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Abstract

A method is presented for the optimum aeroelastic design of a flapping wing
employing lifting-surface theory as an aerodynamic tool and the complex method as the
optimization algorithm. The method is applied to the optimum design of a flapping
wing of a Kite Hawk (Milvus migrans) UAV and the optimum thickness distribution of
the main-spar is determined. As the result of the optimization, a high propulsive
efficiency of 75% is attained considering only dihedral flapping of the main spar. By
evaluating the viscous effect for this optimum design using a three-dimensional

Navier—Stokes code, the effectiveness of the design is confirmed.

I. Introduction

Bird-type aerial vehicles with flapping wings have attracted considerable interest for their possible
use in wide ranging monitoring and surveillance activities. Although several such vehicles have been
developed to date, most have employed membrane type wings. However, membrane wings are not
efficient since the feathering (twisting) motion, which is essential for efficient flapping flight, does
not occur in an ideal manner (a 90 deg advance phase angle of feathering motion ahead of flapping
motion is usually the most efficient). However, Delaurier and Harris [1, 2] have developed an
ornithopter that has double solid surface airfoil sections and uses acroelastic deformation to generate
a twisting motion by dihedral flapping. To obtain favorable aeroclastic deformation, they developed
a design program called ComboWing that determines the optimum acroelastic design of a flapping
wing. They employed strip theory as an acrodynamic tool and conducted the optimization manually,

without using an automated optimization algorithm.

The purpose of the present study is to develop an automated optimum aeroelastic design method
using a more accurate acrodynamic tool, namely, unsteady lifting-surface theory. The new method 1s
then applied to the design of the flapping wing of a Kite Hawk (Milvus migrans) UAV (Unmanned

Air Vehicle). The optimum design thus obtained is examined by numerical simulation using a
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three-dimensional Navier—Stokes code.

II. Equations of Motion for Elastic Flapping Wing and Solution Procedure Using Doublet
Lattice Method

In this section, the basic equations of motion for an eclastic flapping wing are derived using

Lagrange’s equations of motion. The solution procedure using the Doublet Lattice Method (DLM)

[3] as the acrodynamic tool is also described. In Fig. 1, the coordinates and the definition of the wing

displacement are shown. In the figure, T is time and F(X,Y,T) is the displacement of the wing mean

surface at an arbitrary point (X,Y) on the wing. F can be expressed by the following equation:

F(X.Y.T)=F.(X.Y. D)+ Y 4(X.Vq.(T) (1)

i=1

where F(X,Y,T) is the displacement of the rigid wing due to forced oscillation, ¢;(X,Y) is the i-th
natural vibration mode of the wing and qi(T) is the i-th generalized coordinate of the elastic

deformation. For this wing displacement, the kinetic energy of the wing can be expressed as

K = [[4m(X,Y)(dZ /dT)* dXdY )

Fig. 1 Definitions of coordinates.

where m(X,Y) is the wing mass per unit arca and where ” represents the surface integral on the
S

full span wing area. The strain energy of the wing can be expressed as

U =10 >M.q (T) 3)

L
2
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where ®; 1s the i-th natural circular frequency of the wing, and where M; is the generalized mass

given by
M, = [[m(X Vg, (X Vdxdy @

The virtual work done by the external force (acrodynamic force) due to the virtual displacement dq;

of the 1-th generalized coordinate can be given by

SW = j j AP(X,Y,T)¢ (X, Y)dXdYsq,  (5)

where AP is the pressure difference between the upper and lower surfaces of the wing. From Eq.

