希薄水素プラズマ流の並進-回転非平衡性の検証

高間良樹, 鈴木宏二郎 東京大学大学院新領域創成科学研究科

Assessment of translational-rotational nonequilibrium of rarefied hydrogen plasma flow

by

Yoshiki Takama and Kojiro Suzuki

ABSTRACT

In the present work, we focused on translational-rotational nonequilibrium in rarefied hydrogen plasma flow. Hydrogen molecules are known as a gas that exhibits strong nonequilibrium. The rotational collision number of hydrogen molecules is reportedly around 200 - 400 up to 2000 K, whereas the rotational collision number of other molecules such as nitrogen and oxygen molecules is less than 10. Therefore, in the case of hydrogen molecules, care must be taken before assuming equilibrium between translational and rotational modes in the framework of the two-temperature model. It is important to establish a diagnostic method for the translational-rotational relaxation of hydrogen molecules. We presented the method to determine translational and rotational temperatures by emission spectroscopy. The translational temperature was determined by Balmer H_β line profile fitting, taking into account instrumental broadening, Doppler broadening, and spin-orbit coupling. Other effects such as Stark effect and Zeeman effect were not dominant in our experimental conditions, and were neglected. The rotational temperature was determined by line intensity fitting of the Fulcher- α band of molecular hydrogen. Then, we applied this method to our plasma wind tunnel and investigated the translational-rotational nonequilibrium in the hydrogen plasma flow. We conducted experiments for two conditions. The results revealed that translational-rotational equilibrium was observed. The results were reasonably explained by comparing the flow characteristic time with the translational-rotational relaxation time reported in the literature.

1. 序論

非平衡プラズマでは並進、回転、振動、電子励起、電子 温度は異なる値を持つ.各内部エネルギーモードは分子間 衝突を介して熱平衡状態へと近づいていくため、非平衡の 度合いは衝突周波数とモード間の緩和衝突数によって決定 される.一般に、並進モードと回転モードの緩和は非常に 速く、並進モードと振動/電子励起モードの緩和は遅い¹⁾⁻³⁾. そのため、非平衡流を取り扱う代表的な方法である2温度 モデルにおいては、並進温度と振動温度を代表温度とし、 回転温度は並進温度に等しく、電子励起温度と電子温度は 振動温度に等しいとする⁴⁾.

水素分子は、その回転特性温度と振動特性温度が高いため、非平衡性が非常に強い気体として知られている⁵⁾.例 えば、並進一回転緩和に関する衝突数 Z_rは 500-2000 K で 200~400 程度であり⁶⁾⁹、窒素分子や酸素分子のそれが 10 以下であるのとは対照的である^{3),10)}.これは、水素では窒 素や酸素と比べて並進一回転非平衡が起こりやすいことを 示している.よって、空気に通常で適用できる 2 温度モデ ルが水素には適用できない可能性がある.例えば、強い衝 撃波背後の非平衡現象を考察する際や、プラズマ風洞の一 様流の全エンタルピを計算する際には、並進温度と回転温 度を別々に取り扱う必要がある.従って、並進温度と回転 温度を別々に計測する方法を確立しておくことは重要であ る.しかしながら、エネルギーバランス⁶を用いずに両者 を別々に計測する方法は未だ確立されていない.

そこで本研究の目的は、水素プラズマの並進、回転温度 を別々に計測して並進-回転非平衡を診断する手法を提示 することである.この診断手法を確立することによって、 今後、水素プラズマの非平衡現象及び緩和現象のより詳細 な考察が可能となり、その理解が深まることが期待される.

