大規模せん断乱流中に置かれた連続点源からの熱拡散の特性

宮田仁奈(豊橋技科大院)、蒔田秀治(豊橋技科大)

Characteristics of Thermal Diffusion in a Thermal Plume from a Point Source in Large-Scale Shear Turbulence Fields

N. Miyata* and H. Makita*

* Dept. of Mech. Eng., Toyohashi University of Technology

ABSTRACT

Thermal diffusion from a point source was experimentally investigated in actively agitated homogeneous and uniform-shear flows with velocity gradients of $\partial U/\partial y=0$, 2.6, 6.3 s⁻¹ and turbulent Reynolds numbers of $R_{\lambda}=36\sim490$. Simultaneous measurement was conducted on temperature and velocity fluctuations. Short-time diffusion was realized in the excited turbulence fields of $R_{\lambda}=310\sim410$. Then, the centroid of the plume meandered around the center-line irrespective of the velocity gradient. The lateral integral scale, L_{vx} , strongly affected the streamwise growth of the time-averaged plume width. The streamwise decay rate of intermittency factor at the point of the peak temperature, $I_{\theta P}$, increased with R_{λ} .

> Key Words: Thermal Diffusion, Plume, Meandering Motion, Shear Flow, Concentration Fluctuation, Flow Control

1. 緒論

本研究室では、高 R_{λ} 実現可能な大気乱流風洞¹⁰を開発 し、それを用いた一様流中の粒子拡散実験²⁰および熱拡 散実験³⁰においてプルームの蛇行現象を風洞中に再現す ることに初めて成功した。実際の大気の流れは、地表近 くで鉛直方向に速度勾配を持つ非定常な複雑乱流場を形 成している。本実験は熱拡散に対する速度せん断の影響 を解明するため、大規模一様せん断乱流中で熱拡散実験 を試み、大規模乱流渦とプルームの蛇行運動との相関関 係を定量的に決定することを目的としている。

2. 実験装置および条件

大気乱流風洞測定胴上流に、速度成層形成部と乱流発 生部から構成されるせん断乱流発生装置 Dを設置した(図 1)。速度成層形成部は、鉛直方向に分割された流路に開 孔率の異なる多孔板を挿入し、速度せん断を形成した。 乱流発生部の格子状に組まれた回転軸(格子間隔: M=35mm)に取付けた攪拌翼の動作モード(平均迎角: α°、最大攪拌角:±β°)を制御して、各種の乱流場を形 成できる。さらに、測定胴天井壁面に境界層制御装置 Φ を設置し、壁面近傍の気流の加速、吸込み制御を行うこ とにより、天井面に発達する境界層の影響を低減した。

格子乱流場($\beta = \pm 0^{\circ}$)と、励起乱流場($\beta = \pm 20 \sim 180^{\circ}$) で、それぞれ平均速度勾配 ∂ U/ ∂ y=0.0, 2.6, 6.3 s¹の一 様流および一様せん断乱流場(乱流レイノルズ数 R₂=36 ~490; Case1~6)を形成するため、せん断乱流発生装置 の多孔板の開孔率および攪拌翼の α 、 β を調整した(表 1)。

表1 実験条件および乱流特性量 (x/d=0)

Case	β [°]	∂U/∂y [1/s]	u'/U [%]	v'/U [%]	L _{ux} [mm]	L _{vx} [mm]	\mathbf{R}_{λ} [-]
Case1		0.0	0.98	0.92	23	11	36
Case2	0	2.8	1.45	1.26	26	11	50
Case3		6.1	3.47	2.87	28	13	90
Case4	± 20	0.0	8.9	5.7	584	47	310
Case 5	\sim	2.8	11.7	7.0	957	62	430
Case6	180	6.1	15.5	9.8	950	78	490

いずれも断面中心の平均流速 U_c=5.0m/s で、断面内において良好な一様性を保っている。

主流と平行に設置したパイプに送られた気流を先端の ヒーター(内径:d=5.4mm、供給電力:6~7W)で加熱し て放出した。パイプ先端は乱流場が十分に発達した乱流 格子 90M 下流に位置し、そこを座標軸の原点とし、流れ、 鉛直方向を x, y 軸とした。

