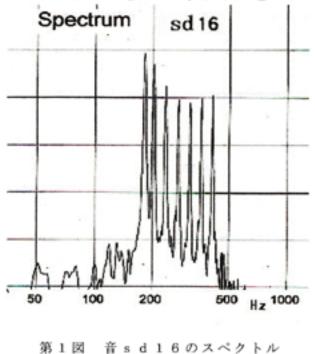
乱雑音による2次元後流の乱雑化

佐藤 浩、斉藤博之助、中村 宏(ながれ研究集団)

The randomization of 2-dimensional wake by random noise

H Sato ,H.Saito and H,Nakamura

Institute of Flow Research

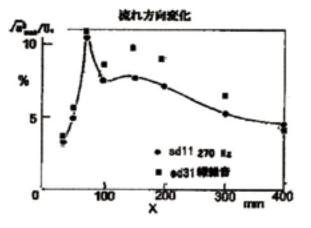

ABSTRACT

An experiment was carried out on the randomization process of a wake excited by random sound..The randomization is accelerated by random noise as well as by sinusoidal sound commposed of 7 distinct frequencies. The elementary-wave analysis method was used for clarifying the details of randomization mechanism.. The so-called random number based on the analysis is a good indication of the progress of randomization.

Key Words: two-dimennsional wake, ranndomization process

はしがき

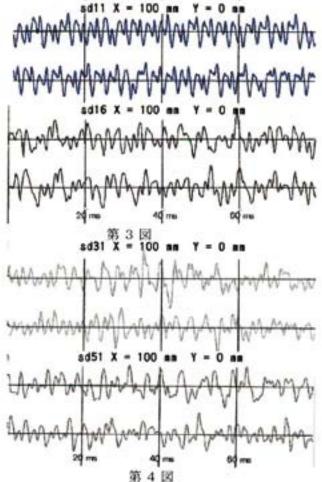
正弦波の音を使っての乱雑化の実験につ いては過去2回に報告しました。今回は主 として乱雑な音を使っての実験結果を報告 します。使われた風洞は測定部断面が25 cm×25cmのもので、流れの中に巾が 4mmの金網を置いて、2次元の後流を作 りました。音を送り込むために、測定部の 横にラウドスピーカーを置きました。測定 は単線の熱線風速計てす。実験風速はすべ


て4m/sで、金網の巾を使って作られた レイノルズ数はほぼ1000です。

 音の種類 実験に使った音はほぼ4種類です。

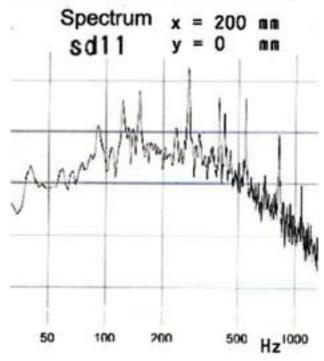
s d 1 1 は純粋な 2 7 0 H z の正弦波で す。 s d 1 6 は 7 つの正弦波を重ねてもの で、乱雑な音に似ています。 s d 3 1 は 人工的に作られた 2 7 0 H z を中心とした 乱雑音です。 s d 5 1 は実際に乱流後流の 信号を音にしたものです。

流れ場

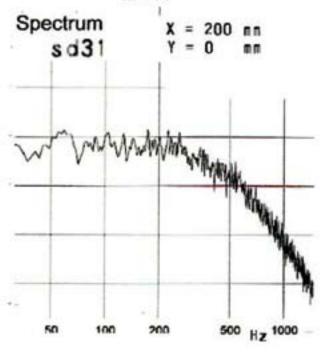

熱線で測られた速度変動のx方向への変

化を第2図に示します。x=75mあたり までは線型成長で、烈しく成長します。そ の後では減衰して、非線型干渉が始まり、 乱雑化が進行します。x=400mmあた りで乱雑化は完成します。他の音でもこの 傾向はあまり変わりません。 3.変動波形

速度変動の波形を第3図と第4図に示し ました。

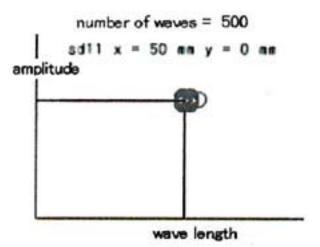

x = 100mmでの4種類の比較です。 sd11では波形は殆ど周期的で、乱雑さ はありません。その他の音では周期性と乱 雑さとが同居してます。乱雑な音で乱雑化 が加速されていることが分かります。 4、スペクトル

第5図はsd11でのx=200mmで のスペクトルです。まだ沢山の線スペクト ルが残っています。それに比べてsd31 の第6図では、ほぼ連続スペクトルで、乱 雑化がすでに終了したことを物語っていま す。乱雑な音の効果がはっきりと分かりま す。sd51の場合も似たような結果を示 しています。


