
Numerical Calculation of Flow around the Unsteady Flapping Wing 
by 

Yoshinobu Inada and Takashi Aoyama JAXA
Hikaru Aono (Graduate School of Chiba University) and Hao Liu (Chiba University) 

ABSTRACT 
Aerodynamics around unsteady flapping wings is analyzed by using CFD techniques. Two types of flapping wing are 

modeled and analyzed referring to the hovering motion of hawkmoth and honeybee. Multi-block technique is used to make the 
suitable calculation grids for wing and body, and the grid-overset technique is used for the interpolation of physical values 
between those grids. CFD results show several vortices are generated at the leading edge, tip, and the trailing edge of flapping
wings which comprise the complex flow fields around the wings and a body. The analysis also clarified the leading edge vortex 
significantly contributes to the generation of lift. Subsequent acoustic analysis is conducted referring to the CFD results to 
simulate flapping sound of honeybee. Directivity of sound propagation is recognized showing strong sound propagation in the 
front direction. Consequently, many features of complex flow around the flapping wing and its sound generation are clarified 
both qualitatively and quantitatively by using CFD and acoustic techniques.  
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 Fig. 2 Definition of wing motion 

Fig. 3 Wing motion of hawkmoth and honeybee 
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Fig.4a Pressure distribution on upper surface of hawkmoth 
wing during downstroke. 

Fig.4b Pressure distribution on upper surface of honeybee 
wing during downstroke. 

Table 1 Wing size and motion parameters of hawkmoth 
and honeybee 

Name Span length, 
R (mm) 

Chord length, 
cm (mm) Re

Hawkmoth 50.0 18.30 6300
Honeybee 9.7 2.39 1123

Name Body angle 
(deg)

Stroke plane 
angle (deg) K

Hawkmoth 39.8 15.0 0.298
Honeybee 50.0 0.0 0.244

Re: Reynolds number (=cmUref/  ), K: reduced 
frequency (= fcm/Uref ), Uref: Mean wing tip speed, f:
wing beating frequency, : kinematic viscosity of air 
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                 (a) 
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Fig.5 Iso-vorticity surface around flapping wings at 
mid-downstroke: (a) hawkmoth, (b) honeybee. 
(LEV: leading edge vortex, WTV: wing tip vortex, TEV: 
trailing edge vortex, BP: break-down position of LEV)

(a) Hawkmoth 

(b) Honeybee 

Fig.6 Time course of lift coefficient during one flapping 
cycle: (a) hawkmoth, (b) honeybee. 

TEV

downstroke upstroke supinationpronation pronation 

downstroke upstroke supinationpronation pronation 

140 JAXA-SP-07-016

This document is provided by JAXA.



FW-H
CFD

FW-H
Fig.7

Fig.8

10 Fig.7
(sound pressure)

Flapping
Elevation Feathering

Fig.7

Fig.8

CFD

(Leading Edge Vortex: LEV)
(Wing Tip Vortex: WTV)

(Trailing Edge Vortex: TEV)

LEV

          

= 0

= -30

= -60

= 30

= 60

= 0

= -30

= -60

= 30

= 60

(a)

60
30

0
-30
-60

Time

S
ou

nd
P

re
ss

ur
e

(P
a)

0 0.001 0.002 0.003 0.004 0.005-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3 60
30

0
-30
-60

Time

S
ou

nd
P

re
ss

ur
e

(P
a)

0 0.001 0.002 0.003 0.004 0.005-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

(b)
Fig.7 Time course of sound pressure observed at different 
elevation angles of observer point in the rear of honeybee: 
(a) observer points, (b) sound pressure at each observer 
point during one flapping cycle. 
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(b)
Fig.8 Time course of sound pressure observed at different 
bearing angles of observer point in honeybee: (a) observer 
points, (b) sound pressure at each observer point during 
one flapping cycle. 
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