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Advanced Computational Aeroelasticity and Multidisciplinary
Application for Composite Curved Wing*

By Dong-Hyun Kim" and Yu-Sung Kim"
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This article preferentially describes advanced computational aeroelasticity and its multidisciplinary applications based on the
coupled CFD and CSD method. A modal-based coupled nonlinear aeroelastic analysis system incorporated with unsteady Euler
aerodynamics has been developed based on the high-speed parallel processing technique. It is clearly expected to give accurate and
practical engineering data in the design fields of generic flight vehicles. Also, efficient and robust computational system for the flutter
optimization has been developed using the coupled computational method with the micro genetic algorithm. Vibration and flutter
characteristics of composite curved wing are also investigated in this study. Virtual flutter tests for the spanwise curved composite
missile fin are effectively conducted using the present advanced computational method with high speed parallel processing technique. As
computational demonstrations, the effects of ply orientation and stacking sequence on the flutter speed have been investigated and
compared with the case of isotropic curved shell model with the same structural weight.
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1. Introduction

Nowadays, the accurate prediction of flutter boundary becomes
a really important technology to reduce the structural weight and
to estimate its actual flight performance in the design process. The
main purposes of this article are to introduce a delicate and general
computational analysis system. This article preferentially describes
advanced computational aeroelasticity and related numerical
backgrounds based on the coupled CFD and CSD method based on
the high-speed parallel processing technique. In the development
of new weapon systems such as bomb, projectile, guided or
unguided missile, primary emphasis should be placed on the
simplicity and reliability. A weapon will have far greater reliability

if it can be sealed in a container of minimum volume and geometry.

The solution for this problem can be efficient solved by using a
wrap around fin or simply called spanwise curved wing concept.
The curved wing offers a solution for many geometric constraints
and at the same time can be sized to provide aerodynamic
stabilizing characteristics equal to flat wing stabilizers. Because of
its unique aerodynamic characteristics and geometry shape, it is
also interesting for aerospace research engineers to investigate the
flutter characteristics of the curved wing model.

The composite materials since its invention have been used
widely in engineering especially for aircraft structures because of
its advantage compared to the conventional engineering materials.
Composite materials have many characteristics that are different
from the conventional engineering materials such as high specific
strength and directional stiffness. Use of all the characteristics
advantage allows the tailoring of composite materials to meet a
particular structural requirement. It is well-known that the
optimum design of wing can be achieved by aeroelastic tailoring
of composite wing structures'”. However, it is hard to find
previous research works for the flutter analysis of composite
curved wing shapes.

Nowadays, the accurate prediction of flutter boundary becomes
a really important one to reduce the structural weight and to
estimate its actual flight performance in the design process. This
paper has focus on the compressible flutter analyses for the
laminated composite curved wing. It also describes the
development of a delicate and general computational analysis

system and to exactly consider the effect of curved wing
configuration. In this study, a modal-based numerical flutter
analysis system in the time domain has been developed including
the physical matched point concept. The parallel unstructured
Euler solver was adopted and newly modified to be coupled with
the dynamic aeroelastic solver. Finally, efficient and robust
computational system for the flutter optimization has been
developed using the coupled computational method with the micro
genetic algorithms. Structural free vibration analyses have been
performed using finite element method. Detailed nonlinear time
responses are computed by the simultaneous coupled time-
integration method in the compressible flow regions. Various
computational results are presented and investigated in detail.

2. Unsteady Aerodynamic Modeling

The compressible Euler equations can be written in an integral

form over a control volume V moving with a velocity I7g .

0 dS = 1
ELQdV + i F(0)-7idS =0 Q)
where
P pu
pu puu + pn,
O=|pv |’ F(Q,n)=| pvu + pn,
pw pwit + pn,
60 EOE + qu
Also,

1
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S

where I7'g and 5 are the grid velocity and the outward unit normal

vector. Pressure and total enthalpy can be expressed from ideal
gas relations:

*1 This is a reduced version of the presented paper at the conference.

This document is provided by JAXA.



38 JAXA Special Publication JAXA-SP-07-008E

P=(r=Dle, 3 plu* +v* + )] 2)
h:T}:D%+%p(uz+vz+wz) 3)

where y is the specific ratio.

