低レイノルズ数での空力特性に及ぼす翼型形状の効果

紀平光彦, 古賀光泰, 舟木治郎, 平田勝哉 同志社大学, 理工学部

The Effects of Airfoil Shapes on Aerodynamic Characteristics

at Low Reynolds Numbers

by

Mitsuhiko Kihira, Mitsuhiro Koga, Jiro Funaki and Katsuya Hirata

ABSTRACT

Aerodynamic characteristics of airfoils have been researched in higher Reynolds-number ranges more than 10^6 , in a historic context closely related with airplanes' developments in the last century. So, in the present study, we investigate such basic airfoils as a NACA0015, a flat plate and the flat plates with modified fore- or after-faces in a Reynolds-number range of 10^2 - 10^5 , using two- and three-dimensional computations together with wind-tunnel and water-tank experiments.

1. はじめに

翼の空力特性の研究は、航空機の発達と関係が深い.実際、 現在までの報告の多くは、航空機の高速化や大型化に伴い高 いレイノルズ数領域、すなわち、レイノルズ数Re(代表長さは 翼弦長c.)は 10^6 以上のものが多く見られる(Jacobs & Sherman⁽¹⁾, Abbott & Doenhoff⁽²⁾, Riegels⁽³⁾, Eppler⁽⁴⁾).例えば、 Abbott & Doenhoff⁽²⁾は、この高ReでのNACA翼の空力特性を多 数示している.

一方、低レイノルズ数領域($Re < 10^6$)における翼の空力特性の把握は、人力飛行機や昆虫/鳥の飛行システムの解明、小型風力 / 水力発電機や、マイクロマシーンの開発などにおいて重要である. 低Reでの翼の空力特性については、Sunada et al.⁽⁵⁾が、 $Re = 4 \times 10^3$ におけるNACA4 字系列の翼や平板翼、その他、様々な翼について実験を行っている. 他にもいくつかの研究が、現在まで報告されている⁽⁶⁾⁽¹⁾.

しかし、低いレイノルズ数領域での翼型の空力特性は、層 流ー乱流遷移などの為にレイノルズ数効果が大きいことや、 実験における技術的困難さの為に、充分に理解できていない. そこで、本研究では、 $1.0 \times 10^2 \le Re \le 1.0 \times 10^5$ における一様流中 に置かれた基本的翼型(NACA0015 と平板翼)について、二 次元/三次元数値解析と風洞/水槽実験により、代表的翼特 性である C_{Dmin} のRe依存性を確認する. さらに、 $Re = 4.0 \times 10^3 と$ 1.0×10^2 で、さまざまな翼特性(C_L , C_D , C_L/C_D)と迎角*a* との 関係を調べる. $Re = 1.0 \times 10^2$ では、前縁と後縁の形状が、それ らの関係に及ぼす影響も調べる.

2. 計算と実験の方法

2.1 翼型

Fig. 1 に本研究で調べた翼型を示す. 実験は, NACA0015 についてのみ実施している. Flat plates (1)-(6) は, 単純な平板 翼(flat plate)の前縁または後縁を図のように変形したものであ る.

2.2 計算方法

本研究で対象とするレイノルズ数領域では、実用上多くの 場合が非圧縮性流体と見なすことができる.よって、我々は 非圧縮性ナビエ・ストークス方程式を考え、数値解析する. 解析手法は、有限差分法である.(差分スキームは MAC 法、 空間微分は三次精度上流差分で離散化、時間発展はオイラー 陽解法を用いる.)計算格子は、一般座標系をもつ境界適合格 子を採用する.(型はO型で、スタガード格子である.)

