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ABSTRACT

A search for a precise definition of hydraulically smooth wall is carried out. It is argued that in the case of
transitional flows such definition can be based on the onset of flow instabilities. Flow in a channel with
distributed surface roughness is considered as a case study. Results of the linear stability analysis show that
the presence of the roughness destabilizes the traveling-wave instability as well as introduces a new instability
that manifests itself in the form of streamwise vortices. The critical conditions for the occurrence of both
instabilities are given for different classes of roughness shape. It is shown that these conditions can be
predicted with a reasonable accuracy in the case of an arbitrary (but Fourier transformable) roughness by
considering only the leading Fourier mode (wavy-wall model). A segment in the parameter space where the
roughness does not induce any instability regardless of its shape has been identified; this segment identifies
conditions under which the rough wall behaves as a hydraulically smooth wall.
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1. Introduction

Flows over rough walls have been studied since
the early works of Hagen' and Darcy’, which were
focused on turbulent regimes. Reynolds® was the first
to pose the problem in the context of
laminar-turbulent transition. While the questions
studied, i.e., what kind of effects the presence of
distributed surface roughness can induce in a flow
and when a rough wall behaves as hydraulically
smooth, are of fundamental importance their rational
resolution is still lacking. Both questions are of
considerable practical importance in several
application areas, e.g., design of large Reynolds
number laminar airfoils, small Reynolds number
turbulent airfoils, compact heat exchangers, laminar
electrostatic  precipitators, etc. The original
investigations involved measurements of turbulent
flows in open channels and in pipes. Various possible
roughness forms were classified using the concept of
“equivalent roughness” °. Phenomenological effects
of the “equivalent roughness” were summarized in
the form of friction coefficient”’. These and other
similar investigations show that surface roughness
contributes directly to the dynamics of turbulent flow
only if the wall is hydraulically rough. The concept of
hydraulic smoothness is very appealing; however, no
precise criterion exists for predicting whether a given
surface can be considered as being hydraulically
smooth for flow conditions of interest. While the
modelling concepts of this type have been
continuously re-evaluated®’, they failed so far to
uncover the mechanisms that govern the complex,
flow-condition-dependent interaction between the

roughness geometry and the moving fluid.

This presentation reviews the role played by
distributed roughness in the laminar-turbulent
transition process in shear layers. It is known that this
process involves various instabilities that eventually
lead to the fully turbulent state. The experimental
evidence shows that the roughness contributes
directly to the dynamics of the flow only if its
amplitude is sufficiently large. A frequently used
criterion for determination of the critical roughness
size is that the roughness Reynolds number
Re=Uk/v<25 10, where k is the roughness height, Uy
is the undisturbed velocity at height k and v the
kinematic viscosity. Such a criterion, however, does
not address the issue of shape and distribution of the
roughness.

There is a large body of experimental observations
focused on the laminar-turbulent transition that
provide phenomenological description of the flow
response in the form of correlations between the
height of the roughness, the flow conditions and the
critical Reynolds number for certain classes of
geometrical forms of the roughness '''°. The range of
applicability of these correlations is not certain
because they are based on a limited experimental data
and have been determined for, in essence, artificially
created roughness forms. These correlations,
nevertheless, form the basis of all roughness sensitive
designs.