The inviscid flux across each cell face is computed by using the
Roe's flux-difference splitting formula. For high-order spatial
accuracy, estimation of the state variables at each cell face is
achieved by interpolating the solution with a Taylor series
expansion in the neighborhood of each cell center. The cell-
averaged solution gradient required at the cell center for the above
expansion is computed by using the Gauss' theorem by evaluating
the surface integral for the closed surface of the tetrahedrons. This
process can be simplified using some geometrical invariant
features of the tetrahedral. The expansion also requires the nodal
value of the solution, which can be computed from the
surrounding cell center data using a second-order accurate pseudo-
Laplacian averaging procedure as suggested by Holmes and
Connell?.,

For steady-state computations, the governing equations are
linearized and advanced in time using the first-order Euler
backward time integration.

L1+ﬂ AQ" =R
AT o0

where AQ" =Q""' -Q" . Also, Az, R, n,

nondimensional time step, the residual, the time integration counter,
and the cell volume, respectively. The nondimensional time is

4

and V' mean the

normalized as the reference chord length and freestream sonic speed.

For unsteady computations, Eq. (4) can be recast to include
temporal numerical subiterations as a dual-time stepping. With the
subiteration counter denoted by m, the solution vector Q at
advancing time level n+1 is now defined as

oo R
{(**E)”*} AQ" =-R'(0")

- &)
At o0

where AQ" = Q'“+1 — Q" . Also, 7* denotes the pseudo time for the

dual-time stepping and R*(Qm) is the unsteady residual newly
defined as follow:

3Q/nVn+l —aQ7" +QHVH
2AtT

R(Q")=RQ"+ (6)

The solution vector AQ denotes the change in state variables

between numerical subiterations during a certain time step. When
the subiterations drive the residual towards zero, not only second
order time accuracy is achieved, but the linearization errors are also
driven to zero. Typically, three to five subiterations with a certain
convergence criteria per each time step are effectively used to
reduce the magnitude of numerical residuals. Direct solution of the
system of simultaneous equations resulting from equation for overall
cells requires the inversion of a large sparse matrix, which is
computationally very expensive. Thus, Gauss-Seidel relaxation
method is used to iteratively solve the system of flow equations.

Furthermore, to avoid numerical errors induced by the deforming
or moving mesh, the cell volumes are integrated forward in time
adopting the geometric conservation law (GCL). The geometric
conservation law used in this study is of the same integral form as
the mass conservation law and defined by

ijdV—§ V. . idQ =0 (7
or o o ¢
Discretization of above equation yields

RN YA ®)

The local cell volumes at time level (n+1) in Eq. (6) are computed
to satisfy the GCL by applying above equation at every global
time step.

Parallel Implementation of the Solver

Parallelization of the Gauss-Seidel implicit scheme is fairly
straightforward and has been well described in a literature”. The
present flow solver is parallelized by partitioning the global
computational domain into local subdomains. The intermediate
decomposition or partitioning is performed using the MeTiS
library'”.  The local domain mesh data is allocated on each
processor and the calculation is performed on the local
computational domain by updating the solution information among
subdomain boundaries. The inter-boundaries commonly included in
each subdomain are considered as artificial boundaries for data
communication. To do this, ghost cells attached to these inter-
boundaries for the present cell-centered scheme were also
introduced. Initially, face-center values of the flow variables are
interchanged through the inter-boundary faces. These values are
used to calculate the flux Jacobian on the inter-boundary. Data
communication among processors is achieved using the standard
message passing interface (MPI) library installed on LINUX
operating system. Next, the cell-center values are exchanged across
the boundary during the Gauss-Seidel iteration (GSI). Boundary
node values and the weighting factors for Laplacian averaging are
also communicated to achieve the high-order reconstruction. In the
present study, cell data are exchanged in each GSI, and face and
node data are transferred for the next global iteration. Since 25~30
numerical iterations are typically required in each time step to get
the local converged solution, much communication time is spent
during the GSI process. Therefore, three or five times of actual
communications are generally performed to reduce the
communicational overhead due to the GSI.

