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ABSTRACT
The effect of small perturbations on steady nonlinear transonic 

small disturbance flow-fields, in the context of two-dimensional flows 
governed by the general-frequency transonic small disturbance 
equation with nonreflecting far-field boundary conditions, is 
investigated. This paper presents a time-linearised time-domain 
solution method that includes effects due to the shock-generated 
entropy and vorticity and shock wave motions. The solution procedure 
correctly accounts for the small-amplitude shock wave motion due to
small unsteady changes in the aerofoil boundary conditions, and 
correctly models a flow-field with embedded strong shock waves. Steady 
and first harmonic pressure distributions for the NACA 0003 aerofoil 
with a harmonically oscillating flap, and NACA 0012 aerofoil
undergoing a sinusoidal pitching oscillation, are predicted and 
compared with the Euler results. 

1.0  INTRODUCTION 
Transonic flows are characterised by the presence of adjacent 

regions of subsonic and supersonic flow, usually accompanied by 
shock waves. In the past, there has been much activity in the 
development of computational methods for the analysis of 
time-linearised transonic flows. This activity was motivated by the 
need to supplement expensive and time consuming wind tunnel tests 
with an affordable and reliable alternative.

This paper presents a simple and fast scheme for computing 
time-linearised solutions to the general frequency transonic small 
disturbance (TSD) equation subject to nonreflecting far-field
boundary conditions. The first author presented the time-linearised 
theory in Ly and Gear(1,2), and has shown the importance of proper 
modeling of shock wave motion if one wants to obtain accurate 
time-linearised transonic solutions. The purpose of this paper is to
present the modifications that have been recently incorporated into the 
time-linearised theory and existing potential code,  

TranFlow2D, of Ly and Gear(2) to enhance its capabilities to model  

flowfields with embedded strong shock waves, so that Euler-like 
solutions can be obtained. The resulting time-linearised theory will  
be referred to as the modified time-linearised TSD (MTL-TSD) 
theory throughout this paper.

First modification is the inclusion of the shock-generated entropy 
and vorticity effects (Hafez and Lovell(3), Whitlow et al.(4), Batina(5) and 
Dang and Chen(6)) to enhance the capability of TranFlow2D in
simulating flowfields with embedded strong shock waves. The second 
modification involves a procedure, which we have referred to as the 
shock jump correction procedure (Ly and Gear(2)), that allows one to 
include the shock wave motion effects by correcting the solution values 
behind the shock wave, such that the time-linearised form of the shock 
jump condition will be satisfied.  

We treat the unsteady flow as a small perturbation about a steady 
(mean) state. This results in a coupled flow problem for the steady 
and first-order unsteady reduced velocity potentials. The steady flow 
problem is governed by the usual nonlinear steady TSD equation (Ly 
and Gear(2), Traci et al.(7,8), Fung et al.(12) and Ly et al.(13)) and
shock-generated entropy and vorticity effects are incorporated. The 
governing equation for the first-order unsteady reduced potential is 
linear, locally of mixed elliptic/hyperbolic type depending upon the 
nature of the steady-state solution, and solved in conjunction with the 
shock jump correction procedure. This will effectively correct the 
solution values behind the shock wave, which in turn introduces the 
shock wave motion effects into the time-linearised solution. In the 
closure, the validity of the present theory is verified by 
comparing the predicted results for the NACA 0003 aerofoil with a 
harmonically oscillating flap, and NACA 0012 aerofoil undergoing a 
sinusoidal pitching oscillation about quarter chord point, with those 
obtained from the NAL’s Euler code. The comparisons show that the 
MTL-TSD theory has the capabilities to capture the flow 
characteristics shown in the Euler results. 

2.0 GENERAL-FREQUENCY TSD EQUATION AND 
BOUNDARY CONDITIONS 

The unsteady, isentropic and inviscid flow over a thin aerofoil is 
assumed to be governed by the general-frequency TSD equation, 
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which  may be written in a convenient form as 
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and x= / x, etc. 
The spatial coordinates (x, z), t and have been nondimensionalised by 
c, c/U and cU , respectively. In nondimensional terms, the fluid 
velocity vector is given by v =(u,w) = grad(x + ).  Here u denotes the 
value of x at sonic condition, that is, where local Mach number is one. 

Figure 1. Boundary conditions. 

