抽気孔径が半球模型の極超音速空力特性に及ぼす影響

今村 宰¹, E. Rathakrishnan², 綿貫忠晴¹, 鈴木宏二郎³

¹東京大学大学院 工学系研究科 ²インド工科大学カンプール校 ³東京大学大学院 新領域創成科学研究科

Effect of Bleed Hole Diameter on Hypersonic Aerodynamic Characteristics of a Hemisphere Model

by

Osamu Imamura, Rathakrishnan Ethirajan, Tadaharu Watanuki, and Kojiro Suzuki

ABSTRACT

Bleeding blunt nose model is proposed in order to control the aerodynamic characteristics in hypersonic region. The air is bled from the top of the model and it exhausts to the base. The increase in the base pressure is expected and, as a result, the reduction of drag force is expected. This paper reports the experimental results of hemisphere model with different bleed holes in hypersonic wind tunnel and the effect of the bleed hole diameter is discussed. The experiments are performed in a hypersonic wind tunnel, University of Tokyo, in Kashiwa. This wind tunnel enables the Mach number 7 flow of 120 mm in diameter for 60 seconds. In this study, the stagnation pressure is 950kPa, stagnation temperature is around 600K and Reynolds number is 1.6×10^5 , respectively. The prototype model is a hemisphere in 40 mm diameter with a bleeding hole in 5mm and 10mm diameter. From the shadowgraph images, the shock distance becomes shorter with the increase of the bleed hole diameter and the shock wave shape becomes concave at the center for larger bleed hole diameter. From the measurement of balance system, drag force coefficient reduces with the increase in the bleed hole diameter and the maximum reduction of drag force coefficient is 10% of that without bleeding. The main reason for the reduction of drag force is estimated to be increase of the bleed hole diameter.

1. はじめに

極超音速飛行する鈍頭物体の空力および空力加熱の制御 方法として、物体前面にエアロスパイクを設ける方法や前 方にエネルギーを加える方法が知られている[1-4]。例えば スパイクを物体前方に設けると物体前方の流れの様子が変 化し、空力加熱の低減や空気抵抗低減の効果が得られる。 しかしながらこれらの方法は、構造上の問題などおいて好 ましくない傾向もあり、広く使われているとは言い難い状 況である。

本報では、極超音速飛行体における空力および空力加熱 の制御方法として抽気を利用する方法を提案する。提案す るシステムは鈍頭物体のよどみ点付近に小孔を設けて物体 前方から抽気を行い、そのガスを物体後方へと排気するも のである。抽気に伴い物体前方の流れの様子が変化するこ とによって、空力加熱や空気抵抗に影響を及ぼすことが期 待される。また抽気したガスを排気することによって、ベ ース圧上昇に伴う空気抵抗の低減が見込まれる。なお超音 速領域のおいては、提案するシステムにおいて基礎的な検 討が行われている[5]。

以上のような背景から、抽気を用いるシステムの有効性 について調べるため、抽気孔を有する模型を試作して極超 音速風洞試験を行った。試作した模型は半球模型のよどみ 点付近に小孔を設けたものであり、抽気孔の大きさが異な る模型を用いて抽気孔径が特に空力特性に及ぼす影響につ いて実験的に調べた。

2. 実験設備および供試模型

風洞実験は東京大学柏キャンパスに設置されている極超 音速高エンタルピー風洞を用いて行われた。図1に風洞の 外観図を示す。この図に示されるように本風洞はノズルの 上流にペブル式の加熱器を有しており、また測定部下流に は真空槽(容量 147m³)を有している。加熱器上流で設定圧 に調圧された空気は、加熱器内でペブルと熱交換をしたの ち極超音速ノズルに導入される。極超音速ノズルの出口は フリージェットの試験部となっており、空気は熱交換器を 介して真空槽に排気される。極超音速ノズルの設計マッハ 数は7、ノズル出口は直径 200mm、気流のコアは直径 120 mm程度であり[6]、最大で 60 秒間気流を維持することが 可能である。ノズル上流での温度、圧力をよどみ点状態として、本報告での試験を含む気流条件の一例を示したものが表1である。気流マッハ数 Mは、測定室圧力 p_1 とよどみ点圧力 p_0 から算出している。表には 18 回の通風試験の平均とその標準偏差を示してあるが、よどみ点圧力 p_0 がおよそ 950kPa,よどみ点温度 T_0 が 600K 程度で安定しており、気流マッハ数 Mは 7.0~7.1 の間に収まっている。気流の平均条件におけるレイノルズ数は模型直径基準で 1.6×10⁵ 程度である。本風洞では気流静定後に模型を気流中に投入する模型射出装置を備えており、本試験ではすべての実験において、風洞が起動してから約 10 秒後に模型を気流内に投入している。