本研究では、プラズマ診断手法として発光分光法に着目 する.発光分光法は非接触であり、プラズマに擾乱を与え ないという利点を持つ.並進温度は、装置広がり、ドップ ラー広がり、スピンー軌道相互作用を考慮した、Balmer 系 列 H_a線のプロファイルフィッティングで求めた.スペク トルプロファイルは様々な要因による広がりを持つため, 個々の要因を見積もり,支配的な要因を正しく抽出するこ とが求められる.回転温度は Fulcher-α帯の線強度フィッテ ィングから求めた.Fulcher-α帯は水素分子のバンドスペク トルであるため,量子力学に基づいた詳細な議論によって 発光線の線強度を計算することが求められる.本研究では これらの困難を克服して,発光分光法による並進・回転温 度の計測法を提示する.その後,この診断手法を実際のプ ラズマ風洞に適用し,得られた実験結果を既存の並進-回 転緩和モデルと比較する.

2. 実験装置

本実験で用いたプラズマ風洞を図 1 に示す. プラズマは 石英管(内径:46mm, 外径:50mm)の周りを 4 巻きしている RF コイルによる誘導加熱で生成される. 高周波電源の周波 数は 13.56MHz, 最大パワーは 2kW である. RF コイルの下 流には DC コイルが設置されており、最大パワー7.5kW、 最大電流 256A の直流電源に繋がれている. DC コイルは直 径 3mm の銅管を石英管の周りに巻きつけることで製作し た.この銅管内は冷却水が流れている.プラズマに印加し ている磁場形状を図2に示す.図2は、コイル電流が50A のときの中心軸上での磁束密度の大きさを示しており、計 算から予測される通りの磁場が生成されていることがわか る.1軸のテスラメータで磁束密度を計測しているためコ イルの中心では計測ができないが、計算結果よりコイル中 心での磁束密度は 42mT と予測される. この直流磁場によ って、生成されたプラズマが圧縮されてジェットとしてテ ストセクション内に噴き出される¹¹⁾.本研究における気流 条件を表1に示す.

光学系も図1に示されている.測定点は分光器手前のレ ンズによって決定される.レンズでフォーカスされた発光 は光ファイバーを通して分光器(浜松ホトニクス, PMA-50) に導かれる.本研究では、表2に示す2種類のグレーティ ングを用いた.プラズマの発光強度の時間変動は±3%程度 であるため、生成されたプラズマジェットは定常であると みなせる.

3. 回転温度計測法

回転温度は Fulcher-α帯の線強度フィッティングによって 決定した¹²⁾. Fulcher-α帯は 590-640nm 付近に存在する水素 分子のバンドスペクトルである(図4). このバンドの中か ら,発光強度が大きく,他の線スペクトルと干渉しない8 本の線スペクトルを取り出し,それらの線強度フィッティ ングによって水素分子の回転温度を決定した.

発光強度1は次式で表される.

$$I_{ul} = h v_{ul} A_{ul} N_u \tag{1}$$

図1 誘導結合プラズマ風洞

図2 直流磁場形状(コイル電流 50A)

図3 プラズマジェット

添え字 $u \ge l$ は各々, Fulcher 上準位と下準位を表す.hは プランク定数, ν は振動数,Aは遷移確率,Nは数密度で ある.発光は水素分子が基底準位から電子衝突励起によっ てFulcher 上準位に励起された後,自然放出によって Fulcher 上準位に励起された後,自然放出によって Fulcher 上準位から下準位に遷移する際に観測される.基底 状態のボルツマン分布を仮定し,電子衝突励起が電子温度 の関数であることを考慮すると,式(1)で表される発光強度 は結局,回転,振動,電子温度の関数として記述される. これらの3温度をFulcher-α帯の8本の線強度フィッティン グによって決定する.フィッティングの例を図5に示す. 計算された発光強度は実験結果と良く一致していることが わかる.本手法のフィッティング調差に対する温度測定誤 差は,回転,振動,電子温度各々に対して10%,30%, 40%程度であり,回転温度は精度良く求めることができる.