\leq		NACA0015
[Flat plate $(t/c = 0.05)$
45deg.		Flat plate (1) ($t/c = 0.05$, with a modified fore-face)
30deg		Flat plate (2) $(t/c = 0.05$, with a modified fore-face)
45deg		Flat plate (3) $(t/c = 0.05$, with a modified fore-face)
4340g.	45deg.	Flat plate (4) $(t/c = 0.05$, with a modified after-face)
	30deg.	Flat plate (5) $(t/c = 0.05, \text{ with a modified after-face})$
	45deg.	Flat plate (6) $(t/c = 0.05)$, with a modified after-face)
	Fig. 1	Airfoils.

物体の境界条件は粘着条件であり、外周の境界条件はu=1, v= 0, w = 0のディレクレ条件を与える.格子点数は ζ 方向に 200 点、 η 方向に 90 点、z方向に 30 点とする.また、 η 方向 の最小格子幅 $_{10\min}$ は $1.0 \times 10^{3}c$,解析領域Hは 14.0cとする. ここに、cは翼弦長である.時間刻みを $_{10}$ $t=1.0 \times 10^{4}$ とし、 C_{L} と C_{D} がほぼ一定値に収束した後、充分に時間が経つまで計算 を行う.

2.3 風洞実験

実験には、断面が 1.0×1.0 [m], 長さ 2.0 [m]の開放型測定部 を有する低速回流型風洞を用いる. 主流流速は 0.5-30[m/s]の 範囲で、乱れ強さは 0.5%以下である. 広範囲の *Re* を測定す るため、5 種類の翼弦長 *c* の NACA0015 を用いる. すなわち、 *c*=30, 100, 150, 250, 400[mm]である. 流体力は、ロードセルに よる計測の他、熱線流速計により後流の運動量損失を積分す ることでも求める.

2.4 水槽実験

移動水槽の容積は,660[mm]×1950[mm]×700[mm]である. モータの動力を、歯車とベルトにより、水槽下部に取り付け たボールねじに伝達する.ボールねじを回すことで、平行に 並んだ長さ4[m]の2本のレールの上で、水槽を滑らかに移動 させる.木製のNACA0015を、水で満たした水槽内に没水し て固定し、一定速度で水槽が動く際の流体力を測定する.流 体力の測定には、ひずみゲージを用いる.

3. 結果と考察

3.1 C_{Dmin}のRe依存性

Fig. 2 に、NACA0015 と平板翼の最小抗力係数 C_{Dmin} のRe依存性を示す. 図中のシンボルの意味は、Table 1 にまとめる. なお、本論を通して、図中のシンボルの意味は、全て統一している.

解析と実験の結果は、過去の研究者の結果による解析と実 験も含め、 $Re = 10^2 - 10^7$ の範囲内において、($Re = 1 \times 10^4 - 5 \times 10^5$ の範囲を除き) Hoemerの式⁽¹²⁾におおむね一致し、層流薄翼理 論式⁽¹³⁾より若干大きめである.

Re効果を考えるときに、Reが大きくなるほど C_{Dmin} の値は急激に小さくなる.よって、Fig.2では、高Reほど評価が困難になりがちである.そこで、Fig.3に、層流薄翼理論式⁽¹³⁾を基準値として、 C_{Dmin} を再評価した図を示す.

 $Re \leq 1 \times 10^4 \varepsilon$,詳しく見る. NACA0015 も平板翼も,それ ぞれ二次元解析は、三次元解析とも実験ともよく一致する. よって、このRe範囲では、二次元解析は有効と思われる.更