Table, 1 Flow condition

Tuble: 1 Tiow condition						
	p_0 , kPa	<i>T</i> ₀ , K	p_1 , kPa	М		
Av.	952	600	0.22	7.07		
S.D.	0.9	54	0.01	0.036		

Fig. 1 Overview of UT-Kashiwa Hypersonic Wind Tunnel

Fig. 2 A photograph of prototype model

Fig. 3 Setup of the prototype model with the balance system

Fig. 4 Typical shadowgraph photographs

図2には実験に使用した模型の写真を、図3にはその組 立取付け部を示す。模型はステンレス製で主として外殻部 と内核部からなっており、外殻部は頭頂部に直径 d=5mm もしくは 10mm の抽気のための小孔を設けた直径 D=40mm の半球形状である。図2の写真は抽気径が5mmの場合で ある。外殻部と内核部は円環状の 2mm の間隔を持ってボ ルトで連結されており、前方の抽気孔から導入された気体 は外殻部と内核部の間の円環状のスリット部を介して下流 側へ排気される。内核部の頭頂部は半頂角約60度の円錐 状になっており、下流側はアタッチメントを介して天秤に 固定され、模型に加わる空気力を計測できるようになって いる。抽気の影響について調べるため、抽気孔なしの半球 模型(直径 40mm)も同時に作成し、比較実験を行ってい る。(ただし模型長は、抽気孔ありの場合が 48mm に対し て、参照模型は43mmである。)以下では、抽気孔の径 d を半球直径 D で除した値を用いて、抽気孔径が 5mm, 10mmの模型を 0.125D 小孔径の模型 または 0.25D 小孔径の 模型と称することとする。また参照用の抽気孔なしの模型 を0Dの模型と称する。

3. 結果および考察

3-1 流れ場の様子

図4に典型的なシャドウグラフ写真を示す。すべての写 真において写真左側が上流である。この図から迎え角によ らず安定した離脱衝撃波が確認され、また抽気孔を設ける ことによって衝撃波の形状が変化していることがわかる。 図5は図4に示されたシャドウグラフ写真から暗線の部分 を抽出して、各抽気孔径における衝撃波形状の変化の様子 を比較したものである。なお図においては、衝撃波形状の 変化を観察しやすくするため流れ方向は2倍に引き伸ばし てあり、合わせて模型の表面も示してある。この図から、 抽気孔を設けることによる衝撃波形状の変化は抽気孔近傍 に限られることがわかり、特に d=0.25D の模型の場合は衝 撃波が凹状に変形していることがわかる。次に模型表面と 衝撃波面との距離であるが、半球模型の先端を基準として 衝撃波面までの距離を図から見積もると、0Dの模型(半球 模型) では模型の中心軸上で 2.2mm (0.056D)程度であるが、 これが 0.125D 小孔径の模型では 1.5mm (0.038D)程度であっ た。0.25D小孔径の模型では模型の中心軸上では1.8mm (0.045D)程度であったが、抽気孔の端よりやや外側におい て、流れ方向への距離で 1.32mm (0.033D)程度と模型と衝撃 波の距離が一番短くなっていた。すなわち、抽気孔の大き さが大きくなることによって衝撃波と模型の最短距離が縮 まっていることがわかる。他方、迎え角を取った場合であ るが、この場合も同様に抽気孔を設けることにより、衝撃 波と模型表面の距離が短くなっている。その距離であるが、 0Dの模型の場合で 2.2mm (0.055D)程度、0.25D 小孔径の場 合は小孔のやや外側で 1.4mm (0.035D)程度であり、模型と 衝撃波の距離は迎え角0度の場合と同程度であることが明 らかとなった。