表1 気流条件

		case1	case 2
mass flow rate, H ₂	SLM	0.15	0.45
mass flow rate, Ar	SLM	0.010	0.015
input RF power	kW	1.0	1.0
DC coil current	Α	50	50
DC magnetic field flux at the center of DC coil	mT	42	42
average specific enthalpy	MJ/kg	1233	575
stagnation pressure	Pa	16.8	33.4
Mach number at $x = 610$		0.19	0.21
Flow velocity at $x = 610$	m/s	300	420

表2 グレーティング

measurement temperature		translational	rotational
number of grooves	gr/mm	3600	600
measurement resolution	nm	0.00780	0.080
wavelength width observed		7.09	82
for a single data sampling	11111	1.98	
exposure time	ms	20-1000	200-2000

図4 Fulcher-a帯スペクトル

4. 並進温度測定法

並進温度は Balmer 系列 H_{β} 線のプロファイルフィッティ ングによって決定した.以下,種々のスペクトル線の広が りの要因について考察し,各々の寄与を見積もっていく. その後,本実験条件と照らし合わせて,広がりの主要因を 特定し,並進温度決定法を述べる.

4.1 ドップラー広がり

スペクトル線のドップラー広がりはガウシアンプロファ イルを持つ.

$$f_{Doppler}(\lambda) = \frac{1}{\sqrt{2\pi\sigma_D}} \exp\left[-\frac{(\lambda - \lambda_0)^2}{2\sigma_D^2}\right]$$
(2)

その半値全幅(FWHM)は並進温度 T_{tra} と原子量 M_A の関数として,次式で与えられる.

$$\Delta \lambda_{Doppler} = 2\sqrt{2\log 2}\sigma_D = 7.16 \times 10^{-7} \lambda_0 \sqrt{\frac{T_{tra}}{M_A}} [\text{nm}] \qquad (3)$$

4.2 装置広がり

装置広がりはキセノン校正ランプの 482.9708nm の線ス ペクトルを用いて決定した.本研究の光学系の装置関数 fmgは次式で与えられる.

$$f_{inst}(\lambda) = \begin{cases} \exp\left[-\frac{(\lambda - \lambda_0)^2}{2\sigma^2}\right] & |\lambda - \lambda_0| < 1.33506 \times 10^{-2} \,\mathrm{nm} \\ \frac{\alpha^2}{\alpha^2 + (\lambda - \lambda_0)^2} & |\lambda - \lambda_0| > 1.33506 \times 10^{-2} \,\mathrm{nm} \end{cases}$$
(4)

ここで σ =6.795×10⁻³, α =5.508×10⁻³, λ_0 は中心波長である. f_{inst} を図 6 に示す.

4.3 自然広がり

 H_{β} 線は主量子数 $n=4 \rightarrow n=2$ の遷移に伴う発光である. 波 長を λ , 光速をc, 放射寿命を τ とすると, 自然広がりは次 式で与えられる.

$$\Delta \lambda_{natural} = \frac{\lambda^2}{2\pi c} \left(\frac{1}{\tau_{n=4}} + \frac{1}{\tau_{n=2}} \right)$$
(5)

放射寿命に関して、例えば $\tau_{n=4}$ は $n=4 \rightarrow n=1,2,3$ の全ての遷移に対する遷移確率¹³⁾の総和の逆数として計算できる. $\tau_{n=4}$ は 3.31×10^{-8} s, $\tau_{n=2}$ は 2.13×10^{-9} s と計算できるので、H_β線の自然広がりは式(5)によって、 $\Delta \lambda_{natural}=6.27 \times 10^{-5}$ nm となる.

表3 H_B線の詳細構造

symbol	upper state	lower state	wavelength[nm]	relative intensity
(a)	$4^{2}D_{5/2}$	$2^{2}P_{3/2}$	486.13614	288/9
(b)	$4^{2}D_{3/2}$	$2^{2}P_{3/2}$	486.13650	32/9
(c)	$4^{2}D_{3/2}$	$2^{2}P_{1/2}$	486.12785	160/9
(d)	$4^{2}P_{3/2}$	$2 {}^{2}S_{1/2}$	486.12869	10
(e)	$4^2 P_{1/2}$	$2 {}^{2}S_{1/2}$	486.12977	5
(f)	$4 {}^{2}S_{1/2}$	$2 {}^{2}P_{3/2}$	486.13748	8/9
(g)	$4 {}^{2}S_{1/2}$	$2 {}^{2}P_{1/2}$	486.12883	4/9