(5) and by the definition of the generalized force Q,, that is SW=Q;0q;, Q; can be given by

Q = [[APXY. T (X, V)dXdY  ©)

Substituting Egs. (2), (3) and (6) into Lagrange’s equations of motion, we finally obtain the general

expressions for the equation of motion of an elastic flapping wing as
M. (d 2qi /dT?) +to. 2Miqi =
— [[m(X.¥)¢, (X, Y)(dF, (X,Y,T)/dT*)dXdY
S

+”AP(X,Y,T)¢i(x,sodXdY, i=1,.. N 7)

In deriving Eq. (7), we use the orthogonal condition of the natural vibration modes. In Eq. (7), the
displacement F.(X,Y,T) of the rigid wing or the forced oscillation of the un-deformed wing can be

expressed as
F (X,Y,T)=(H, +¢,Y)cos(wT)
—(@. +b,Y)(X - A)cos(wT +¢) (8)

where H; and 6, are the amplitudes of the heaving and pitching oscillations at the root station,
respectively, ¢, 1s the flapping oscillation amplitude, bg 1s the rate of twist of the feathering
oscillation amplitude, A is the X coordinate of the feathering axis and ¢ is the advance phase angle of
the feathering oscillation ahead of the flapping oscillation. (See also Fig. 2 for the definitions of

flapping wing motion.)
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Fig. 2 Definitions of wing motion.

The load distribution AP(X,Y,T) is expressed as

AP(X,Y,T)=1pU*{AC{"(X,Y,T) + ZAC—PJ.(X,Y)qj (T)} ©)

where ACI(DF) is the pressure difference coefficient due to the rigid wing displacement and AC,,

is the pressure difference coefficient due to the j-th natural vibration mode. By assuming sinusoidal

wing motion and introducing a complex expression, AC I(DF) and g; can be expressed as

ACT (XY, T) = AC{ (X, Y)e' ™" = AC{e™

q =qe” =qe” (10)

where AC ;F) and q_1 are complex quantities.
F.(X,Y,T) of Eq. (8) can be expressed as
F (XY, T)=(H, +¢,Y)e”" -6, +b,Y)(X - A" (1

By substituting Eqs. (9), (10) and (11) into Eq. (7), and by non-dimensionalizing Eq. (7) using the

root semichord by, we obtain the matrix form of Eq. (7) as

l. 10y ~1]-[A o }=1F ) (12

where
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s &

A :ki(%j{ [13C, 0. y)dxdy} (13)

- 2b35§t
F =2 | |m(x y)h +
1 Mj! (x, y)(h, +¢,y

— (0, +byz)(x—a)e” )4, (x, y)dxdy

l pb(;l s & B
*F(W ] ! ACT () (x y)dxdy  (14)

AC pj can be computed by solving the integral equations of the lifting-surface theory [3], namely,

29,

(ikg; + P~

)b, == [[AC € mKee (6 2. mdédn a5
T S

where Kyt is the kernel function. Similarly, AC ;F) in Eq. (14) can be found by solving the integral
equation of the lifting surface theory [3], namely,

ik(h, +¢,y =6, +byy)(x-a)e”)

; | BT ey
=, +by)e =~ [[ACIVE MKy (x 3, m)dédn
S
(16)

In Egs. (13)-(16), x, vy, & and n are dimensionless coordinates obtained by dividing the physical
coordinates by by, a is the x coordinate of the feathering axis, h; is the dimensionless heaving
amplitude at the root station, & and & are the x coordinates of the leading and trailing edges,

respectively, and s 1s defined by 1/b, with 1 the semi-span length. We employ the DLM to solve Egs.
(15) and (16).

By solving Eq. (12) for a given forced motion and the natural vibration characteristics of the

wing, we can compute the load distributions AP(X,Y,T) using Eq. (9) in complex form as

AP(x, y)e™ =1 pU*AC, (x, y)e"

- N _
=1pU(C (x,y) + 2 AC, (%, ¥)q;)e™ (17)

i=1
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Once AP(X,y,t) is given, the time averaged thrust and necessary power can be computed as

follows. The time averaged thrust T is composed of two components, the leading edge suction

T_L and the thrust induced by tilting the normal force vector due to the feathering motion T, :

el

=T, +T, (18)

el

pU’SC, =1 pU”S(Cyy +Cyp) (19)

22 [—

where C,, is the thrust coefficient due to leading edge suction and C., is the thrust coefficient

due to the tilt of the normal force vector. C; can be computed by a procedure similar to that
proposed by Lan [4] for the quasi-vortex lattice method.