I-X型冷熱二線式温度流速計³(S/N比:60dB)を用いて、 加熱気流放出時の温度変動・速度変動2成分の同時分離 計測を行った。

3. 実験結果

図 2 に温度場の確率密度関数を示す。縦軸は平均温度 から室温を差引いた平相対度数から算出したもので、一 様流の Case1,4 ではほぼ正規分布に従い、本研究の加熱 気流は平均場には浮力の影響が見られない。しかし、せ ん断乱流中では、格子・励起乱流場とも速度勾配の大き さに比例して、平均温度分布に非対称性が現れ、ピーク 位置も鉛直下向きへ移行し、速度せん断の影響が見られ る。格子乱流場の Case1,2,3 では、x/d=200まで明確な ピークが確認できるのに対し、励起乱流場の Case4,5,6 では鉛直方向に大きく広がる。このため、励起乱流場で は、x/d=200における拡散係数 K が K=149~405 cm²/s と非常に大きい拡散能を有している。

図2の平均温度分布の標準偏差で与えられる拡散幅 σ と放出パイプ内径d(初期拡散幅)の流れ方向変化を図3に示す。格子乱流場では、乱流場の横方向インテグラルスケール L_{vx}とdの比が L_{vx}/d=2.0~2.4 であるため、乱流 渦がプルームを蛇行させず、 $\sigma \propto x^{10}$ の長時間拡散場となる。一方、励起乱流場では L_{vx}/d=8.7~14.4 に達し、大規模乱流渦によりプルームの蛇行運動が活発となり、 $\sigma \propto x$ の短時間拡散場が実現されている。しかし、 $\sigma \approx L_{vx}$ に達すると、それ以降は大規模渦もプルームに内包されるようになるため、長時間拡散場へ移行すると考えられ、大規模渦のスケールが拡散場の平均的広がりを決定する重要なパラメータであることが分かる。

ここでは図示しないが、温度変動の間欠率Iaの鉛直方 向分布は、格子乱流場では台形状の分布となり、平均温 度分布同様、ピーク位置が下向きとなるのに対し、励起 乱流場では x/d=40 から中心軸でほぼ対称なガウス状の 分布を形成している。これは、プルームは速度勾配によ らず、ほぼ真っ直ぐに流下するが、乱流場の大規模渦ス ケールLux,Lvxが上方向に向かって増大し、同時に拡散能 も大きくなるため、平均温度分布のピーク位置が下方向 へ移動すると考えられる。図4に示す平均温度のピーク 位置における間欠率 I_{ep}の流れ方向変化は、格子乱流場 ではほぼ I_{ep}≒1.0 であるのに対し、R₂が大きい Case6 では急速に減少し、x/d=200 において I_{ap}=0.25 まで減少 している。励起乱流場では大規模渦によるプルームの蛇 行運動が行われることに加え、図4に示すように、Lux, Lvx が流れ方向にも増加するため、下流ほどプルームの蛇行 運動の振幅が大きくなったことが影響している。

4. 結論

(1)励起乱流場でプルームの蛇行運動が支配的な短時間 拡散場が実現された。(2)プルームの鉛直方向の広がりが、 横方向インテグラルスケールと同程度となると、長時間 拡散へと移行する。(3)速度せん断によらず、プルームの 蛇行運動の重心は直進するが、中心軸より高速側でイン テグラルスケール Lux, Lvx が大きくなるため、平均温度の 鉛直方向分布が低速側へひずみ、速度せん断の影響が現 れる。(4)平均温度の鉛直方向分布のピーク位置における 間欠率 I_{0P} の流れ方向変化は、乱流レイノルズ数 R_{λ} に強 く依存し、 R_{λ} が大きいほど減衰率が大きい。(5)乱流場の

統計量がスカラー場の拡散に強い影響を与える。

日本学術振興会研究費補助金基盤研究(c)No.17560145 の援助を受けた、ここに謝意を表する。

参考文献

1) H. Makita: Fluid Dyna. Res., **8**, (1991), pp.53-64. 2) 蒔田, 佐々, 飯田, 茂山: 機論 B, **56**, (1990), pp. 388-395.

3) 蒔田, 宮田, 関下: 機論講, **05-32**, (2005-10), pp. 250. 4) 蒔田, 谷口, 関下: 第 4 回日本流体力学会中部支部講 演論文集, (2006-11), pp. 21-22.

5) 蒔田, 森, 澤田: 機論 B, 56, (1992), pp. 90-97.