計測との融合による流れの実現象の リアルタイムシミュレーション

EFD/CFD融合研究会

2008年2月26日

東北大学流体科学研究所 流体融合研究センター

早瀬敏幸

2

流れの実現象の再現は難しい

計測とシミュレーションの融合

ティホノフ正則化(逆問題:航空)
PIVとCFDの融合(変分法:可視化計測)
4次元同化手法(変分法、内挿:気象)
ニューラルネットワーク(逆問題:流れの制御)
カルマンフィルタ(オブザーバ:気象、航空宇宙、・・・)
=> 計測融合シミュレーション(オブザーバ+CFD)

- 1) カルマン渦列(ハイブリッド風洞)
 - a) 角柱表面の圧力計測(3点)をフィードバック
 - b) 角柱周囲のPIV計測(~数100点)をフィードバック

6

ハイブリッド風洞の構成(圧力計測フィードバックの場合)

風洞実験装置

 $U_{\rm m} = 0.6 \, {\rm m/s}$

2次元計測融合シミュレーション

フィードバック則 出力変数 X $\begin{pmatrix} P_{AS}^* \\ P_{BS}^* \end{pmatrix} = \begin{pmatrix} P_A^* - P_S^* \\ P_B^* - P_C^* \end{pmatrix}$ Flow control volume 平均速度の推定 Monitoring $U_e = K_e \sqrt{2P_m^* / \rho}$ point $P_m^* = -\frac{P_{AS}^* + P_{BS}^*}{2}$ フィードバック則 $\begin{pmatrix} f_{A} \\ f_{B} \end{pmatrix} = -KA_{C} \begin{pmatrix} P_{AS} - P_{AS}^{*} \\ P_{BS} - P_{BS}^{*} \end{pmatrix}$ 1.0 [s/m] n 0.5 $U_b = \frac{1}{1 + T_c s} U_e$ Experiment Hybrid wind tunnel *K*=1.8, *K*_e=0.54, *T*_c=0.3s ordinary simulation 0.0 4 10 0 6 8 t [s]

流脈線の比較

モニタ点の主流方向速度u1の周波数解析

主流方向速度u₁の変動振幅

臨界点解析による流れの特徴抽出

臨界点解析による可視化(藤代,竹島)

b) PIV-Measurement-Integrated simulation

Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University

Problem formulation

Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University

PIV-MI simulation

Governing equations

Navier-Stokes equation

$$\rho \left(\frac{\partial \mathbf{u}}{\partial t} + (\mathbf{u} \cdot \operatorname{grad}) \mathbf{u} \right) = -\operatorname{grad} P + \mu \nabla^2 \mathbf{u} + \mathbf{f}$$

Pressure equation

$$\nabla^2 P = -\rho \operatorname{div}(\mathbf{u} \cdot \operatorname{grad})\mathbf{u} + \rho \operatorname{div}\mathbf{f}$$

Feedback law

$$\mathbf{F} = -K \cdot \Delta V (\mathbf{u}_c - \mathbf{u}_m) \frac{\rho U}{L}$$

K: Feedback gain \mathbf{u}_c : Computed velocity \mathbf{u}_m : Measured velocity

	Standard solution	PIV-MI simulation
Area $L_x \times L_y \times L_z$	$37.0D \times 6.67D \times 6.67D$	
Grid points $N_x \times N_y \times N_z$)	$444 \times 84 \times 84$	111×21
Grid interval $\Delta x = \Delta y = \Delta z$	D/12	D/3
Time step Δt	0.01 s	
Reynolds number	1200	

Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University

Feedback conditions

	Number of	Feedback	Feedback	Feedback	≤ 3.0D> ≤ 4.0D>	
	feedback data	area A_f	frequency	gain	Feedback area A	
	[1/s]	-	F [Hz]	[-]		
Ordinary	0	0 (0 %)	0	0.0	Monitoring point 100%	
	393		1		₽ 100 /8	
	786		2		Laser sheet	
	1965		5			
Feedback	2751		7	2.0		
frequency	3930	393 (100 %)	00 %) 10 3.0 20 50 100	5.0	L	
- ·	7860				#	
	19650				£ 48%	
	39300					
Feedback area	39300	393 (100 %) 317 (81 %) 189 (48 %) 57 (15 %) 29 (7%)	100	3.0	t	
	31700					
	18900				■ 7%	
	5700					
	2900					
	900	9 (2%)				
	100	1 (0.25%)			÷	

2) 大動脈内血流(医療応用)

Blood flow with ultrasonic-measurement-integrated simulation (Computer simulation based on flow simulation in human aorta)

Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University

Wall shear stress with ultrasonic-measurement-integrated simulation (Computer simulation based on flow simulation in human aorta)

Transdisciplinary Fluid Integration Research Center, Institute of Fluid Science, Tohoku University

未来流体情報創造センター(平成11年設置):次世代融合研究システム(H17~) 流体融合研究センター(平成15年設置):計算と実験の融合研究

おわりに

- 1. 流れの実現象の再現
- 2. 計測融合シミュレーションとは
- 3. 計測融合シミュレーションの適用例
 - 1) カルマン渦列(ハイブリッド風洞)
 - 2) 大動脈内血流(医療応用)
- 4. 流体科学研究所の取り組み