The surface roughness can be divided into three
classes for the purposes of discussion, i.e., isolated
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two-dimensional roughness, e.g., spanwise trip wire,
isolated three-dimensional roughness and distributed
roughness. The transition mechanisms for the first
class of roughness is associated with inflectional
separated velocity profiles and are considered
understood at least on qualitative level '*'*. The
characteristic feature of the flow around an isolated,
three-dimensional roughness element is the presence
of the horseshoe vortex that generates streamwise
vortices on the downstream side'’. The transition
mechanism is thought to be associated with the
strong instabilities of inflectional shear layers set up
by the streamwise vortices, similar to the case of
Gortler instabilitylg. The effects of distributed
roughness are not understood'’. Various experiments
indicate that when the roughness is operative the
departure from the laminar state is explosivezo'ZI.
Theoretical attempts based on the roughness-induced
distortion of velocity profile proved inconclusive™>*
similarly as did concepts based on the
roughness-induced additional mixing®. The spectral
model of roughness shape”® proved to be very
powerful and holds a promise to uncover the
mechanisms  associated ~with the distributed
roughness. Theoretical analysis of  the
two-dimensional traveling-wave instability’’ shows
that the roughness is responsible for the reduction of
the critical Reynolds number and the amount of
reduction is in agreement with the experimental
observations®™.  Three-dimensional analyses  of
Couette flow over wavy-wall® and Poiseuille flow in
a converging-diverging channel®® show that surface
corrugations are able to generate streamwise vortices.
Surface roughness may also play a large role in the
transition process through amplification of the
transient growth mechanism31; however, this role
remains to be substantiated.

The main objective of the analysis described in the
next section is the determination of the role played by
distributed surface roughness in the early stages of
the transition process through the use of the linear
stability theory. This analysis uses spectral models®®
where the roughness geometry is represented in terms
of Fourier expansions. Determination of the effects of
different geometries is reduced to scans of parameter
space formed by the coefficients of such expansions.
Use of stability theory provides a convenient tool for
the identification of the conditions when the
roughness is not hydraulically active; roughness that
does not destabilize the flow modifies the flow in an
insignificant manner and thus such wall may be
considered as hydraulically smooth. The reader
should note that the just proposed definition of
hydraulic smoothness for transitional flows is
different from the common albeit ill-defined
smoothness for turbulent flows where the smoothness

implies turbulent friction independent of the
roughness.

2. Outline of the analysis

We follow Ref.[32] and begin with the plane
Poiseuille flow confined between flat rigid walls at
y=t1 and extending to infinity in the x-direction.
Velocity and pressure fields in the form

Vo(x) = [ug().0]1=(1-y*,0), py(x)=-2x/Re, (1)
describe the fluid motion, where the motion is
directed towards the positive x-axis, x=(x,y), and the
Reynolds number Re is based on the half-channel
height and the maximum x-velocity. Assume that the
lower wall is replaced by a corrugated wall whose
location yy (x) is specified as

y () =1+ 3 SWei @

n=-o
where S™ = S™" and star denotes the complex
conjugate. The flow in the corrugated channel can be
represented as

V(%) = [uy (X,y), v (X, )] = Vo (x) + Vi (x) =

[uO (Y),O] + [ul (Xa Y)’ Vi (Xa Y)L (3)
P2(X) =po(x) +pi(X,¥),

where V; and p; are the velocity and pressure
modifications owing to the presence of the
corrugation. Substitution of the above representation
of the flow quantities into the Navier-Stokes and
continuity equations, introduction of stream function
defined as wu;=0,¥,v;=-0,¥, elimination of

pressure and representation of the unknowns in the
form of Fourier expansions

n=+oo

F(x,y)= > O (y)e"™ (4)

n=-ow
where ©@® =@ | ™= ™" £ O£ jead to

a system of nonlinear ordinary differential equations
for the functions @™, n>0, in the
form

[Dﬁ —inaRe(u,D, — Dzuo)]cb(“) -
k=+
ioaRe ZTkD(D(“‘k)DkCD(k) ~(n-k)®" YD, po® ] -0,

k=—c0
(%)
where D=d/dy, D,=D*-n’a’. The boundary conditions
at the channel walls are expressed in the form
Uy (YL (X)) +u (X, y (X)) =0, v(X,y (X)) =0, (6a)
ux)=0, v(x,1)=0. (6b)
The above formulation is closed with the fixed
volume flux condition and the problem is solved
numerically.