Modified Spring Analogy for Robust Moving Grid

For the analyses on the complex moving body problems, the
modified type of spring analogy technique'” is adopted to
compute the deformation of the mesh during the time integration
of the fluid. In the spring analogy, the mesh is considered as
fictitious springs. Boundary nodes are moved by aeroelastic
computations and interior nodes are moved by the spring analogy
with several iterations. In the present research, segment spring
method is basically used. Here, the equilibrium lengths of the
springs are equal to the initial lengths of the segments. It may be
noted here that since the present moving grid technique combined
with parallel processing is applied locally on each processor, the
disagreement of nodes at the communication boundaries may be
occurred due to the independent local iterations for the spring
analogy. To avoid this kind of nonsynchronization problem,
coordinates of nodes at the communication boundaries have to be
also transferred into each other as the numerical constraints.

3. Aeroelastic Modeling

The governing aeroelastic equations of motion of a flexible
wing are obtained by using the Rayleigh-Ritz method. In this
method, the resulting aeroelastic displacement at any time can be
expressed as a function of a finite set of selected modes. The
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general motion of the wing assumed to be described by the
separation of time and space variables as follows

w(®)} =[@,(x.y.2)liglt)}
v} =@, (x. v, 2)lig(t)} ©)
()} =[®_(x, . 2)lg(e)}

where {u}, {v} and {w} are the structural deflections and [®],
[d)y] and [®,] are the matrices of x-, y- and z-direction

displacements of the natural vibration modes. Usually, the column
size of modal matrix [®] is depends on the selection of
considering natural mode in the flutter analysis.

The aeroelastic equations of motion for an elastic wing may be
formulated in terms of generalized displacement response vector
{q(t)} which is a solution of the following equation:

(M (o)} +1C, g (o)} + 1K, Hale)} = 10(e. 4.9} (10)

where ¢ is the physical time, [Mg] is the generalized mass matrix,
[Cgl is the generalized damping matrix, [Kg] is the generalized
stiffness matrix, and {Q} is the vector of generalized aerodynamic
forces computed by integrating the pressure distributions on the
wing surface as

o), = %pU o[- pley oy, +np, +nw,) aan
N

2
Cl

where pis the free stream air density, U is the free stream velocity,
¢, is the reference chord length, S is the wing area, Cp is the
unsteady pressure coefficient on the arbitrary wing surface, ny, n,,
and n, means the surface normal vectors for x, y and z direction,
respectively and y; are the i-th natural mode shape vectors
interpolated on the aerodynamic surface mesh. The generalized
aerodynamic forces of Eq. (11) are integrated numerically for the
wing, pylon and store configurations. In this study, to consider the
characteristics of nonlinear aeroelastic responses in detail, the
coupled time-marching method (CTM) has been applied.

In general, the computation time needed in solving the structural

equation is much less than those required in the decomposed fluid
domains. Thus, to the parallel coupling with the unsteady fluid
domains, one single computer node is usually prepared for solving
the structural equations. At each global time step, all the local
generalized forces computed from each computer node are to be
transferred into the node for structure solver. Then, the generalized
displacements can be obtained and the classified data for physical
moving boundary are to be transferred into the each corresponding
computer nodes for spring analogy and unsteady fluid solution. In
addition, this includes the staggered coupling algorithm with
internal iterations to increase the temporal coupling accuracy.
Data communications among computer nodes are also conducted
using the standard message passing interface (MPI) library
installed on a LINUX operating system.
In this study, the time marching process of the structure-fluid
coupling was performed by similarly adopting the second-order
staggered algorithm. It is well known that this algorithm is
constructed as a leap-frog scheme where the fluid subsystem is
always computed at half time-stations, while the structure
subsystem is always computed at full time-stations. The road map
of the numerical coupling process applied in this study is shown in
Fig.1. Here, the transferred structural displacement and velocity
are to be normalized to keep the numerical consistency with the
normalized fluid domain.

=V ey AT 2
2 :X"" )+ an
2

Fig. 1. Computation process of the second-order time-accurate staggered
procedure.