Symbol	Caption	Re
0	NACA0015 (2D comp.)	1.0×10^2 , 4.0×10^3
	NACA0015 (3D comp.)	1.0×10^2 , 4.0×10^3
Δ	NACA0015 (water-tank exp.)	4.0×10^3 , 8.0×10^3
S	NACA0015 (wind-tunnel exp. by LC)	$2.0\times10^4~\leq~Re~\leq~2.0\times10^6$
\diamond	NACA0015 (wind-tunnel exp. by VP)	$1.0\times10^2 \leq Re \leq 1.0\times10^5$
+	Flat plate (2D comp.)	1.0×10^2 , 4.0×10^3
Х	Flat plate (3D comp.)	1.0×10^2 , 4.0×10^3
3	Abbott & Doenhoff 1958 (NACA0012, exp.)	$Re \le 1.0 \times 10^6$
Р	Eppler 1990 (NACA0012, exp.)	<i>Re</i> ≥ 10 ⁶
•	Sunada et al. 1997 (NACA0012, exp.)	4.0 × 10 ³
	Motohashi 2001 (Flat plate, t/c=0.033, exp.)	$4.8 \times 10^3 \leq Re \leq 1.47 \times 10^4$
	Nakane et al. 2003 (NACA0012, exp.)	$5.0 \times 10^3 \leq Re \leq 7.0 \times 10^5$
•	Sun & Boyd 2004 (Flat plate, t/c=0.05 , comp.)	$1.0 \le Re \le 2.0 \times 10^2$
	laminar-thin-plate theory	
	NACA0012 (Hoerner's formula)	
	NACA0015 (Hoerner's formula)	

Table 1 Symbols in figures.

に、NACA0015 の C_{Dmin} は、層流薄翼理論式⁽¹³⁾やHoemerの式⁽¹²⁾ におおむね一致し、特にHoemerの式⁽¹²⁾とよく一致する。平板 翼の C_{Dmin} も、層流薄翼理論式⁽¹³⁾やHoemerの式⁽¹²⁾に一致するが、 NACA0015 と同様、特にHoemerの式⁽¹²⁾とよく一致し、層流薄 翼理論式⁽¹³⁾より若干大きめの値を示す。

次に、 $Re \ge 1 \times 10^4$ を見る. 平板翼については結果が乏しく、 NACA0015 についてのみ考える. 二次元解析結果と本実験結 果,他研究者の実験結果を比較すると,値自体は一致しない

164

が、全て薄翼理論式やHoemerの式⁽¹²⁾よりもずっと大きな値を示す.

3.2 低 Re での NACA0015 と平板翼の a 効果

 $Re < 1 \times 10^4$ でのNACA0015 と平板翼について、さまざまな 翼特性、すなわち、揚力係数 C_L と抗力係数 C_D 、揚抗比 C_L/C_D と 迎角 α との関係を二次元解析と三次元解析により調べる.

Fig. 4(a)-(c)に, それぞれ, $Re = 4.0 \times 10^3$ でのNACA0015 に関して, $C_L \& C_D$, $C_L (C_D \sigma \alpha \circ \sigma)$ 依存性を示す.

まず、 $C_L \geq C_D$ の二次元解析を、Sunada et al.⁽⁵⁾ \geq Nakane et al.⁽⁸⁾ の実験と比較する (in Figs. 4(a) and (b)). $\alpha \leq 12$ [deg.]では、 $C_L \geq C_D$ の解析は共に彼らの実験に近い、 $\alpha > 12$ [deg.]では、 C_L

とCoの解析は共に彼らの実験よりもはるかに大きい.

一方、 $\alpha = 4[\deg]$ では、三次元解析による $C_L \geq C_D$ は、二 次元解析とも彼らの実験ともよく一致する. $\alpha = 16[\deg]$ では、 $C_L \geq C_D$ の三次元解析は共に二次元解析よりも彼らの 実験値に近づく傾向がある. よって、たとえReが 10^4 より低 くても、 α が大きいと、三次元効果が強くなり、三次元解析 が必要になる.

次に、 C_L/C_D の二次元解析を、Nakane et al⁽⁸⁾の実験と比較する(in Fig. 4(c)). $\alpha < 10$ [deg.]では、二次元解析は実験よりも小さい.これは、 C_L では解析と実験がほぼ一致しているが、 C_D では解析がわずかではあるが実験よりも大きな値を示すことに対応する.しかし、解析 (NACA0015)では実験 (NACA0012)よりも翼厚の大きな翼を用いているため、 C_D の解析が実験より大きくなることは妥当と考えられる.