The linear stability analysis begins with the
governing equations in the form of vorticity transport
and  continuity.  Unsteady, three-dimensional
disturbances are superimposed on the mean part in
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the form

0= ('02 (X9 y) + ('03()(: Y.z, t)9 V = VZ (X’ y) + V3 (X! Y.z, t))
where subscripts 2 and 3 refer to the mean flow and
the disturbance field, respectively. The above
equation is substituted into the field equations, the
mean part is subtracted and the equations are
linearized. The resulting disturbance equations have
the form
0m;/0t+(Vy-V)o;— (05 V)V, + (V5 V), -
(0,-V)V; =Re 'V, ,

V-V;=0 , @;=VxV; (7a-c)
and are subject to the homogeneous boundary
conditions

Vi(x,1,2,t) =0, V;3(x,y.(x),2,t)=0 (7d)
where y. is given by Eq. (2). The disturbance
velocity vector is assumed in the form
vi(X,y,2,t) =

m=+ .
ZTgflm) (y), gsjm) (y)’gg]n) (y)] el[(b+ma)x+Bz—ct] +CC
m=—0

Substitution of (8) into (7) leads to an
eigenvalueproblem for (5, B, o) for the ordinary
differential equations describing functions

g™ oM™ o™ The system of equations governing

(8)

g™ g™ (M hag the form
S(m)(t g(m) _Bg(m)) + Cg(m) _
mow u \%

n=o0
iRe Z(ngm,n)ggm—n) + W\(]m,n)ggm—n) + W‘Evm,n)gg;n—n))
n=—o

Tmg(m) _

n=oo
_ Re Z(Bgm,n)ggm—n) + Bglm,n)gslm—n) + Bgvm,n)ggvm—n))
it, g™ +Dg™ +ipg™ =0, —w<m<ow (9a-c)
where the explicit forms of the operators T, S, C, W,
B are given in Ref.[32]. The boundary conditions

have the form
g™ =g =gM1)=0.

S ™6™ ). ] =0 (10)

m=—o0
Equations (9) with boundary conditions (10) have
nontrivial solutions only for certain combinations of
parameters 8, ¢ and P. The required dispersion
relation has to be determined numerically. For the
purposes of calculations, the problem is posed as an
eigenvalue problem for o and its solution is
determined numerically.

3. Results and Discussion

Calculations have been carried out for the
roughness in the form of sinusoidal wall (wavy wall
model), wall with triangular indentations, wall with
rectangular indentations and wall with “bump” 32

indentations. Unstable disturbances in the form of
streamwise vortices and traveling waves have been
identified in all cases. A critical Reynolds number, a
critical disturbance wavenumber and a critical
roughness wavenumber have been identified for each
roughness amplitude S. Results displayed in Fig.1
show that it is possible to identify the maximum
permissible roughness amplitude that does not induce
any instability for flow conditions of interest
regardless of the roughness shape.

Figur
e 1. Variations of the global critical Reynolds number
Reg,cr describing the traveling-wave instability and
the vortex-like instability for the corrugated channel
as a function of the corrugation amplitude S. The
dash, dash-dot and continuous lines correspond to
the corrugation in the form of rectangular grooves,
triangular  grooves and “sine-bump”  grooves,
respectively. The shaded area corresponds to the flow
conditions that do not produce any instability for the
corrugation geometries subject to this investigation.

4. Summary

The critical curves displayed in Fig. 1 demonstrate
qualitative similarity of flow response for all
corrugation geometries subject to this investigation.
If the corrugation amplitude for a given shape and
distribution (as defined by the corrugation wave
number) and given flow conditions (as defined by the
flow Reynolds number) is sufficiently small, such
corrugation is able to induce only small modifications
in the flow. When the size of the corrugation reaches
critical conditions, it can induce large changes in the
flow through various instability processes. We can
therefore use the onset of any instability as the event
that defines the conditions when the wall ceases to be
hydrodynamically smooth.
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