Nonreflecting boundary conditions (Gear et al.(1) and Kwak(17)), derived 
from the theory of wave propagation, are employed at the far-field 
computational boundaries, and Kutta condition is satisfied at the 
trailing edge and pressure continuity condition ia also satisfied in the 
wake region behind the aerofoil. The flow tangency boundary condition 
is imposed on a flat mean surface (approximation to the aerofoil) in 
terms of aerofoil slopes as depicted in Figure 1. The aerofoil lies on the z
= 0 plane with the leading and trailing edges located at x = 0 (also the 
origin of the Cartesian coordinate system) and x = 1, respectively. 
Nonreflecting far-field boundary conditions are imposed at some finite 
distances and serve to simulate the disturbances that propagate 
outward from the aerofoil to infinity. Consequently, the far-field 
boundaries can be moved closer to the aerofoil. Any shock wave that 
exists in the flowfield must satisfy the shock jump condition (Fung et
al.(12) and Ly et al.(13)) derived from the conservation law form of 
Equation (1), namely, 
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together with the condition derived from the assumption of 

irrotationality, 
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3.0 MODIFIED TIME-LINEARISED TSD THEORY 
This section describes the time-linearisation process of the 

general-frequency TSD equation in time domain and the two 
modifications introduced into the inviscid theory. 

3.1 Time-linearised time-domain formulation 
In the time-linearisation process, we assume unsteady 

disturbances are small relative to a fixed mean state. This mean state 
is presumeably represented by the nonlinear steady flowfield (Ly and 
Gear(2), Traci et al.(7,8) and Ly et al.(13)), and result in a coupled flow 
problem for the steady ( s) and first-order unsteady ( u) reduced 
potentials. The main dimensionless parameter governing unsteady 
flow is the reduced frequency number, k. The disturbance is assumed 
small, so that the aerofoil motion and reduced potential can be 
time-linearised as, to first-order approximations  
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We define the mean potential by the steady-state potential obtained at 
the mean position of the aerofoil motion. This restriction ensures that 
the calculation of the first harmonics potential is accurate.  

There are two advantages of time-linearising the reduced potential 
of the form shown in Equation (8): 
1. Shock wave motion effects can be included in the time-linearised 
calculation, so that the solution within the shock trajectory will be 
correctly predicted. 
2. There are no restrictions imposed on the mode of aerofoil motion 
that can be simulated, comparing to the harmonic decomposition of the 
following form  
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where o is a complex-valued oscillatory component of the reduced 
potential.  To facilitate the use of high density of grid points 
surrounding the aerofoil, a smooth non-uniform computational mesh is 
constructed via an algebraic mapping process.  In general terms, the 
mapping functions 
can be represented by 

= (x)                                          (11) 
= (z)                                          (12) 

Substituting approximations (7) and (8) into Equation (1) with the 
boundary conditions shown in Figure 1, and separating the steady and 
unsteady components, we find that s satisfies the usual nonlinear 
steady TSD equation, 
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Equation (13) is locally of elliptic/hyperbolic type representing 
subsonic/supersonic flow when Ws is positive/negative, and its solution 
contains discontinuous jumps that approximate steady shock waves. 
The required steady boundary conditions are those depicted in Figure 
1 without the time-dependent terms and with sreplacing . While  u

satisfies 

This document is provided by JAXA.



Proceedings of Lectures and Workshop International- Recent Advances in Multidisciplinary Technology and Modeling -　　�























 u

zz
u

xsx
u

x
u W

ut
M

t
M

2
2

2

2
2 2  (15) 

subject to the same far-field and wake boundary conditions of Figure 1, 
but with u replacing  and the following aerofoil boundary condition 
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Equation (15) is linear with respect to u, and it is locally of the same 
mixed elliptic/hyperbolic type as Equation (13), depending upon the 
nature of the steady-state solution. The linearity of Equation (15) 
makes the computational effort required to obtain a solution much less 
than the effort required to obtain a solution of the full nonlinear TSD 
equation [Equation (1)]. 