3-2. 空気抵抗

各々の模型においてステップモードで2度おきに迎え角 を変化させながら、模型に加わる空気力を測定し、それを もとに抵抗係数を求めたものが図6である。各迎え角に10 秒間固定して実験を行っており、その間空気力が安定して いることを確認している。抵抗係数を求めるにあたり代表 面積は模型の軸方向投影面積であり、いずれの模型におい ても直径40mmの円である。図6から本研究の範囲内にお いて顕著な抵抗係数の迎え角依存性は確認されなかったが、 いずれの迎え角においても抽気孔を設けることによって、 抵抗係数が減少していることがわかる。その低減の程度は (a) AoA=0deg

Fig. 5 Comparison of shock wave position with different bleed holes

Fig. 6 Drag force coefficient vs. Angle-of-Attack

抽気孔なしの半球模型に比べて、0.125D小孔径の模型で 2.5%、0.25D小孔径の模型で10%程度である。なお半球模 型と孔付模型では模型長が異なるが、孔付模型の方が模型 長は長く、抽気孔の影響がなければ摩擦抵抗によって孔付 模型の方が抵抗係数が大きくなるはずであり、図中におけ る抵抗低減の効果は抽気孔を設けたことに起因すると考え られる。

3-3. 模型後方の圧力測定と考察

空気抵抗の減少の要因として、抽気したガスの排気によ るベース圧の上昇が予想される。そのため内部流路内およ び模型後方の圧力測定を行った。以下ではすべて迎え角0 度で実験および解析を行っている。圧力の計測であるが、 本来は小孔なしの模型と比較するべきであるが、ここでは およその傾向を把握することを目的として、図7に示され るようにスリット出口の近傍に流れ方向に圧力導管を差込 み、スリット出口からの距離を変えて計測を行った。圧力 測定の測定結果を表2に示す。なお外殻部と内核部の間の 流路断面積は上流から下流に向けて基本的に拡大するよう に設計してある。内核部と外殻部で挟まれた流路内(ξ=-10 mm)においては 0.125D 小孔径の場合に 1kPa 程度の圧力、 0.25Dの場合には7kPa程度の圧力が計測されている。抽気 の排気付近においては、0.125D小孔径の場合にはスリット の出口付近(+1mm)で 0.7kPa 程度の圧力が計測されている が、それより下流では気流の静圧(0.21kPa)と同程度の値 となっていることがわかる。一方で 0.25D 小孔径の場合に は、スリット出口から7mm程度離れたところでも1kPa程 度の圧力が観察されており、気流静圧に対しておよそ5倍 程度のベース圧となっている。

以上の圧力計測の結果を踏まえて、抵抗係数の低減を見 積もったものが表3である。見積りの方法についての概略 は図8に示されているとおり、小孔を設けることによる外 殻部分の抵抗の減少、および内核部分が露出することによ る抵抗の増加についてはニュートン流解析を用いた。ベー ス部分の圧力上昇による抵抗増減に関しては、ベース圧と して 0.125D 小孔径の場合には 0.26kPa, 0.25D 小孔径の場合 は、1.11kPaを採用し、排気された気体の運動量に起因する 推力に関しては考慮していない。表3は各々の抵抗係数に 及ぼす寄与を半球模型の抵抗係数を1とした場合の割合で 表記したものである。その結果、先頭部分においては外殻 部分の抵抗低減の効果と内核部分の抵抗増加の効果はおよ そ相殺しており、先頭部分における抵抗低減の効果は1% ~2%程度である。すなわちベース圧の上昇の効果分が、 抵抗低減の効果分と予測される。このようにして表3で見 積もられた抵抗低減の効果は、計測や見積りの精度を考え るとおよそ図6にて示された抵抗低減の効果と整合が取れ ていると言える。

