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Numerical Simulation of Blade-Vortex Interactions Using the FDLBM 
by 
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ABSTRACT 
Parallel blade-vortex interactions have been calculated using the finite difference lattice Boltzmann method of the compressible Euler 
model. The perturbed discrete Boltzmann equation based on a prescribed vortex method has been proposed in order to prevent a vortex
from diffusing by numerical dissipation. The discretization of the governing equation is based on a second order accurate explicit Runge-
Kutta time integration and a fifth order accurate upwind scheme which includes additional terms to capture shock waves clearly. Transonic 
flow around an airfoil without vortexes has been simulated to validate the perturbed discrete Boltzmann equation system. A surface 
pressure distribution and pressure contour lines around the airfoil have been compared with other numerical data, and good agreements 
have been obtained. As a simple model of parallel blade-vortex interaction, two-dimensional blade-vortex interaction has been calculated 
using the proposed numerical method. An instantaneous pressure coefficient, a time history of a lift coefficient and patterns of acoustic 
waves have been compared with other numerical results, and agreed with them very well. Mechanism of noise generation has been also
captured from numerical results. Three-dimensional calculations of parallel blade-vortex interaction have been performed using the present 
numerical procedure. Time variations of surface pressure distributions have been compared with Euler calculation and experimental data, 
and good agreements have been obtained. 
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Fig. 1 Comparison of surface pressure distributions 

(a) Present calculation 

(b) Euler calculation, Pulliam(10)

Fig. 2 Comparison of pressure contour lines 

301
10

(5)
00

8.0M 25.10 8.0M
(9),(10)

Figure 1 00
Fig. 2 25.10

JAXA-SP-07-01640

This document is provided by JAXA.



(9),(10)

BVI
Parallel BVI

Fig. 3 BVI
NACA0012 Scully

(1)-(3) M=0.8
a=0.05 =-0.2 YV=-0.26

BVI (2)

301 201

Fig. 3 Parameters of two-dimensional BVI 

Fig. 4 Lift variation during parallel BVI 

Fig. 5 Instantaneous surface pressure distribution (XV=1.0)

Figure 4 5 x Xv
1.0
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(a) Xv=-0.5 

(b) Xv=0.0

(c) Xv=0.5 
Fig. 6 Instantaneous surface pressure distribution 
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Figure 6 x -0.5 0.0,  0.5

Figure 7
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Fig. 7 Patterns of parallel BVI noises (XV=3.0) 

(a) XV=-0.4

(b) XV=0.2 

(c) XV=0.7

(d) XV=1.2 
Fig. 8 Parallel BVI noise generation 
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(a) XV=-5.0

(b) XV=0.2 
Fig. 9 Local Mach number distributions 
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(a) Top view 

(b) Side View 
Fig. 10 Schematic representations of 3D parallel BVI 
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Fig. 11 Surface pressure distributions during parallel BVI 
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