The required solution for  s, which does not depend on  u, is solved 
independently, and is then used in the unsteady solution process to 
determine u. This approach has the benefit that s need not be 
regenerated for each unsteady boundary disturbance or reduced 
frequency of interest. Once  is determined, the isentropic pressure 
coefficient can be determined from 
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On the right side of Equation (17), the first term and terms inside the 
brackets correspond to Cps and Cpu, respectively, and the critical 
pressure coefficient is defined by 

uCp 2 (18) 

3.2 Inclusion of shock-generated entropy and vorticity effects 

The shock-generated entropy and vorticity effects, similiar to those 
reported by Hafez and Lovell(3), Whitlow et al.(4), Batina(5) and Dang 
and Chen(6), are incorporated into the steady analysis, so that 
flowfields with embedded strong shock waves can be simulated
accurately. Rotational effects become influential when strong shock 
waves exist in the flowfield, since vorticity is generated due to the 
entropy changes along the shock. Such effects were not included in 
the conventional inviscid TSD theory, see Gear et al.(1), Ly and Gear(2)

and Ly et al.(13), because of the irrotationality assumption necessary for 
the existence of a velocity potential. Therefore, when modelling such 
flowfield it is essential to include the shock-generated entropy and 
vorticiy effects. We replace the streamwise flux of Equation (13) by an 
alternative flux, and rewrite the new steady governing equation with 
an artificial time derivative appended, so that the method of false 
transients can be applied (see Ly et al.(13,18), Ly(14) and Catherall(19) for 
more details), 
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In the modification to include vorticity effects, v is treated as a sum of 
potential and rotational components, and the rotational component 
assumed to exist only in the region downstream of the shock wave. 
Since entropy is constant in steady flow, and assuming small shock 
curvature, the steady streamwise component of v, namely us, for grid 
points behind the shock wave is modified to 
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The first two terms on the right side of Equation (22) represent the 
contribution from the inviscid model, and the last two terms are 
related to the production of shock-generated entropy. The entropy jump 
is a function of the normal Mach number upstream of the shock 
wave (Rankine-Hugoniot shock jump relation), and the shock wave 
location must be determined before the entropy jump can be computed. 
The present finite difference scheme uses a type-dependent finite 
differencing strategy (see Gear et al.(1), Engquist and Osher(20),
Murman(21) and Subsection 4.2) to capture shock waves and to properly 
treat the local subsonic and supersonic regions, thus the shock wave 
can easily be located. Consequently, the modified TSD theory will have 
a new steady governing equation given by Equation (19).  

3.3 Inclusion of shock wave motion effects 
In two-dimensional small-disturbance transonic flowfields, the 

shock waves that usually occur are nearly normal to the flow direction 
(Tijdeman(16)). Therefore, we can assume that if the steady flowfield 
has a shock wave, then this shock may be approximated by a normal 
shock wave. We computed the shock wave motion in conjunction with 
the solution to Equation (15). The shock wave motion effects are 
incorporated into the solution procedure by correcting the solution 
values behind the shock wave, such that the time-linearised form of 
the shock jump condition [Equation (5)] is satisfied. The shock wave 
motion is time-linearised (Ly and Gear(2) and Fung et al.(12)) as, to 
first-order approximation and, 

)()( tt us                               (23) 

where u is the magnitude of the time-linearised shock motion. The 
reduced velocity potential at the shock wave is expanded via a Taylor 
series expansion about = ( s), 

    




















 xxx
u

xx
u

xus ttt
62

,,,),(
32

(24)

This document is provided by JAXA.



�                                JAXA Special Publication　JAXA-SP-07-008E

threading the shock front and neglecting higher order terms in u,
provides 
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In addition to the above relations, the shock wave speed relation is 
required, so that ucan be computed once  u is known. Simplifying 
Equation (5) for normal shock waves, and making use of Equations (8) 
and (23) leads to Ws= 0  and the following time-linearised shock 
jump condition relations, 

0

2 2

2










u
x

u

Mudt
d

               (27) , (28) 

Equation (27) is integrated at the shock foot at each time level of the 
solution process.  