図7 H_β線の詳細構造

4. 4 シュタルク広がり

シュタルク広がりは Touma によって表にまとめられている¹⁴⁾.シュタルク広がりは電子温度と電子数密度両方の関数ではあるが、電子温度依存性は非常に弱いので、事実上、電子数密度 N_e のみの関数とみなせる. Touma のデータに基づき関数フィットをすると、シュタルク広がりは次式で与えられる.

 $\log_{10} \Delta \lambda_{Stark} [nm] = 0.686 \log_{10} N_e [/m^3] - 15.13$ (6)

4.5 ゼーマン広がり

磁場存在下ではゼーマン効果によってスペクトル線は分 裂する.その波長シフトは次式で計算される.

$$\delta\lambda_z = \frac{\lambda^2}{c} \frac{\mu_B B}{h} \left(g_2 m_2 - g_1 m_1 \right) \tag{7}$$

 μ_B はボーア磁子, *B* は磁場強度, *m* は磁気量子数である. *g* は Lande の g 因子で,次式で与えられる¹⁵⁾.

$$g \approx 1 + \frac{j(j+1) + s(s+1) - l(l+1)}{2 j(j+1)}$$
(8)

sはスピン量子数,jは電子の全角運動量に関する量子数である.mに関する遷移則は $\Delta m=0,\pm1$ なので,ゼーマン効果による波長シフトは式(8)によって計算することができる.

4.6 スピン-軌道相互作用

スピンー軌道相互作用によって H_{β} 線は7つの要素に分裂 し(表3), 観測されるスペクトルはその7つの要素の重ね 合わせとなる.各要素の相対強度は Condon らの方法によ って計算した¹⁶⁾.具体例として,並進温度1000Kのドップ ラー広がりのみを考慮したときの7つの詳細構造とその和 のスペクトル形状を図7に示す.

4.7 H_B線の広がりの主要因

図8に,装置広がり,自然広がり,シュタルク広がり, ドップラー広がりの FWHM の比較を示す.シュタルク広 がりは電子数密度のみの関数,ドップラー広がりは並進温 度のみの関数である.本実験条件は矢印で図に書き加えら れている.図8より,本実験条件においては、シュタルク 広がりと自然広がりは無視できることがわかる.また,本 実験条件におけるゼーマンシフトは最大で 5.2×10⁴nm であ るため,ゼーマン広がりも無視した.

以上より,本研究では以下の手順で水素プラズマの並進 温度を決定した.

- (1) 並進温度を予測する.
- (2) 7本の詳細構造に対してドップラー広がりを計算し、 重ね合わせる.

$$f_d(\lambda) = \Sigma f_{Doppler}(\lambda)$$

(3) (2)で得た関数と装置関数をコンボリューションする.

 $f_{cal}(\lambda) = \int_0^\infty f_d(\lambda') f_{inst}(\lambda - \lambda') d\lambda$

- (4) $f_{cal}(\lambda)$ を実験データと比較する.
- (5) (1)~(4)を繰り返し,実験データを最も良く再現する 並進温度を決定する.

H_β線のフィッティング例を図9に示す.計算結果は実験結 果を精度良くフィッティングできていることがわかる.

図8 H_β線広がり要因の寄与の比較

5. 実験結果

第3章及び4章で述べた発光分光手法を用いて,第2章 のプラズマ風洞の並進-回転非平衡診断を行った.振動温 度と電子温度は各々,2200K,17000Kで軸方向にほぼ一様 である.また,半径方向にトラバースしてアーベル逆変換 をしたところ,半径方向の温度分布はほぼ一様であること がわかった.回転温度の半径方向分布を図10に示す.よ って,以下に示す結果はアーベル逆変換を施していない, 中心軸上で測定した発光スペクトルを解析して得られたも のである.並進温度と回転温度の軸方向分布を図11に示 す.case2では発光が観測されるジェットの長さが case1よ り短いため,プロットされている点の数が少なくなってい る.図11より.表1の case1 の条件では並進-回転非平 衡, case2の条件では並進-回転平衡になっていることがわ かった.