First, we compute the leading-edge singularity parameter [4] C_S using ACp m Eq. (17):

— — (X1, = X))
Cs(y)=1% Cp(Xl,lpaY) %

(20)
where X, 1s the x coordinate of the midpoint of the lifting line of the leading edge panel [3] and

X; 1s the x coordinate of the leading edge. It should be noted that X,,, and X are functions of y.

Using a thus determined, we finally compute q as

Cr =22 TGl 1cos A ) (1ay @

where C(y) is the dimensionless local chord length and A is the sweep angle of the quarter chord

line of the leading edge panel. In Eq. (21), CS2 can be given by

C2(y) = (C2(y) +C2 ()2 22)

where Cgr and Cg; are the real and imaginary parts of C_S given by Eq. (20). It should be noted that
the number of chord-wise and span-wise panels should be more than 30 in order to obtain a

converged solution of C; .
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C., canbe given by

Crp =Ty, (ZpUS)

=1 Tj{ j j Re(AP(X,Y)e'" Re(g—i)dXdY}dT /(L pUS)

(23)
where Re indicates the real part of a complex quantity and T* is the period of the forced oscillation.

We can easily derive the working form of C., by substituting Eq. (17) and the complex form of

Eq. (1) into Eq. (23). The time mean necessary power coefficient C,,;, can be given by

Cpy =W /(3 pU°S)
(24)

=L Tj{ j j Re(Ap(X,Y)e™" )Re(i—l;)dXdY}dT /(L pU>S)

0 3

where Wis the time mean rate of work. We can casily derive the working form of C,, by
substituting Eq. (17) and the complex form of Eq. (1) into Eq. (24). Then the propulsive efficiency

7, 1s defined by

= 25)

III. Optimum Aeroelastic Design Using the Complex Method

By combining the general method for computing the acroelastic effects of an elastic flapping
wing, described in the previous section, and an optimization algorithm, we can conduct an optimum
structural design of a flapping wing. For the optimization algorithm, we employed the complex
method, originally proposed by Box [6]. The complex method is a direct search method that can
handle multiple constraints without recourse to gradients. In the present study, we applied the
optimization procedure to the design of a bird-like UAV that flies slowly like a Kite Hawk (Milvus
migrans). As is well known, Kite Hawk is an expert of an efficient flight, namely, it finds the thermal
convection and can perform continuous flight only by occasional flapping. If we could develop an
UAV which imitates such flight of Kite Hawk, it might provide a highly efficient (long duration)
UAV. In Fig. 3, the planform and structural arrangement of the semispan wing of the Kite Hawk
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UAV are shown. The full span of the wing 1s 1.68 m and the root chord length is 0.28 m. The full
span aspect ratio and wing area are 6 and 0.471 m’, respectively. The total mass of the UAV is
assumed to be about 300 g. The wing can sustain a total weight of 2.94 N at a cruising speed of 4.13
m/s at Cp = 0.598. The structural component consists of only a straight main-spar that can bend and
twist and which is located near the leading edge, as shown in the Fig. 3. The ribs are assumed to be
firmly attached to the main spar and are chord-wise rigid. It is assumed that the flapping wing
motion is caused only by the dihedral flapping motion of the main spar. Therefore, the feathering

motion 1s induced only by the aeroelastic response.

L/ flapping axis

' /-\
X

' main spar

S

J
<

k280

—— f————— 840 (mm)
312 | |

X
Fig. 3 Planform of Kite Hawk (Milvus migrans) UAV.

