Multiwavelength observations of Blazars

Stefan J. Wagner ${ }^{1}$
${ }^{1}$ Landessternwarte Heidelberg
E-mail(SW): s.wagner@lsw.uni-heidelberg.de

Abstract

Blazars exhibit very broad spectral energy distributions, extending over up to 20 orders of magnitude in photon energy. Blazars also very on a wide range of time scales with power density spectra that have been measured over as many as 9 orders of magnitude in time for the best studied objects. Given these characteristics, coordinated multiwavelength observations are required to understand the physical processes in Blazars. Apart from detailed studies of a very small number of prominent targets, statistical investigations of homogenous observations are important, but difficult to assemble due to technical constraints. The current status of multiwavelength investigations will be reviewed with a special emphasis on future opportunities.

Broadband studies of Blazars are monitoring studies: 3 reasons
Scale-free spatial and temporal structures Localizing emitting regions
Clues on Lorentz factors, Uncertainties in Doppler corrections

Special emphasis:

"Astrophysics with All-Sky X-Ray Observations"
All-Sky >> many sources >> populations (parameter studies) \gg alerts for pointed studies
\gg long-term studies \gg flux/sensitivity is 'only' bias (window function well understood) >> avoid coincidences

SED studies and timing: $3^{\text {rd }}$ reason

simultancous (single epoch) SEDs do not provide a unique constraint for models of acceleration and radiative processes.
(It has not been demonstrated, but there is hope that time-resolved multifrequency studies will provide unique constraints.)

General motivation

Seaking correlations to identify sources (when known coincidences are insufficient)

1960s finding radio sources: " $3 \mathrm{C} 273 \mathrm{~B}=\ldots$ "
1970s finding X-ray sources: "Ariel ... $=$ PKS 2155-304"
1990 finding Gamma-ray sources: 3C66A, PKS 1406-076 2000s finding TeV sources (see Elina Lindfors)

Finding sources in the sky;
localizing subvolumes in the sources (in space and time);
localizing subvolumes in parameter space (B, n, γ); identify and understand processes (qualitative relations between bands)

Long, continuous light-curves

Filling factors and duty cycles

Subvolumes producing 0.1 to 10 times the quiescent flux with individual filling factors $\mathrm{E}-10 \ldots \mathrm{E}$-15 should result in large numbers of such subvolumes blending the integrated light curves.

The contrast to observations implies one of three possibilities:

1) Duty cycle is very low
2) Zone of variations extends over small radial range only 3) Distribution function in some crucial parameter very steep (highly nonliner system)
(1) is essential a special case of (3)

Locating site of PKS 2155-304

Evidence from spectral monitoring: Non-detection of spectral changes
sicknell \& SW, 2008
Iatl. Maxi Workshop, RIKEN, June 2003
simple worries $\gamma_{\text {min }}, \gamma_{\text {max }}, \Gamma$

MeV Blazars (Bloemen et al., 1995), GeV Blazars, TeV Blazars $\mathrm{E}(\max)$ in Synchrotron/IC changes by $<3 />7$ orders of magnitude

PKS 0522-611/PKS 0506-612 vs. 1ES1101-232 (Aheronian ctal., HESS, 2007)

simple worries $\gamma_{\min }, \gamma_{\max }, \Gamma$

Almost all SED "fits" of Blazars invoke high γ min There are other observations/problems that suggest that this is required. (e.g. Blundell et al., 2004, Tsang \& Kirk, 2007, SW, 1997) There are very few (no?) acceleration mechanisms achieving this. MMBS (ve)

simple worries $\gamma_{\text {min }}, \gamma_{\text {max }}, \Gamma$

observed SED needs to be corrected for
various excesses (host galaxies, extended emission), various absorptions (SSA, E, n_H, pair absorption), redshift, and ... Doppler factor(s).

Notoriously difficult: VLBI vs. variability (IDV, VHE) $\mathcal{D} \sim 1 \ldots 100$ large values possible in exceptional sources (IDV of various kinds) but difficult for large classes (TeV Blazars). [Remember M87]
... if TeV Blazars they are: PKS 2155-304 $200 \mathrm{GeV}-(\mathcal{D} \sim 100)>2 \mathrm{GeV}$
Radial or lateral stratification, divergent trajectories? Different parts of the jets (different subvolumes, flares, wavelengths) may be subject to different Doppler corrections.

$-\frac{}{-}$

Summary

Simultaneous multifrequency monitoring required to compare oranges (or the right season) to oranges and (hopefully) break the degeneracy of different acceleration/radiation mechanisms.

Variability across the EM spectrum occurs on a wide range of timescales. Individual components/flares relate to regions of very different sizes (but they are not very different otherwise).

Very small filling factors of emissivity. Stratified media Single-zone models ought to be self-consistent

Multifrequency observations may also provide localisations
Range of Lorentz factors may be constrained with Maxi observations.
Doppler factors might be diverse and provide the biggest challenge.
Maxi Workshop, RIKEN, June 2008
Stefan Wagner: Multiwavelength Observations of Blazars $\quad 2$