水素分子の並進一回転緩和時間 τ_r は Billing によって与え られている⁹.表1に示されている気流速度を代表速度 Uとし、石英管直径を代表長さ L とすると、流れ場の代表時 間 τ_r は L/U として計算できる. τ_r 及び τ_r を表4に示す. casel では τ_r と τ_r は同じオーダーであるため並進一回転非平 衡、一方 case2 では τ_r が τ_r の 25%程度であるため、並進一 回転平衡と予想される.これらの予想は表4に示される実 験結果と合致し、本研究の分光手法が妥当であることが示 唆された.

図9 H_β線フィッティング例

図10 回転温度の半径温度分布(case1)

図11 並進温度及び回転温度の軸方向分布

表4 並進一回転緩和時間

		case1	case2
rotational relaxation parameter	$\operatorname{atm} \cdot \mathbf{s}$	2.5×10^{-8}	1×10^{-8}
rotational relaxation time, $ au_r$	\mathbf{s}	1.5×10^{-4}	3.0×10^{-5}
flow characteristic time, τ_f	\mathbf{s}	1.7×10^{-4}	1.2×10^{-4}

6. 結論

本研究では、希薄水素プラズマ流の並進-回転非平衡性 の発光分光診断手法を提示し、それを実際のプラズマ流に 適用した.並進温度は Balmer 系列 H_{β}線のプロファイルフ ィッティングから求め、回転温度は Fulcher- α 帯の線強度フ ィッティングから求めた.得られた実験結果は、並進-回 転緩和時間と流れの特性時間の比較によって物理的に説明 可能で、本手法が妥当であることが示唆された.

謝辞

本研究は科学研究費補助金基盤研究(B)No.17360408,及 び科学研究費補助金特別研究員奨励費 No.18・11672 の支援 を受けて行われた.ここに感謝の意を表する.

参考文献

- Vincenti W G et al 1967 Introduction to Physical Gas Dynamics (Florida: Krieger Publishing Company) p 197
- 2) Bird G A 1994 Molecular Gas Dynamics and the Direct Simulation of Gas Flows (Oxford: Clarendon Press) p 413-4
- 3) Parker J G 1959 Phys. Fluids 2 449-62
- 4) Gnoffo P A et al 1989 NASA Technical Paper 2867 p 10
- 5) Boyd I D 1997 Phys. Fluids 9 3086-95
- 6) Gallagher R J and Fenn J B 1974 J. Chem. Phys. 44 3492-9
- 7) Boyd I D et al 2003 J. Fulid. Mech. 280 41-67
- 8) Winter T G and Hill G L 1975 J. Acoust. Soc. Am. 42 848-8
- 9) Billing G D 1977 Chem. Phys. 20 35-42
- 10) Lordi J A et al 1970 Phys. Fluids 13 291-308
- Takama Y and Suzuki K 2008 Plasma Sources Sci. Technol. 17 015005
- Takama Y and Suzuki K 2007 J. Thermophys. Heat Transf. 21 630-7
- 13) Wiese W L et al 1966 Atomic Transition Probabilities Volume I Hydrogen Through Neon (Washington D. C.: United States Department of Commerce, National Bureau of Standards) p 2-6

- 14) Touma J E et al 2000 J. Quant. Spectrosc. Radiat. Transfer 65 543-71
- 15) Cowan R D 1981 *The Theory of Atomic Structure and Spectra* (Berkeley: University of California Press) p 487
- 16) Condon E U et al 1959 *The Theory of Atomic Spectra* (Cambridge: Cambridge University Press) p 69 99 132-4