The purpose of the optimization study is to determine the thickness distribution of the main spar
that generates the ideal bending and twisting motions to attain maximum propulsive efficiency. The
section of the main spar is assumed to be rectangular and its width is assumed to be a constant 5 mm
m the span-wise direction. The thickness distribution is assumed to be a parabolic function of y. We
select thicknesses t;, t; and t; at the root, mid-semispan and tip stations, respectively, as design
variables to determine the structural characteristics. In addition to these design variables, we select
k, ¢o and a as design variables that determine the flapping wing motion. Therefore, there are six

design variables in total. The objective function is the propulsive efficiency m,. The following
constraints are imposed, C_T >C, and t, >t, >t,, where Cp is the total drag coefficient of the

UAV. Since the flapping wing is composed of a single-spar, we employ simple beam theory [7] to
compute the natural vibration modes. The distributions of the mass m, static unbalance S, and the

moment of inertia I around the main spar are taken to be the concentrated quantities at the center of

This document is provided by JAXA.



28

JAXA Special Publication JAXA-SP-07-008E

the segment obtained by dividing the main spar into 13 equally spaced portions. It should be noted
that the inetial data of the main spar itself changes at each iteration step of the optimization process.
The value of the concentrated mass, imbalance and inertia at each segment are assumed to be equal
and given as m; = 0.005 kg, Sy; = 7.0x10” kgm and I; = 5.0x10” kgm®, for i = 1-13. The main spar
is assumed to be a quasi-isotropic laminate construction of CFRP with elastic properties E;, = 181
Gpa, Er =103 GPa, Gy =7.17 GPa and v = 0.28.

In the present problem we set Cp to be 0.15. This value is considerably higher than the value of
0.055 estimated by the DLM code (assuming a minimum drag coefficient of 0.04 and an induced
drag coefficient of 0.015 at C. = 0.598). However, we assumed the DLM code would underestimate
Cp, as it does not account for viscous effects. This choice of C=0.15 will be justified in the next

section by the numerical simulation using a Navier—Stokes code.

A converged solution was obtained after 50 iterations. The results were as follows:

np=0.754, C, =0.166 (C,, =0.089, C,, =0.077),

C,yy = 0.220,

k=0.213, ¢o=489deg., a=-0.986,
t,=5.76 mm, t; = 2.08 mm, t; = 0.92 mm

The propulsive efficiency of 75% seems quite high. ( Note that 75% of m, is obtained for mean
angle of attack 0 deg. Therefore, the induced drag due to the averaged lift is not taken into account in
evaluating m,.) Since the optimum value of the reduced frequency is 0.213, we can casily determine
the cruising velocity to be Uz = 4.13 m/s by assuming a forced flapping frequency of 1 Hz. We can
then easily estimate Cp = 0.598 to sustain a weight of 2.94 N at U- = 4.13 m/s. The time mean
necessary power W is 4.47 W and the power—mass ratio for this UAV is 14.9 W/kg, which secems
quite efficient. The natural frequencies of the wing are f; = 1.65 Hz (1" bending predominant), f, =
5.93 Hz (1* torsion predominant), f3 = 13.7 Hz (2™ torsion predominant). The six total natural
vibration modes are employed in computing the aeroelastic responses. In Figs. 4, the wing
deformations during one cycle of oscillation are shown. (Note that the wing displacement shown in
Fig. 4 is not exaggerated.) As can be seen, the wing is very flexible and bends in the span-wise
direction and twists around the main spar. From animations of the wing deformation sequence we

can confirm that a span-wise traveling wave 1s generated.
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kt=0
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kt=2/3n

kt=5/3n

Fig. 4 Wing deformation during one cycle of oscillation.

This document is provided by JAXA.