このように本研究における抵抗低減の効果はベース圧の 上昇によるところが大きいが、風洞実験の都合上、ベース 部分にはアタッチメントなどが付属しているため、ベース 圧の上昇の効果が完全に反映されているとは言い難い。す なわち実飛行体を考えると、ベース圧を上昇させることに よる抵抗低減の効果は本報で見積もられたものよりも、よ り効果的であることが予測される。

Table. 2 Measured Base Pressure (unit: kPa)

Position	-10mm	+1mm	+3mm	+7mm
0.125D model	1.26	0.72	0.26	
0.25D model	7.08			1.11

Fig. 7 Positions of pressure measurement

Fig. 8 Estimation of drag force coefficient

Table.	3	Detail	of	drag	force	coefficient	reduction	
raore.	~	Doum	U 1	unun	10100	coornene	reaction	

Position	Bleed hole	Inner Corn	Thrust	Total
0.125D model	-3.1%	+2.4%	-2.4%	-3.1%
0.25D model	-11.4%	+9.7%	-10.4%	-12.1%

3-4. 内部流路の温度

今回の模型のように、比較的頂角が開いた円錐を内核に 用いた場合に外殻と内核の抵抗係数変化がほぼ相殺してい ることから、より抵抗が少ないと思われる形状を内核に用 いれば頭部でも抵抗軽減効果が得られるものと期待される。 この場合、内核部においても空力加熱が問題となることが 予測されるため、内部流路における気流温度計測を行った。 その結果を図9に示す。図には、ほぼ同じ全温における模 型のよどみ点近傍(CaseA)および内部流路(CaseB)にて計測 した温度の時間履歴を示している。内部流路温度は試験時 間中に定常に達してないため外挿して求めた。その結果、 通風開始前の模型の表面温度(常温)と気流の温度差を比 較すると、外殻部前方に比べて内核部前方の温度差は4 5%程度であった。これから内核部も高温の気体に曝され るものの、その気流温度は外殻部のものと比べると十分に 低いといえる。

Fig. 9 Temperature of interior path

4.結論

頭頂部に大きさの異なる抽気用の小孔を設けた半球模型 を用いて、空気の抽気および抽気孔径が主に空力特性に与 える影響について、極超音速風洞試験を行い実験的に調べ た。その結果、得られた主な結論は以下のとおりである。

1. 抽気孔を設けることにより、衝撃波-物体間の距離が 短くなることが明らかとなった。特に半球直径の 1/4 の径 の小孔を用いた場合には衝撃波の中心部分が凹となるよう に変形した。

2. 抽気孔を設けることにより抵抗係数が減少することが 明らかとなった。特に半球直径の 1/4 の径の小孔を用いた 場合には、約1割の抵抗係数の低減が確認された。ベース 圧の測定を行った結果、抽気孔を設けることでベース圧が 大きく上昇しており、このベース圧の上昇が抵抗係数の低 減の主要因と推定された。

3. 内部流路における気流温度計測を行った結果、内核部 も高温の気体に曝されるものの、その気流温度は外殻部の ものと比べると十分に低いことが明らかとなった。

参考文献

- 久保田弘敏,鈴木宏二郎,綿貫忠晴,"宇宙飛行体の熱 気体力学,"東京大学出版会 (2002), pp. 156-161.
- Crawford, D. H., "Investigation of the flow over a spikednose hemisphere-cylinder at a Mach number of 6.8", NASA TN, D-118 (1959)
- 5) 坂越中,三原健,綿貫忠晴,久保田弘敏, "エアロスパイクによる極超音速空力加熱軽減効果の評価", 第31回流体力学講演会, pp.25-28, (1999)
- 高木 亮二, "Direct Energy Air Spike による空力加熱率 現象の数値シミュレーション",日本航空宇宙学会論文 集 第 50 巻 pp.123-128 (2002)
- Vashishtha, A., Sharma, H., Lovaraju, P., Rathakrishnan, E., "Breathing Blunt Nose Concept for Drag Reduction in Supersonic Flow", 26th ISTS, 2008-e-14, (2008) (in CD-Rom)
- 6) 今村 宰, 綿貫忠晴, 鈴木宏二郎, 柏風洞 WG "東京大学 柏キャンパス極超音速風洞の気流特性について", JAXA-SP-07-016, pp.50-55 (2008)