Introducing the state vector {x} in order to efficiently perform

the numerical integration, Eq. (12) can be recast into the first order
form as

{(x(t)} =[A1{x(0)} +[BlHu(0)} (12)

where

10 [7]
[A]{— M, IK,1 IV, 1IC, ]}

] 10
M, 1" (13)
[tg} o

o= {{q‘(f)}} o {{Q(t)}}

Generally, to calculate the time response of Eq. (13) due to the
initial conditions, external forces or control inputs are needed to
analyze the behavior of the system. For nonlinear structural
systems, a typical numerical technique like Runge-Kutta method
can be commonly used but for linear structural systems we can use
other approaches. One of the most robust and fast techniques for
the linear system analysis can be derived from the assumption of
setting the external force or control input constant, called zero
order hold, during a certain small interval of time marching
process. Thus, we can use the accurate analytical form of the
solution obtained through the Laplace transform and inverse
transform processes as

b)) =" ()} + [ e Bu(c (14)

0

The solution of Eq. (14) can be obtained numerically by
replacing the continuous system by a discrete time system.
Considering a  computational time interval so that
nAt <t <(n+1)At, and through the useful matrix manipulation for

the integration of transition matrix, Eq. (14) can be derived as the
following closed form:

Lef = ) 4[] (e — 1B} (15)

Then Eq. (15) can be effectively integrated in time to predict the
modal displacement and velocity as presented in Ref.11.

The computed natural vibration mode shapes are interpolated
into the aerodynamic grid points using the surface spline methods.
A surface spline method can map the structural model into the
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aerodynamic model. Unlike structured grid system, the
unstructured aerodynamic grids automatically generated from a
grid solver can hardly give ideally symmetric distributions on the
object surface. In this study, thin-plate spline (TPS) technique is
adopted. The global natural vibration mode shapes interpolated on
the surface mesh of aerodynamic grid can be effectively displayed
by the post-combination process using a general purpose plotting
program. Recent useful information for several numerical spline
techniques with numerical experiments can be found in Ref.12.

4. Multi-Disciplinary Aeroelastic Optimization

Typical frequency-domain flutter analyses technique based on p-k
flutter method can be used to efficiently determine the flutter speed
of the given wing configuration. The eigenvalue problem for
classical flutter equation based on the p-k method can be written as
follows:

([Mg]pz+[Cg]p+[Kg]—%pU2[A(M,kh)]j{5}=0 (16)

where p is the eigenvalue defined by p=w(y+i), w is circular
frequency, y is transient decay rate coefficient, and [4] is the
generalized aerodynamic influence coefficient (GAIC) matrix of
complex form as a function of Mach number M and reduced
frequency k. The GAIC matrix can be calculated using linear
subsonic doublet-lattice method, supersonic doublet-point method
and transient pulse method (TPM) based on unsteady CFD
aerodynamics. The numerical validation of the present flutter
analysis method can be found in Refs.13-15.

Genetic algorithm is an optimization technique based on concepts
of natural evolution and revolves around genetic reproduction
processes and survival of the fittest strategies with some
randomization or mutation. During the evolution, individuals with
higher fitness will have a higher probability to survive and gradually
dominate the population as the individuals with lower fitness die off.
The micro genetic algorithm (mGA) is employed in this study as an
alternative way to reduced the computational time compared to the
classical genetic algorithm. In the micro genetic algorithm, jump
and creep mutation processes are not required because the new
generation process of population restarts whenever the diversity is
lost. During the evolution, individuals with higher fitness tend to
have higher probability to survive and gradually dominate the
population as the individuals with lower fitness die off. The
optimization model used in the generic algorithm can be represented
by

Maximize F(x):
xe{46,.6,....0)},

(17
6, €[0,£30,45,£60,90]

subject to

where F(x) is the objective function and is the flutter dynamic

pressure defined by q=1/2 prz and V; is the flutter speed. The ply
orientation angles are used as the design variables (x) in the
algorithm to give the maximum flutter dynamic pressure.

