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ADER High-Order Schemes for Evolutionary PDEs:
a Brief Review

E. F. Toro, C. E. Castro and M. Dumbser
Laboratory of Applied Mathematics
Department of Civil and Environmental Engineering
University of Trento, Italy

Abstract. We give an overview of the ADER approach for constructing numerical schemes of
arbitrary order of accuracy in space and time, for solving evolutionary partial differential equations.

1 Introduction

Most of the current experience with ADER methods relate to non-linear hyperbolic systems of
balance laws

%Q+0:F(Q) +9,G(Q) + 0-H(Q) = 5(Q) , (1)

where Q is the vector of unknowns, F(Q), G(Q), H(Q) are prescribed flux functions and S(Q)
is the vector of source terms (stiff or non-stiff). Recent work extends the ADER methodology to
solve non-linear reaction-diffusion equations, which in one space dimension read

9, Q(x,t) = 0 (o, 1, Q(x,1))0,Q(x, 1)) + S(Q(z, 1)) , (2)

where Q(z,t) is the unknown of the problem, a(z,t,Q(x,t)) is a prescribed diffusion coefficient
and S(z,t,Q(x,t)) is a reaction (source) term.

The ADER approach can be implemented in two major existing frameworks: finite volumes and
discontinuous Galerkin finite elements. In the finite volume framework the ADER approach con-
tains three main steps, namely (i) a non-oscillatory spatial reconstruction using cell averages, (ii)
solution of high-order Riemann problems at the interface to define the numerical flux, and in the
presence of source terms, (iii) evaluation of a volume integral to high accuracy in space and time
to define the numerical source.

The reconstruction problem can be viewed in different ways. The simplest is that in which solutions
do no include large spatial gradients or discontinuities and one can use fized-stencil, or linear,
reconstructions. For problems involving large gradients and shocks one must use non-linear, or
solution adaptive, reconstructions. Here one must make the distinction between structured and
unstructured meshes.

Preliminary results on the ADER approach are found in [29] for linear problems on structured
meshes. Further developments of the approach are reported in [30], [26], [25],[21], [15], [22], [16]

Sect. 2 discuses the high-order Riemann problem, Sect. 3 shows some examples and Sect. 3 draws
some conclusions.

2 The High-Order Riemann Problem

We assume that an appropriate spatial reconstruction method from cell averages is in place. For this
we recommend the recently proposed WENO procedure [6], [7]. Then, at each interface, there will
be a discontinuity surface. To determine the numerical flux we require the solution, as a function
of time, at each integration point. For this we need to solve a high-order Riemann problem. Here
we first state the mathematical problem and then briefly review existing methods to compute the
solution at the interface, as a function of time.
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Figure 1: The classical Riemann problem for a typical 3 x 3 non-linear homogeneous system. Top
frame: initial condition at ¢ = 0 for a single component ¢ of the vector of unknowns Q. Bottom
frame: structure of the similarity solution in the z — t plane.

2.1 The mathematical problem

The high-order Riemann problem (often called the Generalized Riemann Problem, or the Derivative
Riemann Problem) is the initial-value problem

PDEs: 0,Q+ 0, F(Q)=S(Q), z € (—0c0,00), t>0,
Qr(z) if <0, (3)

1C: z,0) =
Q(0) {QR(SC) it z>0.

The partial differential equations (PDEs), with source terms, are assumed to be a general system
of hyperbolic balance laws. The initial condition (IC) consists of two vectors Qr,(z) and Qr(z),
the components of which are assumed to be smooth functions of x, with K continuous non-trivial
spatial derivatives away from zero. We denote by DRPy the case in which the initial conditions
in (3) consist of polynomials of degree at most K. The case DRPy corresponds to the classical
piece-wise constant data Riemann problem, associated with the first-order Godunov scheme [10].
Similarly, case DRP; corresponds to the piece-wise linear data Riemann problem, or the so-called
generalized Riemann problem (GRP), associated with a second-order method of the Godunov type

18], |34, (1], |3], |128].