一方、 $a \ge 10$ [deg.]では、二次元解析は実験に近い、これは、 $C_L \ge C_D$ 共に解析が実験よりはるかに大きな値であるが、それ らを除することで生じた偶然の一致と考えられる、また、 $\alpha =$ 16[deg.]での三次元解析でも、 C_L/C_D の計算と実験との一致は、 $C_L \heartsuit C_D$ よりも良好である.

Fig. 5(a)-(c)に, それぞれ, $Re = 4.0 \times 10^3$ での平板翼に関して, $C_L \geq C_D$, $C_L / C_D の \alpha$ への依存性を示す.

まず, $C_L \geq C_D$ の二次元解析を, Sunada et al.⁽⁵⁾ とMotohashi⁽¹⁰⁾ の実験と比較する (in Fig. 4(a) and (b)). 調べた全ての迎角 (α < 20[deg.]) で, $C_L \geq C_D$ の解析は, 共に実験よりも大きい. 特 に高迎角 ($\alpha \geq$ 4[deg.]) では, はるかに大きい.

一方, $a=4[\deg]$ では、三次元解析による $C_L \geq C_D$ は、共に二 次元解析に一致し、彼らの実験よりも大きい. $a=16[\deg]$ で は、三次元解析による $C_L \geq C_D$ は、共に二次元解析よりも彼ら の実験値に近づく傾向がある.よって、NACA0015 と同様、 平板翼でも、 $Re < 10^4$ でもaが大きいと低迎角でも三次元効果 が強くなり、三次元解析が必要になる.

次に、*C_L/C_D*を見る(in Fig. 4(c)). 平板翼の三次元解析(× 印)と二次元解析(+印)とFig. 4(c), NACA0015の三次元 解析(□印)と二次元解析(○印)と、それぞれ、比較する. NACA0015と同様、平板翼でも、二次元解析と三次元解析は、 一致する. ここで、高迎角での一致は偶然である.

更に、Fig. 5(c)にて、平板翼とNACA0015の二次元解析を比較する. 平板翼はNACA0015よりも広範囲の α で大きな C_{l}/C_{D} が得られる. 特に低迎角 ($\alpha < 16$ [deg.])では平板翼のほうがNACA0015より,はるかに大きい.

Fig. 6(a)-(c)に、それぞれ、 $Re = 1.0 \times 10^2$ での平板翼と NACA0015 に関して、 $C_L \& C_D$ 、 $C_L / C_D の \alpha \sim 0$ 依存性を示す. まず、 $C_L \& C_D$ 、 $C_L / C_D の二次元解析と三次元解析の結果を$ 比較する. NACA0015 と平板翼も共に、aが大きくても一致する. よって、 $Re = 1.0 \times 10^{2}$ 程度の低レイノルズ数では、二次元解析が十分に有効であると考えられる. 次に二次元解析に関して、NACA0015 と平板翼とを比較する. Fig. 6(a)より、NACA0015 も平板翼の方が全てのaで大きい. Fig. 6(b)より、NACA0015 と平板翼の結果は、ほぼ一致する. すなわち、 C_L の値は、aの増加につれて単調に微増する.

最後に, Fig. 6(c)を見る. Fig. 6(a)とFig. 6(b)に対応して, 平 板翼は, NACA0015 よりも広範囲のαで大きな*C*_L/*C*_Dを示す.

(a)
$$C_L$$

 $(Re = 4.0 \times 10^3, \text{ flat plate}).$

3.3 低 Re での前縁形状効果

Fig. 7(a)-(c) に, それぞれ, $Re = 1.0 \times 10^2$ における, flat plates (1)-(3)の空力特性(すなわち, $C_L \geq C_D$, C_L/C_D)の α への依存 性を示す. なお, 図には, 比較のため, 通常の平板翼 (flat plate) の結果を点線で示す.

