2008/02/24 Second Workshop on Integration of EFD and CFD

JAXA デジタル/アナログ・ハイブリッド風洞: デジタル風洞の開発

JAXA Digital/Analog Hybrid Wind Tunnel: Development of Digital Wind Tunnel

Atsushi Hashimoto, Keiichi Murakami and Takashi Aoyama Numerical Analysis Group (NAG) Japan Aerospace Exploration Agency (JAXA)

MXA **Concept of Digital Wind Tunnel Grid Generator Flow Solver** Fast System (NAG) FaSTAR HexaGrid New fast solver Cell-center Full Automatic **RANS** Hexahedron-base Multigrid Reliable System (APG, Tohoku Univ., Univ. of Alabama) **JTAS** MEGG3D Reliable solver (many practical Semi-automatic accomplishment) Tetrahedron-base Cell-vertex **RANS** Fast System (JEDI) RANS, Cell-center LS-Flow Full Automatic spacecraft application LS-Grid Hexahedron-base MA **Concept of Digital Wind Tunnel Flow Solver Grid Generator** Fast System (NAG) **FaSTAR** Fast grid generation Fast flow solver HexaGrid New fast solver Cell-center Full Automatic **RANS** Hexahedron-base High-quality grid generation tigrid Fast flow solver Reliable System (APG, Tohol Univ. of Alabama) Fast grid generation JTAS Reliable flow solver MEGG3D Reliable solver (many practical Semi-automatic accomplishment) Tetrahedron-base Cell-vertex High-quality grid generation **RANS** Reliable flow solver Fast System (JEDI) RANS, Cell-center LS-Flow **Full Automatic** Mainly spacecraft application LS-Grid

Hexahedron-base

Concept of Digital Wind Tunnel

Grid Generator

(1)HexaGrid

Full Automatic Hexahedron-base

- √ Feature of method
- ✓Improvement for NS simulation
- ✓ Examples
 - •ONERA-M6
 - •DLR-F6

Univ. of Alabama)

Flow Solver

Fast grid generation Reliable flow solver

JTAS
Reliable solver
(many practical accomplishment)
Cell-vertex

FaSTAR

New fast solver Cell-center

RANS

Multigrid

LS-Flow

RANS, Cell-center
Mainly spacecraft application

RANS

Fast System (JEDI)

LS-Grid

Full Automatic Hexahedron-base

Features of HexaGrid

HexaGrid:

Automatic grid generator based on hexahedral grid

- Unstructured mesh based on Cartesian mesh
 - Handles complex geometry
 - Automatic operation (very few control parameters)
 - Fast (within minutes)
 - High quality elements (predominantly hexahedral)
- Input multi-component geometry in STL format
- Run on ordinary PC

Input Data

- Triangulated surface in STL (STereo Lithography) format
 - → can be made by most CAD software
- Very tolerant to "dirty surface mesh"
 - Unconnected triangles → non-water-tight surface is OK
 - Small gap, overlap & intersection are OK
 - Any triangle size is OK

*2D illustration, the actual is 3D

Mesh Refinement Control

- Refine the element using 3 criteria
- Each criterion has a target element size (user-defined)

(2) Solid surface with large curvature

Example of Refinement box

Hexahedron on

top of prism stack

Quadrangle-

based prism

Splitting of non-flat cell Non-flat thin hexahedral cell Center of the cell may be outside of the cell Pyramids and tetrahedra Non-flat faces are split into triangles Solid surface

Grid Generation Speed

	Coarse grid	Fine grid
Cartesian level	14	15
Number of layers	30	27
Number of cells	729,173	2,232,950
Number of nodes	619,662	1,958,430
Time to generate Cartesian cells	12 sec	32 sec
Time to generate prismatic layers	19 sec	63 sec

If rectangular face is not flat, Split the rectangle-based prismatic cell into

triangle-based prismatic cell.

Intel Core 2 Duo T7700 2.4GHz CPU, 2 GB memory

→ Very fast grid generation

Validation (ONERA M6)

HexaGrid MEGG3D

Comparison of drag coefficient with other results

Good agreement was obtained

Validation (DLR-F6 FX2B)

(Bonhaus, AIAA 1990)

UPACS, MEGG3D+JTAS (Murayama et al., AIAA 2007-258) Number of grid: 9.3M(UPACS), 10.0M(MEGG3D), 4.5M(HexaGrid)

Target of FaSTAR

FaSTAR (<u>FAST</u> <u>A</u>erodynamic <u>R</u>outines) We develop a new code from scratch.