Fig. 1 depicts the classical Riemann problem DRPy for a typical 3 X 3 homogeneous non-linear
system. The bottom frame of Fig. 1 depicts the structure of the corresponding solution in the x —¢
plane; characteristic curves are straight lines. We note however, that the solution of the Riemann
problem with piece-wise constant data but with source terms does not have a similarity solution
and cannot be represented as in Fig. 1 (bottom frame).

Fig. 2 illustrates the high-order Riemann problem DRPy; the top frame depicts the initial condi-
tion for a single component ¢; data consists of two smooth vectors separated by a discontinuity at
the origin. The bottom frame of Fig. 2 depicts the corresponding structure of the solution in the
x —t plane. Now characteristics are no longer straight lines. Compare Figs. 1 and 2.

For numerical purposes it is sufficient to find the solution of (3) at the origin z = 0 and for ¢ > 0,
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Figure 2: The Derivative Riemann Problem for a typical 3 x 3 non-linear system. Top frame: initial
condition at t = 0 for a single component ¢ of the vector of unknowns Q. Bottom frame: structure
of the solution on the x — ¢ plane.

as a function of time, denoted by Qpr(7) in Fig. 2.

To construct high-order numerical methods of the ADER type of (K + 1)-th order of accuracy in
both space and time it is sufficient to find the solution Qrr(7) of (3). The corresponding intercell
numerical flux results from evaluating the integral

At
Pin=; [ FlQua(r)dr. @

where At is the time step of the scheme.

2.2 olvers for the High-Order Riemann Problem

Here we very briefly review four existing solvers for the high-order Riemann problem.

2.2.1 The Toro-Titarev solver

The method proposed by Toro and Titarev [30], [32] first expresses the solution Qrr(7) at the
interface x = 0 as the power series expansion in time

Tk

K
Qur(r) = Q(0,0,) + Y [37Q(0,04)] 77 - (5)

k=1

The leading term Q(0, 0. ) is found by solving a conventional (non-linear) Riemann problem using
as data the extrapolated values from left and right in (1). The higher-order terms require the

determination of the coefficients 8,@Q(O, 04). This part includes the following steps: (a) use the

Cauchy-Kowalewski procedure to express all time derivatives 8§k)Q(0,0+) as functions G®*) of
spatial derivatives, namely

Q. = 6® (aPQ.00q,....oMq) (6)
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(b) solve classical linear Riemann problems for the spatial derivatives 83(31)Q to determined the ar-
guments of G*) which then give the coefficients 8§k)Q(O, 04). This solution technique for DRPy
reduces the problem to that of solving K + 1 classical homogeneous Riemann problems, one (gen-
erally non-linear) Riemann problem to compute the leading term, and K linearized Riemann prob-
lems to determine the higher order terms. See [7] for details on a subroutine for performing the
Cauchy-Kowalewski procedure for the three-dimensional Euler equations.

2.2.2 The Harten-Engquist-Osher-Chakravarthy (HEOC) solver

The Harten-Engquist-Osher-Chakravarthy (HEOC) solver results from a re-interpretation of the
high-order method of [11], see [2] for details. This method first evolves in time the initial conditions
by developing power series expansions in time on each side of the interface, namely

QL(1) = QL(0 )+Zk 1 [ t (0—70)]
) ) (7)
Qr(1) = Qr(04) + i, { ; Q(0+70)} vl

The Cauchy-Kowalewski procedure then allows the use of the PDEs in (3) to express all time
derivatives in (7) as functions of space derivatives and of the source terms, as in (6). The spatial
derivatives are calculated as the limiting values from left and right, at ¢ = 0, of the spatial derivatives

of the initial conditions, denoted as Q(k)( -), Qg)(O,). Then

Q0,0 = a¥ (Q0).Q0).....Q (0))

Q(04,0) = G® (Q(04),Q(04)....,Q (04))

are determined and thus the expansions (7) are determined at any time ¢ = 7.