まず,平板翼とflat plate (1)とを比較する. C_L は,低迎角 (α < 12[deg.])では平板翼に比べて若干小さいが,高迎角 ($\alpha \ge$ 12[deg.]) では若干大きくなる.また, C_D は,低迎角では平板 翼との差をほとんど示さず,高迎角ではわずかに平板翼より 小さい.よって, C_L/C_D は,低迎角で平板翼より若干小さく,高迎角で平板翼より若干大きい.つまり,flat plate (1)の前縁形

Fig. 6 Aerodynamic characteristics versus α ($Re = 1.0 \times 10^2$, NACA0015 and flat plate).

状は、低迎角で翼特性 (C_L/C_D の値) を低め、高迎角で翼特性 を、高める効果を持つ.

次に、平板翼とflat plate (2)とを比較する. C_L は、低迎角で は平板翼よりわずかに小さく、高迎角では平板翼との差をほ とんど示さない.また、 C_D は、低迎角では平板翼との差をほ とんど示さないが、高迎角では平板翼より若干小さい.よっ て、 C_L/C_D は、低迎角で平板翼より若干小さく、高迎角で若干 大きくなる.つまり、flat plate (2)の前縁形状は、低迎角で翼特 性を低め、高迎角で翼特性を高める効果を示す.

最後に、平板翼とflat plate (3)とを比較する. C_L は、低迎角では平板翼より大きく、高迎角では平板翼との差をほとん

(a)
$$C_L$$

Fig. 7 Aerodynamics characteristics versus α ($Re=1.0\times10^2$, flat plates (1)-(3)). ど示さない.また、 C_D は、低迎角で平板翼との差をほとんど 示さないが、高迎角では平板翼より若干大きくなる.よって、 C_L/C_D は、低迎角で平板翼より若干大きく、高迎角では平板翼 より若干小さくなる.つまり、flat plate (3)の前縁形状には、低 迎角翼特性を高め、高迎角で翼特性を低める効果を示す.

前縁形状は、細かく見れば、以上のような差異を生じるが、 定量的には微小であり、概して前縁形状の効果は小さい.

3.4 低 Re での後縁形状効果

Fig. 8(a)-(c) に, それぞれ $Re = 1.0 \times 10^2$ におけるflat plates (4)-(6)の空力特性(すなわち, $C_L \geq C_D$, C_L/C_D)の α への依存 性を示す. なお, 図には, 比較のため, 通常の平板翼 (flat plate) の結果を点線で示す

まず、平板翼とflat plate (4)とを比較する. C_L は迎角に関係 なく、常に平板翼より大きくなる. また、 C_D は低迎角では平 板翼との差をほとんど示さない. よって、 C_L/C_D は、迎角に

 $(Re=1.0\times10^2, \text{ flat plates (4)-(6)}).$

関係なく、常に平板翼より大きくなる. つまり、flat plate (4) の後縁形状には、翼特性 (C_L/C_D の値) を高める効果を示す.

次に、平板翼とflat plate (5)とを比較する. C_L は迎角に関係なく、常に平板翼より小さい.また、 C_D は迎角に関係なく、常に平板翼より若干小さい.よって、 C_L/C_D は、迎角に関係なく、常に平板翼より小さくなる.つまり、flat plate (5)の後縁形状には、翼特性を低める効果を示す.

最後に、平板翼とflat plate (6)とを比較する. C_L は、迎角に 関係なく、常に平板翼より小さい. また、 C_D は低迎角では平 板翼との差をほとんど示さないが、高迎角では平板翼より若 干小さい. よって、 C_L/C_D は、迎角に関係なく、常に平板翼よ り小さい. つまり、flat plate (6)の後縁形状には、翼特性を低め る効果を示す.

4. おわりに

NACA0015 と平板翼について、二次元と三次元数値解析、風 洞実験、水槽実験により、以下のことがわかった.