Target: 300cases/20days

(300 cases = 1/5 of a wind tunnel test campaign)

→1 hour/case, 100CPU, 10M Grid

≒1.5 hour, 96CPU, 15M Grid (NSU3D, Mavriplis)

Third Drag Prediction Workshop(DPW3) Vassberg, AIAA 2008-6918

Convergence acceleration technique (Multigrid method, GMRES) is necessary.

Agglomeration Multigrid (NSU3D)

FaSTAR configuration(1)

FaSTAR (**FAST** Aerodynamic Routines)

MEGG3D, HexaGrid
Gridgen(structured & unstructured grid)

- Data structure conversion
 - Surface area, VolumeReordering
 - •Cell quality check
- Solver •Flow solver (using minimum data)

Post-Process •Visualization data

Aerodynamic force Visualization(Fieldview, Tecplot)

Separation of process Compact design

Pre-Process

Improvement of

→ development efficiency
and maintenance

Development tools

- ✓Subversion
- ✓Trac
- √Doxygen

Development based on coding rule

Trac Lightning

FaSTAR configuration(2)

Employed Schemes

Governing Equation: Euler, Thin layer/Full N-S

Discretization: Cell base Data Structure: Face base Reordering: Cuthill-Mackee Flux: Roe, HLLE, AUSM+ Turbulence model: SA, SST

Convergence acceleration: Agglomeration Multigrid,

Krylov method (GMRES)

Grid Partition: Zoltan (METIS)

Parallel library: MPI

Survey of wellknown CFD code

JTAS
NSU3D
BCFD
EDGE
UG3
USM3D
FUN3D

FaSTAR data structure

Cuthill Mackee reordering =Hyperplane reordering (speed up by 20%)

Domain Partition

Zoltan toolkit includes the following methods

(Zoltan tutorial)

Examples of partitioned grids

Plan

20 30 Survey	4Q	10					
		10	20)	30	40	10
Preparation	-	$\begin{array}{c} NS \\ \longrightarrow Para \\ ltan \\ \longrightarrow \\ ning \\ \end{array}$	RAN allel	S →		Multigrid, Validation	>

Preliminary results using FaSTAR(Euler)

FaSTAR achieves 1.1GFlops on 1CPU of JSS (11% of theoretical peak performance)

Concept of Digital Wind Tunnel

Grid Generator

Fast System (NAG)

HexaGrid

Full Automatic Hexahedron-base

Flow Solver

FaSTAR

New fast solver Cell-center RANS Multigrid

Reliable System (APG, Tohoku U

MEGG3D

Semi-automatic Tetrahedron-base

Fast System (JEDI)

LS-Grid Full Automatic
Hexahedron-base

Univ of Alahama)

(3)JTAS

Reliable solver (many practical accomplishment) Cell-vertex RANS

- ✓Installation of RCM portal
- ✓ Whole wind tunnel simulation (Porous wall modeling)

RCM portal system

HexaGrid+JTAS workflow system

RCM(**R**&D **C**hain **M**anagement) is a middleware integrating web server, control server, and database server.

http://www.i4s.co.jp/rcm/rcmabs.html

Quatre-i science

✓ User can make registration of grid and result data.✓ User can search the data using the database.

- ✓User can submit and monitor jobs from the web.
- ✓User can visualize the result from the web.

Transonic wind tunnel simulation

Experimental conditions: M=0.84, AoA=0deg

 $Re=1.67x10^6$ (Re is based on MAC)

Computational conditions

inflow conditions: $P_0/P=1.58$, $T_0/T=1.14$ Outflow condition: $P_{out}/P=1.05\sim1.10(?)$

We have to adjust the outflow pressure to make M=0.84 flow

at the test section.

- 1. Solid wall computation
- 2. Porous wall computation (modified Harloff model)

Transonic wind tunnel simulation

Porous wall effect can be reproduced using the Harloff model.

Streamwise pressure distribution becomes flat.

Transonic wind tunnel simulation

10000

Mach number computed with isentropic relation

Transonic wind tunnel simulation

Velocity through the porous wall. Inflow velocity is faster at the end of porous wall.

This inflow may interfere the downwash from the model.

Concept of Digital Wind Tunnel

Grid Generator

(1)HexaGrid

Full Automatic Hexahedron-base

- √ Feature of method
- \checkmark Improvement for NS simulation
- ✓ Examples
 - •ONERA-M6
 - •DLR-F6

Fast System (JEDI)

LS-Grid

Full Automatic Hexahedron-base

(2)FaSTAR

New fast solver Cell-center RANS Multigrid

- √Concept, Target
- √ Configuration, Plan
- ✓ Examples

(3)JTAS

Reliable solver (many practical accomplishment) Cell-vertex RANS

- ✓Installation of RCM portal
- ✓Whole wind tunnel simulation (Porous wall modeling)