Finally one defines the solution of the DRP (3) at the interface z = 0, at time ¢t = 7 as QLr(7) =
D(7,0), where now D(7,z/(t — 7)) is the similarity solution of the classical, homogeneous Riemann
problem

PDEs: 0,Q+0,F(Q)=0
Qu(r) if x<0, (9)
Q(z,0) =14 . '
Qgr(r) if x>0.
Note that here D(7,2/(t — 7)) depends on the parameter 7.

ICs:

Fig. 3 gives an interpretation of the HEOC solution method for the DRP (3). At time ¢t = 0 one
performs a series expansion in time on the limiting values of the data left and right of the interface
(circles). Via the Cauchy-Kowalewski method one evolves the data in time on each side of the
interface, to produce time-evolved states Qr(7) and Qr(7), at any chosen time ¢ = 7 (rhombuses
in Fig. 3). These (constant) states at ¢ = 7 form the initial conditions for a classical Riemann
problem, as depicted on the top part of Fig. 3 by the self-similar wave pattern. The sought solution
is that given by (9), which is constant along the t-axis associated with the self-similar wave pattern.
As the method applies to any time 7 one has a time-dependent solution Qpr(7) at the interface.

We remark that, just as in the Toro-Titarev solver [30], the HEOC solution method applies to
in-homogeneous non-linear conservation balance laws. The influence of the source term enters via
the Cauchy-Kowalewski method, in which the source terms enter the coefficients in (7), (8). But
note that at no point in the method it becomes necessary to solve Riemann problems, explicitly
accounting for the influence of the source terms.
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Figure 3: Hlustration of the HEOC Derivative Riemann Problem solver. The limiting values of
the initial data from left and right (circles) are time evolved separately to any time 7 (rhombuses).
The desired solution results from solving the classical Riemann problem with these evolved states
as data.

2.2.3 The Castro-Toro solver

The sought solution at the interface is again expressed as in (5), with the leading term computed as
in the Toro-Titarev solver. To compute the higher order terms we solve time-derivative Riemann
problems, that is, for any index £ > 0 we compute 8t(k)Q(0,,O) and 8,5(k)Q(O+,0) as in (8). To
find 8§k)Q(0,0+) right at the interface one solves the classical linearized homogeneous Riemann
problem

PDEs: & <8t(k)Q(a:, t)) + AP 9, <a§k>Q(x, t)> —o0,

o™ Q(0_,0) if z<0, (10)

ICs: oM Q(z,0) = "
9,"Q(0,,0) if z>0.

The similarity solution is denoted by T*)(z:/t) and the sought value is

aMQ(0,04) = T®(0) . (11)

2.2.4 The Dumbser-Enaux-Toro (DET) solver

An alternative solver for the high-order Riemann problem has recently been proposed by Dumbser
et al. [8]. This is an entirely numerical solver. Here, instead of using the Cauchy-Kowaleski method
to evolve the data (3), as done in the HEOC method, we evolve such data numerically. The basic
concept of this approach is to construct a weak local formulation of the PDEs in space and time
using a new local space-time discontinuous Galerkin approach. This results in small systems of
nonlinear algebraic equations to solve, but no analytic differentiation of the governing equations
is necessary. Then the interaction of the evolved data at the desired time ¢ = 7 requires the
solution of the classical Riemann problem (3), as as for the HEOC solver. The advantages of this
variant are twofold (i) one avoids the cumbersome Cauchy-Kowalewski procedure, resulting also in
great generality; (ii) one can treat stiff source terms properly, reconciling the usually incompatible
concepts of high accuracy and stiffness.
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Figure 4: Sequence of regular tetrahedral meshes used for the three-dimensional convergence stud-

ies.

3 Sample Application

The purpose of this application is to address three main issues regarding high-order methods. The

first is to do with accuracy; it is in our view mandatory to perform convergence rate studies to verify

if the methods being developed or applied actually attain the claimed high order of accuracy in both

space and time, and for realistic situations. The second issue refers to the ability of such high-order
methods to perform satisfactorily for flows containing discontinuities, for which the concept of high
accuracy does not apply. Thirdly, such methods must me applicable to solve problems in complex

geometries, which usually must be discretized with unstructured meshes.