4.0  NUMERICAL IMPLEMENTATION 

4.1 Steady and unsteady finite difference based algorithms 
The numerical solution procedure involves applying the method of 
false transients (Ly et al.(13,18), Ly(14) and Catherall(19)) to solve Equation 
(19) for s, and noniterative alternating directional implicit (ADI) 
method in conjunction with the shock jump correction  procedure to 
solve Equation (15) for u.
The ADI method computes the solution by marching forward in time 
from its initial steady-state to subsequent time levels in a two-step 
process from time-level tn to tn+1. Intermediate values, ( , , t), are 
computed at the midpoint of each time interval. We first write 
Equation (15) and all associated unsteady boundary conditions at 
time-level tn+1/2, which is the midpoint of time levels tn and tn+1, and 
evaluate t by the trapezoidal rule and tt by a second-order accurate 
nonstandard forward difference rule involving solution values from 
time-level tn 2 to tn+1. The vertical derivative is averaged between 
the values at time-level tn and tn+1. Equation (15) is then split into 
two half equations with computed along the = constant lines of 
the computational grid in the first half step, and then along the =
constant lines in the second half step for n+1u . It is necessary to 
introduce boundary values for , which we will not discuss here, that 
are compatible with the interior algorithms corresponding to the two 
half equations, so that a global truncation error of second-order in 
time can be attained. Equation (26) is differentiated with respect to 
time at time-level tn+1/2, and replacing the time-linearised shock wave 
speed term with Equation (27). The final finite difference scheme 
being globally second-order accurate in the spatial and time 
dimensions, except in the flow regions where shock wave motion 
occurs, in which case the time dimension is reduced to first-order 
accuracy. In the first half-step we solve for along = constant lines 
using 
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in conjunction with the computation of new value behind the shock 
wave, 

ps

n
u

x
n
u C

Mu
t




 2

2

4
       (30) 

With determined, the second half-step follows, computing n+1

u along = constant lines using
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in conjunction with the updated n
u values along the shock 

wave, 
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4.2  Spatial discretisation 
In the finite difference schemes, the first streamwise and vertical 
derivatives are differenced using standard second-order accurate 
upwind and central rules, respectively. While a second-order accurate  
Engquist-Osher type-dependent difference rule (Gear et al.(1) and
Engquist and Osher(20)) is used for the second streamwise derivatives. 
As the flow changes from subsonic to supersonic, Engquist-Osher 
type-dependent operators smoothly change from a central difference 
rule (to account for the domain of dependence of elliptic region) to an 
upwind difference rule (to account for the absence of downstream 
influence in hyperbolic region). This ensures a smooth transition 
from subsonic to supersonic flow. Hence, entropy violating 
decompression shock waves will not develop. As the flow changes
from supersonic to subsonic, the Engquist-Osher type-dependent 
operators change to an appropriate shock point operator 
(Murman(21)), and for the computation of u the shock jump 
correction is implemented at this stage. The correction procedure 
disregards the actual variation in u, and thus, is only able to 
account for small-amplitude shock wave 
motions. 

Table 1: Case studies. 

5.0  ASSESSMENT OF MODIFIED THEORY 
The first author has confirmed the validity of the time-linearised 
calculations by demonstrating that the time-linearised theory is 
capable of generating results which are similar to that predicted by 
the nonlinear scheme of Gear et al.(1) (solving the full nonlinear TSD
equation) for transonic flows over an aerofoil in small-amplitude 
motions, see Ly and Gear(2) for more details. In this section we apply 
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the MTL-TSD theory and code (version 2 of TranFlow2D) to compute 
the time-linearised results for the cases tabulated in Table 1, and to 
show that Euler-like solutions can be obtained by comparing present 
results with those predicted by the JAXA’s Euler code (details on the 
Euler solver can be found in Kheirandish et al.(22) and Nakamichi and 
Kheirandish(23)). All unsteady results become periodic within four cycles 
of oscillation, with the last cycle providing the estimate of the unsteady 
pressure distributions. In addition, linear results obtained from solving 
the unsteady compressible subsonic small disturbance equation are 
presented for reference, so that the pressure peaks generated by the 
shock waves (shown in the transonic results which follow) can easily be 
distinguished. All angles are positive for trailing edge down, and 
moments are positive for nose up, taken about the aerofoil 
quarter-chord point. 

Figure 2. Comparison of steady pressure distributions for the NACA 

0003 aerofoil with a 9.6% chord flap at M = 0.93 and m= 0 deg. 

