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ABSTRACT 
In this paper, a multi-objective design exploration for a three-element airfoil which consists of a slat, main wing, and flap was carried out 
by paying attention to the span wise flow effect. Reynolds Averaged Navier-Stokes Solver (RANS) was used for the evaluation during the 
design process. To reduce computational time, “2.5-dimensional span wise calculation” was used. In this calculation, two same planes were 
arranged along span wise direction. They were diagonally arranged to represent the sweep angle and periodic boundary condition was used 
for the infinite span wise calculation. Kriging based Multi-Objective Genetic Algorithm (MOGA) and Analysis of Variance (ANOVA)
were used for the design exploration. The objective functions were defined as the maximization of lift coefficient at landing and near stall 
conditions simultaneously. In this study, 54 sample points were evaluated for the construction of the Kriging model. Based on present 
evaluation method, the span wise flow was observed and it has an influence on the separation on the flap. Through the design exploration 
process, the differences of the designed results between 2.5D and 2D evaluation were observed by visualizing the design space. 
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Fig. 1 Flowfield on the wing extracted the high-lift system 
(Ref. 7, Mach number is 1.75, Reynolds number is 2.1 106,
and angle of attack is 10 degree.) and its cross section. 
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Fig. 2 Illustration of infinitely swept wing for 2.5D 
calculation using periodic boundary condition in the 
consideration of the span wise flow. 
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Fig. 3 Computational grid: (a) overview, (b) top view. 
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Fig. 4 Design parameters. 
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Fig. 5 Procedure of EGO for multi-objective problem. 
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upper surface       lower surface 
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Fig. 6 Flow field obtained by 2.5D evaluation result. (a) 
Surface flow on the wing, (b) Close up view of the flap. Oil 
flow and Mach number contour. 

Fig. 7 Comparison of the effect of the flap deflection angle 
between 2D and 2.5D calculation. 

(a)

(b)
Fig. 8 Residual and CL history in 2.5 dimensional 

computation: (a)residual, (b) CL.

Fig. 9 Solution space obtained by the present design. 
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Fig. 10Comparison of element’s setting  

(a)
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(c)
Fig. 11 Comparison of flowfield around flap. Color contour is 
Mach number. (a)Baseline setting, (b)Design1, and (c)Design2. 
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Fig. 12 Comparison of CL(l)8 plots against flap-gapflap
predicted by Kriging model between results base on 2D and 
2.5D evaluation 

Fig. 13 CL8 plots against O/Lflap-gapflap predicted by Kriging 
model.
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(b)
Fig. 14 Comparison of CL(l)20 plots against O/Lslat-gapslat
predicted by Kriging model between results base on 2D and 
2.5D evaluation. 
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Fig. 15 Comparison of the effect of the design variables about 
CL(l)8 between results base on 2D and 2.5D evaluation 
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Fig. 16 Comparison of the effect of the design variables about 
CL(l)20 between results base on 2D and 2.5D evaluation 
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