5.素波分析

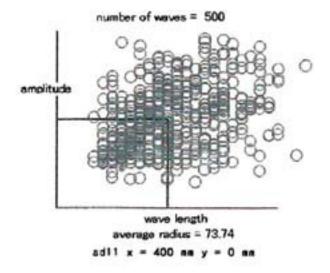
速度変動の性質を何よりも雄弁に物語る

のは波形です。しかし波形を眺めているだ けでははっきりしたことは言えません。そ こで我々が考えたのが素波分析の手法で



第6図

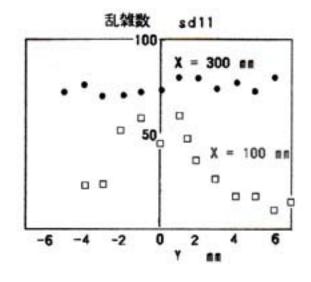
す。波形を一つずつ追いかけて、波長と振幅とを測定します。今の実験では400か ら500ほどの波形をパソコンで処理しま す。そして波長と振幅をそれぞれ平均し、



average radius = 4.23

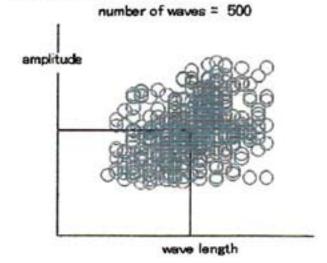
第7図

平均値でデイタを割って、正規化します。 その振幅と波形を両方の軸の上に小さな円 で表します。また(1,1)の点から各点 までの距離を割り、それを平均し、100 倍してその値を乱雑数と呼ぶことにしま す。


第7図は一つの例です。sd11とい う正弦波の音を送ると波形はそのままに維持されなす。その結果、小円はほぼ一点に 集中しています。この重なりは500の小 円の集まりです。乱雑化はこの重なった小

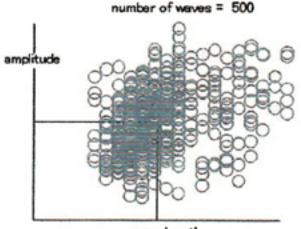
第8図

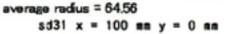
円の拡散という形で進行します。


その一例が第8図です。小円が上下、左 右に散らばっています。上下の散らばりは いわゆる振幅変調に相当し、左右のちらば りは、波長変調です。この図を見ると両方

第9図

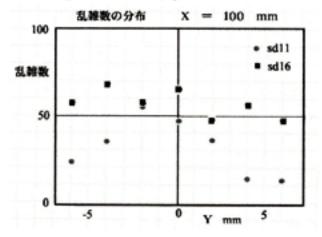
の変調が同じように行われた、混合変調の 形になっています。また平均半径は80近 くになり、このxではほぼ乱雑化が終了し たことを物語っています。


この乱雑数がどのように分布するかの一 例が第9回に示されています。これを見る とxが小さいとき(100mm)には中心 線の付近で大きく、端の方で小さくなって います。しかし大きなx(300mm)で は分布が平坦になって、場所に無関係に乱 雑化が進行しています。


average radius = 48.98sd31 x = 50 mm y = 0 mm

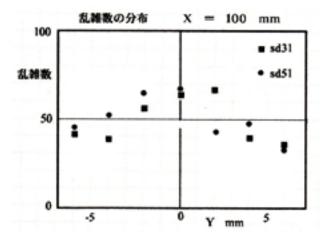
第10図

第10図は乱雑音のsd31のもので す。第7図と同じxですが、音が乱雑なの で、小円の分布が可成り広がっていること が窺えます。乱雑数は50近くになってい ます。これが乱雑音による乱雑化の初期条 件です。この速度変動はそのまま成長して 乱流になるのではなく、線型領域の選択的 成長で変形します。

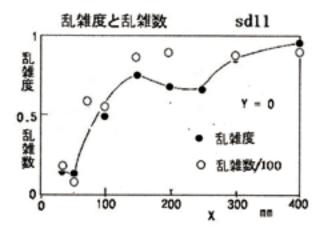


wave length

第11図


x = 100mmでは散在図は第11図の ようにやや広がり、乱雑数は60を超えて、 乱流に近づいています。

第12図


乱雑数の横方向の分布を見ましょう。 第12図は正弦波音の時です。単音のsd 11では中心で大きく、横の方で小さくな っていますが、7つの複音のsd16では ほぼ一定の分布になって、乱流に近づいて いることが読み取れます。

乱雑音の場合が第13図です。 s d 31

第13図

と s d 5 1 との間には殆ど差がありませ ん。これは双方とも乱流に近づいているこ とをあらわしています。

第14図

最後に前の報告で定義された乱雑度と、こ こで使われた乱雑数とを比較してみましょ う。第14図はそれを表しています。乱雑度 は秩序からの距離として表現されますから、 乱雑音の時には使えません。単音のsd11 の時だけに使えます。流れ方向への変化を示 した第14図では乱雑度と乱雑数は平行に 変化しているように見えます。乱雑数には幾 らになれば乱流と言えるかという限界値が ありませんが、図を見ると、乱雑数が80あ たりで乱雑度が1に近づく、即ち乱流が出来 上がっていることが窺えます

乱雑化は後流にだけ起こるものではあり ません。別の例として身体の中の癌の成長を 考えると、自覚症状のない線形成長から、転 移を伴う乱雑化にまで変わります。