5.1  NACA 0003 aerofoil results 
The first two cases consider flows over an NACA 0003 aerofoil with a 
harmonically oscillating 9.6% chord flap (flap hinge located at 90.4% 
chord). The results are compared in Figures 2 and 3.  The steady 
pressure distribution corresponds reasonably well with the Euler 
result as shown in Figure 2, except for the very small regions adjacent 
to the shock wave located  at 74.7% chord, where the MTL-TSD 
theory gives a much sharper shock profile. The steady shock wave 
strength is also well predicted, with the jump in Cps approximating  
the steady shock wave and Cps / C p > 1 indicating locally supersonic 
point. To assist in the comparison of the unsteady results, an 
approximating trace of the pressure responses in the form of a 
truncated Fourier series with only one harmonic is fitted to the result 
by a least squares procedure. The fitted parameters are then written in
complex-valued form, so that the real (in-phase) and imaginary 
(out-phase) parts of Cp per unit of flap deflection, where Cp = ( C+p -
C p )/ , can be extracted and plotted as shown in Figure 3 for 

reduced frequencies of  

.
Figure 3. Comparison between the Euler, MTL-TSD and linear results 

for the NACA0003 aerofoil with a harmonically oscillating 9.6% chord 
flap at M = 0.93, k = 0.125  

and 0.25, m = 0 deg and = 1 deg. 

125 and 0.25. The positive peak of the real pressure part is caused by 
the changes in aerofoil slopes across the flap hinge. While the peak of 

the imaginary part is due to the existence of steady shock wave, 
leading to the observation that the embedded shock waves in the 
steady flowfield require corresponding shock waves in the unsteady 

perturbation flowfield, which in effect result in harmonic changes in 
shock wave strength. Also noting that the comparison of the imaginary 
part behind the shock wave for case 2 (k = 0.25) is much better than 

that of case 1 (k = 0.125). 
The amplitude of shock excursion is proportional to 1/k, and so, the 

flow region influenced by the shock wave motion for high-frequency 

flows is small, which suits the application of the time-linearised 
methods. Hence, resulting in the improvement of the imaginary part 
of the solution. If the time-linearised theory is formulated in the 

frequency domain, one can in fact show that the amplitude of shock 
excursion is proportional 1/k via the following relation, 
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where u and o are related by 

 ikt
u e0   (34) 

Even  though the MTL-TSD theory slightly over predicts the pressure 

perturbation peaks, the comparison is good in general, since both 
methods give the same trend of pressure perturbation distributions 
along the aerofoil surfaces. Furthermore, all pressure peaks are 

correctly captured, particularly the negative peak appearing in Figure 3 
for k =
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:_;ZFigure 4. Comparison of steady pressure distributions for the NACA 

0012 aerofoil at M = 0.84 and m = 0 deg. 

0.25. The authors suspect that the small discrepancies in the 
comparison are due to the amount of incorporated (numerical) entropy 

being not exactly the same as the true value, and due to the fact that 
the unsteady flowfield is treated as a small pertubation about the 
steady flowfield instead of the true mean flowfield. However, the 

discrepancies in the shock region being small indicate that taking the 
steady flowfield and steady shock position to represent the mean 
flowfield and mean shock position, respectively, is reasonable. The 

mean shock position determined by the Euler code is about 75.6% 
chord, which is very close to the steady shock position predicted by the 
present MTL-TSD theory of 74.7% chord, a difference in distance of 

less than 1% chord. Note that it is essential to have a well defined 
steady (mean) flowfield, because a good agreement on the steady 
pressure distribution is a prerequisite to obtain a good agreement on 

the unsteady pressure distribution for the time-linearised 
computations. In future work we may consider taking the mean 
flowfield 

from a complete nonlinear unsteady solution of Equation (1) for cases 
where the steady and mean shock waves are not close to each other. 
The linear theory, as expected, is only able to capture the pressure 

peaks due to the flap hinge. 

5.2  NACA 0012 aerofoil results 

The next three cases are for flows over an NACA 0012 aerofoil 
undergoing a sinusoidal pitching oscillation about quarter-chord point, 
and the results are compared in Figures 4 to 7. The steady part of cases 

3 and 4 is also studied by Whitlow et al.(4) and Fuglsang and 
Williams(24), and the steady part of case 5 is an AGARD (Advisory 
Group for Aerospace Research and Development) test case for 

assessment of inviscid flow methods. The comparison of the 

Figure 5. Comparison between the Euler, MTL-TSD and linear results 

for the NACA0012 aerofoil undergoing a sinusoidal pitching oscillation 
about quarter-chord point at  
M = 0.84, k = 0.25, m = 0 deg and = 0.25 and 0.5 deg. 