30

JAXA Special Publication JAXA-SP-07-008E

IV. Numerical Simulation of Kite Hawk UAV Using Navier—Stokes Code

In order to evaluate the viscous effect on the optimum design of the Kite Hawk UAV, which is
obtained using DLM as the acrodynamic tool, a numerical simulation was conducted using the
three-dimensional Navier—Stokes (NS) code developed by Isogai [9]. Eq. (7) was incorporated into
the NS code and the acroclastic response of the wing was computed by solving Eq. (7) at each time
step using the wing boundary condition (computed from the wing deformation obtained at one time
step before). The natural vibration modes obtained for the optimum aeroelastic design described in
the previous section were used for the aeroelastic response computation using the NS code. A C-H
type structural grid system was used with 240 grid points in the chord—wise direction, 23 span-wise
and 51 in the direction normal to the wing surfaces. The wing sections employed in the present NS
simulation were generated by modifying the NACAO012 airfoil section by changing the thickness
ratio, introducing camber and setting the maximum camber location. The amount of camber for local
airfoil sections was changed parabolically from the root to the tip stations so that the camber at the
root was maximum and that at the tip was zero. The thickness ratio of the present section was 6%
and the maximum camber was 6% of the chord located 30% from the leading edge. The mean angle
of attack was set as 8 deg, The Reynolds number based on the root chord was 7.63x10* and the
Baldwin and Lomax algebraic turbulence model [10] was employed.

The results obtained are as follows:

C,=0046, C,=0552, C,, =0.242

These coefficients give the following physical values at Uc = 4.13 m/s:

T=0227N, L=27IN, W=49IW
Based on these results, the wing can sustain a drag of 0.227 N and a weight of 2.71 N with a time
mean power of 4.91 W and a power—mass ratio of 17.7 W/kg. These results show that the optimum
acroelastic design using DLM is still good even when viscous effects are taking into account. In Fig.
5, the wing deformations and flow patterns (iso-vorticity o) during one cycle of oscillation are
shown. In order to see the flow patterns in detail, the iso-vorticity distributions around the airfoil
sections at 91% and 30% semispan stations are also shown in Figs. 6 and 7, respectively. As seen in
Fig. 6, no flow separation is observed at 91% semispan station, which attains efficient thrust
generation. However, as shown in Fig. 7, large scale flow separation can be seen at 30% semispan

station, which seems to generate the drag. The flow separation observed in the inboard portion of the

wing might be the main cause of the reduction of a compared with that predicted by DLM. In

Figs. 8-10, the time histories of lift, thrust and rate of work during one cycle of oscillation are shown,

respectively.
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Fig. 5 Wing deformation and flow patterns (o) during one cycle of oscillation.
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kt=0 kt=n

kt=1/3n kt=4/3n

kt=2/37w kt=5/3~n

Fig. 6 Flow pattern (oy) at 91% semispan station.
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Fig. 7 Flow pattern (o) at 30% semispan station.
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™)

Fig. 8 Variation of lift during one cycle of oscillation.
(L=2.7IN)

0.8 -

-04 1~

Fig. 9  Variation of thrust during one cycle of oscillation.
(T = 0.227N)
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Fig. 10 Variation of rate of work during one cycle of
oscillation. (W = 4.91W)

V. Conclusion

A general method for the optimum aeroelastic design of a flapping wing employing lifting-surface
theory as an acrodynamic tool and the complex method as the optimization algorithm is presented.
The present optimum design method is applied to the Kite Hawk UAV and the optimum thickness
distribution of the main-spar is determined. As a result of optimization, a high propulsive efficiency
of 75% 1s attained considering only dihedral flapping of the main-spar. In order to evaluate the
viscous effect on this optimum design using DLM, the numerical simulation using the Navier-Stokes
code 1s conducted. It 1s found that the flow separation 1s suppressed around the out-board potion of
the wing, that enables the efficient thrust generation, while the large scale flow separation is
observed around the in-board potion, that degrades the propulsive efficiency. Although some
degradation of the propulsive efficiency due to viscous effect is expected, it is believed that the
present optimum design method using DLM might provide a useful aeroelastic design tool for a

flapping wing of UAV.
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