﬂ‘é e 2
amAR
BRAR
ARRRAN S
AR

BERERE kP

! . mExP
L 6. Brain and Neuron i

&HI RENS

"4, DRCCAIAT Tiféton | [
5. Upgrading of bas1c software

........ sl igmeriei T ERN L RN

| GD: BAR

[
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Data analysis fusion Team

Univ. Tokyo (Prof. Miyano) ISM (Higuchi)
Al Estimation of large-scale Development of data
gene network and its assimilation technique for
applications life science simulations

—
A _JEstimatio Bayesian
method fdr information

large-scal fusion
Qne network TSJechnique

,.

\

Prediction

inkage analysis technique for
analysis technique Protein
network

Riken Genome Med. Inst. (Md. Tokyo Inst. Tech (Prof.

and Dr. Kamatani) Akiyama)
Development for associating Estimation of large-scale
polymorphic data and phenotype protein network and its
data and its validation applications

0l =t
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Attempt to realize personalization technique

Making a parallel computation scale larger enables us to carry out a
data-dependent simulation, and results in drawing a scenario
and in making a risk assessment.

Prior distribution of

parameters
(left : 1075 right: 1018)

Prior and posterior distributions for
three parameters among
parameters estimated PF are
demonstrated in  3-dimensional
space.

Although the PF with
1075 particles results in
the PDF with a small
number of particles, the
PF with 1078 particles
leaves many particles.

108 particles

Posterior distribution of parameters

0l =t 2

Perspective of our Project

“Creation of meta-simulation model”

1. We automate a procedure searching for better simulation model to
describe real phenomena.

2. We develop a procedure to generate a new simulation model that
has greater ability of predictive performance than existing ones.

3. We give consistent view to assessment of simulation model that is
said to be subsidiary problem in simulation science; Maximum
Likelihood Principle.

4. We give a platform to design a measurement system in an attempt
to enhance a scientific return together with reducing a total budgetary
cost.

0l st
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