steady pressure distributions in Figures 4 and 6 is exceptional good, 

specifically in the accurate prediction of both the shock wave positions 
and strengths. 
The perturbation pressure for the NACA 0012 aerofoil cases is 

extracted based on the following formula, 


 dteCikC ikt

pp
~ (35) 

  The MTL-TSD theory is able to capture the trend of the pressure 
distributions determined by the Euler theory (i.e. giving the same signs 
of the real and imaginary parts), but the unsteady results are usually 

slightly over predicted, see Figures 5 and 7. 
Since the NACA 0012 aerofoil has no flap or moveable lifting surface 
where the aerofoil slopes change rapidly, the sharp pressure peaks 

shown in these plots are due to the shock wave only, and again, are 
well captured by the present theory. The steady shock positions are 
located very close to the mean locations, thus increasing the accuracy of 

the present results. The Euler method employs a body conformed 
dynamic grid system (Kheirandish et al.(22) and Nakamichi and 
Kheirandish(23)), in which a new grid configuration is generated at each 

time level corresponding to the changes in the aerofoil position. While 
the present theory uses a stationary grid system with the flow 
tangency boundary condition imposed on a flat mean surface 

(approximation to the actual aerofoil) in terms of aerofoil slopes. 
Because of the  
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Figure 6. Comparison of steady pressure distributions for the NACA 

0012 aerofoil at 
M = 0.8 and m = 1.25 deg. 

Figure 7. Comparison between  Euler, MTL-TSD and linear results 
for NACA0012 aerofoil in a sinusoidal pitching oscillation about 
quarter-chord point at M = 0.8, k = 0.25, m = 1.25 deg and  =

0.25 deg. 

different grid systems, the authors expected some discrepancies to 

occur around the aerofoil nose. The discrepancy occurs only for the real 
pressure part, and becomes large for increasingly large maximum 

angle of attack. For example, in Figure 5 the discrepancy for case 4 is 
larger than that of case 3, since the angle of attack can reach upto 0.5 
deg in case 4 compared to 0.25 deg in case 3. Similarly, Figure 7 shows 

much larger discrepancy for case 5 where the maximum angle of 
attack is 1.5 deg. This observation is consistent with the expectation 
that the distribution of the real (in-phase part) depends on the aerofoil 

profile and motion, since if comparing to cases 1 and 2 where only the 
flap that moves and 90.4% of the aerofoil is stationary, no such 
discrepancies occur around the aerofoil nose. The small peaks that 

appear in Figure 7 around 30 to 40% chord are generated by the vortex 
development in this region. Again, the MTL-TSD method captured 
such flow phenomenon remarkably well. 

6.0  CONCLUDING REMARKS 
An effective treatment of unsteady transonic flows, with moving 

shock waves, as a small perturbation about the steady (mean) flowfield 
was described. The solution method, in conjunction with the shock 
jump correction procedure and the inclusion of shockgenerated entropy 

and vorticity effects, has successfully produced accurate time-linearised 
time-domain solutions for transonic flows with embedded strong shock 
waves. The modifications made to the inviscid TSD theory leads to the 

development of a second version of  TranFlow2D code. Solutions can 
be obtained in an acceptable turn-around time on current high 
performance personal computers, hence making it an ideal tool for 

performing two-dimensional transonic aeroelastic analysis and for 
students to experience numerical aerodynamic computations. Based 
on the present study, we obtained the following conclusions: 

1. The satisfactory correlation of the results demonstrated that the 
presented theory is capable of predicting unsteady transonic flow with 
embedded strong shock waves. 

2. The presented time-linearised formulation illustrated the 
importance of proper modeling of the shock wave motion in order to 
obtain accurate time-linearised transonic solutions. 

3. The theory has been demonstrated to be successful, in a sense that it 
could be used to provide input for aeroelastic computations for which 
only infinitesimal magnitude motions need be considered. 

4. In future work we may consider taking the mean flowfield from a 
complete nonlinear unsteady solution of the general-frequency TSD 
equation for cases where the steady and mean shock waves are not 

close to each other. 
5. There is a future potential for a three-dimensional version as a fast 
method to be used for flutter predictions. 
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