Figure 2 shows the present multidisciplinary computation
procedure based on the coupling technique among genetic algorithm,
finite element and aeroelastic analysis system.
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Fig. 2. Computational road map for the flutter optimization of laminated
composite wings.
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Fig. 3. Configuration of flat and curved composite wing.
5. Results and Discussion

In order to achieve strong potential for the practical application
to realistic wing structures, the numerical algorithm and
computational analysis system is practically designed. Developed
aeroelastic computation system can be integrated with inhouse
code or commercial finite element programs for linear and
nonlinear composite structures. In this study, structural dynamic
analyses of laminated composite curved wing models have been
conducted using the MSC/NASTRAN (Ver.2005) which is a well-
known and fully verified commercial finite element program. The
curved wing structure is modeled using quadrilateral (CQUAD4)
plate element with PCOMP entry to impose the composite material
properties. The geometric configuration of the present curved wing
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model is presented in Fig.3.

Quadrilateral elements
Ty ; (4 node)

Fig. 4. Finite element models of flat and curved wing structures.

Figure 4 shows the corresponding finite element models for
composite wings. The root chord of the wing is fixed in order to
impose structural boundary conditions. The composite material
properties used here are E;=138 GPa, E>=9.7 GPa, G2=5.5 GPa,

v12=0.28, p=1,543 kg/m3 and ply thickness is 0.125 mm. The total
number of plies is assumed as 32 and among them 24 inner plies
can be changed according to the computational iteration coupled
with the genetic algorithm. The lamination sequence is practically
assumed as a symmetric lamination of [0/90/45/-45/...0y,...]s. The

variable angles of sets are practically selected based on the

combination of 0°, 30°, 45°, 60°, and 90° ply orientations which is
measured clockwise from the x-axis line. Symmetric flow
boundary condition on the x-z plane is assumed for the unsteady
aerodynamic analysis. The flight condition is assumed as sea-level
with the free stream Mach number of 0.7.
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Fig. 5. Comparison of natural frequencies.

In the application of genetic algorithms, the variable ply angles

considered is expressed in binary number such as: [0]=000,
[30]=001, [-30]=010, [45]=011, [-45]=100, [60]=101, [-60]=110,
and [90]=111. Numerical computations have been conducted using
a server computer: Intel Pentium-D Processor 3.0 GHz, 2 GB
DDR2 RAM and 240 GB HDD. The total run-time of the
converged solution for each case using the standard genetic
algorithm is about 33 hours for 20,000 iterations but the total run-
time using the micro genetic algorithm is just about 1.67 hours for
1,000 iterations. One of the parameter sets used for micro GA is
that the population size is 5, number of children is 1, crossover
probability is assumed as 0.5, and elitism concept is used.

Figure 5 represents the comparison of natural frequencies for
the isotropic and composite wing models. For the isotropic curved
wing model presented in Fig.5(a), calculated natural frequencies
show very good agreement with the experimental data'®. For
composite wing models, comparison of natural frequencies is
given in Fig.5(b). Here, it is found that the natural frequency of
curved wing model is generally lower than that of the flat wing
model. Furthermore, natural frequencies for optimized composite
wing models to achieve a maximum flutter dynamic pressure are
higher than those of not optimized composite wing models.

Mode 3 (24.55 Hz) Mode 4 (35.4 Hz)

(a) Isotropic

Mode 2 (27.54 Hz)

Mode 3 (45.76 Hz) Mode 4 (75.16 Hz)

(b) Composite (Optimized)

Fig. 6. Comparison of natural mode shapes.

Figure 6 shows the comparison of natural vibration modes
between isotropic and composite curved wings. For the isotropic
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curved wing model, mode 1 is a typical first bending mode, mode
2 is a first torsion mode, mode 3 is a second bending model, and
mode 4 is a second torsion model. The natural mode shapes of the
optimized composite curved wing model are similar with those of
isotropic model. However, it can be noted that the mode shapes of
composite curved wing model has some combination of bending-
torsion mode.

Table 1 Comparison of optimized flutter solution

Flutter
odel ) Drvnamic Flutter
nae Staclang Sequence yn Freq.
Case Pressure 2
wpy | @
Isotropic
Curved Ni& (AL6061-Ta) 2.58 .72
witg
Mot [/20/45/-45( 8. ]s 715 1592
Optimized | 8= 0/0/0A/0/0/0/0/0/0/00 : )
Oﬁ}“.“md [0/P0/45/- 45/ B ]s
o 5’;18 4 0 =45/45/45/ 45545 16.47 2043
E‘é: Aﬂ‘ 30/45/60/-60460/-30/30
Optimized [/90/45/- 45 8. ]s
Using B =45/ 45060/~ 45/ 60/ 451 1648 | 2062
Micto (34 A5/45/-30/90/30/43
Computational results for optimum flutter design are