3.1 Convergence rate studies on unstructured meshes in 3D

In order to study the convergence behaviour of our method for the three dimensional compressible
Euler equations we create a smooth unsteady test case with exact reference solution by prescribing

a vector U, (%, t) which when substituted into the system of the Euler equations produces a modified
Euler system with a source term. Note that for the test to be useful the method must be also capable

of computing solutions to inhomogeneous problems, that is with a non-vanishing right-hand side,

to the required order of accuracy. For details of the computational setup see [7]. Therefore, we now

[—0.5;0.5]°

with six periodic boundary conditions and the following exact solution to the problem that serves

also as initial condition:

solve the three-dimensional Euler equations with source terms in the domain Q3p

(12)

1.0 and

The constants are set to be Ag
= 2m. In this review paper we only present the convergence

trivial.

We note that the solution is simple but non

= w

with ky = ky = k. =

kﬁb’ k;ya kz)

(

rates obtained with our ADER finite volume schemes on tetrahedral meshes for third and sixth

k=

a more detailed study can be found in [7]. The errors presented in Table 1 are

those for the velocity in z-direction, i.e. for the primitive variable w. Similar results are obtained

for all the other flow quantities.

order of accuracy,
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Table 1: Numerical convergence results obtained with ADER-FV schemes of third and sixth order
in space and time for the three-dimensional test case after t = 0.25.

Ng L™ L L? Or~ Op1 Or2 tepuls]
ADER-FV 03 (M=2)
8  2.3265E-02 8.7869E-03 1.0185E-02 4

16 3.5522E-03 1.0640E-03 1.2935E-03 2.8 29 29 bH4
24 9.9836E-04 3.1449E-04 3.8055E-04 3.2 3.0 3.0 260
32 4.1918E-04 1.3316E-04 1.6143E-04 3.0 3.0 3.0 820
4  3.1815E-02 1.1310E-02 1.3915E-02 1

12 2.1289E-04 1.0618E-05 1.6858E-05 4.6 6.4 5.8 143
16 3.1281E-05 1.6605E-06 2.3375E-06 6.7 64 6.9 467
20  7.4469E-06 4.1553E-07 6.1345E-07 64 6.2 6.0 1153
24 2.2733E-06 1.3416E-07 1.9236E-07 6.5 6.2 6.4 2304

3.2 Shock wave reflection problem

Here we illustrate the potential of the ADER methods to solve realistic problems to high accuracy
on complicated domains using unstructured meshes. We consider the reflection of a plane shock
wave from a solid body of triangular shape. The computational domain is [—0.65, 0.5] x [—0.5,0.5],
with a triangular solid body with vertexes v; = (—0.2,0), v2 = (0.1, —1/6) and v3 = (0.1,1/6). The
incident shock of shock Mach number Ms = 1.3 is placed at x = —0.55, at ¢ = 0. Initial conditions
ahead of the shock are p = 1.225(kg/m3), p = 1.01325 x 10°(Pa) and zero velocity. Conditions
behind the shock are obtained from the Rankine-Hugoniot conditions. The mesh consists of 256580
triangles and for the computations we use the Toro-Castro solver and a CFL coefficient C,f; = 0.45.

A computational result at time ¢ = 2.20 x 1073 is shown in Fig. 5. The main physical features of
the flow look reasonable, as compared with analogous problems for which there are experimental
results, see [19], for example.

4 Concluding Remarks

A succinct review of the ADER approach has been presented, along with some illustrative examples
and a list of relevant references.

In discussing high-order methods there is a crucial question to answer. Are these methods justified
7 Or put in a different way, given an error, what is more convenient from the computational
point of view, to solve the equations using a (simple) low-order method on a fine mesh, or use
a (sophisticated) high-order method on a coarse mesh 7 Our experience so far shows that the
latter option is distinctively more convenient. That is, high-order methods are completely justified,
specially if accurate (small errors) are required.
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Figure 5: Shock wave reflection problem. Schlieren image for density at time ¢t = 2.20 x 1073, Two
vortexes evolve behind the triangle. The expansion waves interact with the shock and with the

boundaries.
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