- *Re* ≤ 10⁴で, NACA0015 も平板翼も, それぞれ, *C*_{Dmin}の 二次元解析は, 三次元解析とも実験ともよく一致する. よって, この*Re*範囲では, 二次元解析は有効である.
- (2) $Re \leq 1 \times 10^{4}$ で、NACA0015 の C_{Dmin} は、層流薄翼理論式⁽¹³⁾ やHoemerの式⁽¹²⁾におおむね一致し、特にHoemerの式⁽¹²⁾ とよく一致する. 平板翼の C_{Dmin} も、層流薄翼理論式⁽¹³⁾や Hoemerの式⁽¹²⁾に一致するが、NACA0015 と同様、特に Hoemerの式⁽¹²⁾とよく一致し、層流薄翼理論式⁽¹³⁾より若干 大きめの値を示す.
- (3) Re=4.0×10³では、高迎角になるとNACA0015 に三次元効果が強く現れる. Re = 1.0×10²では、高迎角でも三次元効果がほとんど現れない.
- (4) $Re = 4.0 \times 10^{3} \ge 1.0 \times 10^{2}$ で, 平板翼はNACA0015 よりも広範囲のαで大きな C_{L}/C_{D} を示す.特に $Re = 4.0 \times 10^{3}$ では低迎角 ($\alpha < 16$ deg) で C_{L}/C_{D} は平板翼のほうが,はるかに大きい. $Re = 1.0 \times 10^{2}$ では, 調べた全ての α ($\alpha < 20$ [deg.]) で C_{L}/C_{D} の値は,平板翼のほうが大きい.
- (5) Re=1.0×10²において、翼型の前縁形状よりも後縁形状の 方が、翼特性に与える影響が大きい.

参考文献

- E. N. Jacobs and A. Sherman, "Airfoil Section Characteristics as Affected by Variations in the Reynolds Number," *NACA Technical Report*, No.586, 1937, 227–267.
- I. H. Abbott and A. E. von Doenhoff, *Theory of Wing Sections*, Dover, New York, 1958, 462–463.

- 3) F. W. Riegels, Aerofoil Sections, Butterworths, London, 1961.
- R. Eppler, *Airfoil Design and Data*, Springer-Verlag, Berlin, 1990.
- S. Sunada,, A. Sakaguchi and K. Kawachi, "Airfoil Section Characteristics at a Low Reynolds Number," *Transactions* ASME Journal of Fluids Engineering, Vol. 199, 1997, 129– 135.
- J. H. McMasters and M. L. Henderson, "Low Speed Single Element Airfoil Synthesis," *Tech. Soaring*, Vol. 6, 1980, 1–21.
- M. Okamoto, K. Yasuda and A. Azuma, "Aerodynamic Characteristics of the Wings and Body of a Dragonfly," *Journal* of *Experimental Biology*, Vol.199, 1996, 281–294.
- N. Nakane, T. Tanaka, T. Motohashi, "Aerodynamic Characteristics of NACA0012 in a Wide Reynolds Number range," *Proc. 35th Fluid Dynamics Conference, JSASS*, 2003, 179–182 (in Japanese).
- T. Motohashi, "Characteristics of Rectangular Wings at Low Reynolds Numbers," *Proc. 39th Aircraft Symposium, JSASS*, 3D6, 2001, 1–4 (in Japanese).
- T. Motohashi, N. Nakane, "Thin Aerofoil Stall at *Re* = 1000," *Proc. 36th Fluid Dynamics Conference, JSASS*, 2004, 197–198 (in Japanese).
- Q. Sun and I. D. Boyd, "Flat-Plate Aerodynamics at Very Low Reynolds Number," *Journal of Fluid Mechanics*, Vol. 502, 2004, 199–206.
- S. F. Hoerner, *Fluid-Dynamic Drag*, Published by the Auther, 1958, 6-4-6-7.
- I. H. Abbott and A. E. von Doenhoff, *Theory of Wing Sections*, Dover, New York, 1958, 88–89.