summarized in Table 1. It is shown that the optimized flutter
dynamic pressures are extremely higher than the case of the
isotropic model under the condition of the same structural weight
and aerodynamic shape. Flutter dynamic pressure of the isotropic
material case is just 2.58 kPa. The flutter dynamic pressure of the
initial composite wing models (flat and curved configuration) are
higher than the case of the isotropic material model under the same
weight and shape condition. This result basically indicates the
benefits of composite material properties and characteristics
compared to the isotropic materials. Moreover, the flutter dynamic
pressure of optimized composite wing is 6.4 times greater than that
of the isotropic wing model. Optimized results practically show
that nearly same maximum flutter dynamic pressure by standard
genetic algorithm can be also obtained using the efficient micro
genetic algorithm.
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Fig. 7. Computational grids used for unsteady aerodynamic computations for
flutter analyses.
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Computational grid used for unsteady aerodynamic calculations
using three-dimensional Euler code with deforming grid algorithm
is presented in Fig.7. The grid is carefully stretched and distributed
in order to decrease the total number of volume and increase the
numerical accuracy. Here, whole computational grid domain is
composed of about 200,000 tetrahedrons.
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Fig. 8 Comparison of surface pressure distribution at the Mach number of 0.7.

Figure 8 represents the comparison of pressure distribution on
the upper and lower wing surfaces. It is noted that although the
present curved wing has a symmetric airfoil section such as NACA
65A010, the pressure distributions on the upper and the lower
wing surfaces are different because of its spanwise curvature effect.
For the isotropic wing model, experimental flutter test data'® is
available. The verification of the present computational flutter
analysis for the curved wing model is presented in Table 2. The
calculated flutter dynamic pressure and frequency using the
developed computational program show good agreements with the
experimental data.

Table 2 Comparison of flutter dynamic pressure and flutter frequency

Model Experitnent Prezent (CFD/CEDY
nde

gp(kPa) | f(Hz) | gpkPa) | fiHz)
Curved wing
(Isotropic) 2.38 9.4 2.16 9.1

On the other hand, to account for physical aspect of structural
responses for both the isotropic and composite curved wing
models, verified advanced computational method based on the
time-domain approach is also applied. Figure 9 shows the
comparison of dynamic aeroelastic responses for the isotropic
curved wing and the optimized composite wing models. For the
response case of the composite curve wing model, one of the
optimized laminations presented in Table 1 is considered:
[0/90/45/-45/45/45/60/-45/-60/45/-45/45/-30/90/30/45] . Here, one

S
can see that the maximum static aeroelastic defection of the
isotropic curved wing is about -0.035 m for the dynamic pressure
of 2.2 kPa while the maximum deflection of the composite curved
wing is just about -0.022 m even for three times higher dynamic
pressure level. Moreover, the dynamic response of the isotropic
curved wing is clearly unstable for the low dynamic pressure level
of 2.2 kPa. However, the optimized composite wing model which
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has the same structural weight compared to that of the isotropic
curved wing still shows the stable dynamic responses even for the
high dynamic pressure level of 6.13 kPa. This result clearly
indicates that the flutter dynamic pressure of a curved missile fin

can be significantly increased using laminated composite materials.
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Fig. 9 Comparison of dynamic aeroelastic responses at the wing tip.
6. Concluding Remarks

Advanced computational methods for multi-disciplinary
aeroelastic analysis are introduced in this article. The developed
analysis system was based on the advanced numerical techniques
such as CFD, CSD, FEM and parallel processing. Also, the design
studies of aeroelastic tailoring were conducted on the laminated
composite curved wing configuration. Using the developed
analysis system, dynamic aeroelastic behaviors of a composite
curved wing configuration were simulated in compressible flow.
As computational demonstrations, the effects of ply orientation
and stacking sequence on the flutter stability have been
investigated and compared with the case of isotropic curved shell
model with the same structural weight. The present results indicate
that aeroelastic stability of a curved missile fin can be significantly
increased using optimized composite lamination under the same
design weight condition.
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