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I. Introduction

Simple and reliable controllers are generally desired for
spacecraft control, because it is very difficult to repair
spacecraft on orbit. Classical control methods, such as PI, or
PID, are simple and still quite often used for spacecraft
control. Those linear control methods are, however, not
adequate for conducting formation flight, which is a key
technology to conduct feature space mission such as space
telescope by multi-satellite, mitigation of space debris from
orbit by flying around, approaching, and grasping the debris
by means of a space robot. Because the motion required to the
satellite conducting formation flying is nonlinear due to
coupling between the attitude and position of the satellite
relative to the other satellites. In addition, the malfunctioning
target satellite is not always cooperative with the chaser, that
is, motion of the target satellite may not be controlled by the
chaser satellite, and is hard to predict because its inertia
properties, which dominate the rotational motion, are not
precisely known by the chaser in advance. These coupling and
uncertainties or device fault situation may make the control
problems more difficult. Thus it is desired to develop more
suitable control methods for relative position/attitude control
problem in space debris mitigation operation and extension of
spacecraft lifespan. Sliding mode control can be such one of
the promising control methods to meet this requirement,
because it has desired properties such as simplicity of design,
control of independent motion, invariance to process
dynamics characteristics, and robustness to external
perturbations. Those desired characteristics lead to wide
variety of operational modes such as regulation, trajectory
control, model following, and observation. Thanks to those
good properties of sliding mode control, a great deal of
applications of sliding mode control to spacecrafts has been
studied up to date. The following are examples: formation
flying, attitude control, space-robot manipulator control, and
two-torque control.

However, by comparing the candidate debris elimination
process or extension of spacecraft lifespan with the properties
of the usual sliding model control method, it is found that the
controllers do not still have sufficient properties for the
requirements. The following are deficiencies of the usual
sliding mode controllers in case of using them for debris
mitigation, or extension of a spacecraft lifespan.

(1) Although it is assumed in the operation that cameras are
used for inspecting the target, a function to prevent the
violation of the chaser's line of sight (LOS) constraint is
not explicitly formulated in the controller.

(2) Although the rotational motion behavior of the target
depends on its moment inertia, and its uncertainties make
the attitude-tracking problem more difficult, an adaptive
law to estimate the moment inertia is not combined to the
controller.

(3) Although it is difficult to repair the satellite on-board
devices on orbit, a case of PWPF modulator fault is not
considered for the two-control torque problem.

The research objective of this paper is to overcome these

deficiencies of existing research by modifying the sliding-

mode controllers. The following two topics are focused: fly-
around motion, and an under-actuated control that may
extend the lifespan of a satellite with malfunctioning RCS.

II.  Fly-around Motion Control Based on Exact
Linearization with Adaptive Law

Research Background

Several schemes have been proposed for attitude control
problems[1-15]. For debris eliminating, fly-around motion
must first be achieved because this motion is suitable for
determining condition of a malfunctioning satellite. In order
to achieve this motion, the development of an advanced
control scheme for large-position and large-angle maneuvers
is needed. Furthermore, if an on-board sensor on the chaser
satellite, such as a camera, is the only means used to measure
the relative position and attitude, tracking control based on
the LOS angles is required. The LOS angles are nonlinear
systems due to the dependence on the relative position and
attitude between the target satellite and the chaser satellite.
Therefore, the position and attitude of the chaser satellite
relative to the target satellite are difficult to control by
traditional linear schemes such as the linear quadratic
regulator (LQR) method and are not able to be controlled
independently if the tracking control is based on the LOS
angles. The sliding-mode control technique is a nonlinear
control method that has been applied in the position and
attitude-tracking problem in [11]. The exact (or complete)
linearization method [12] is another powerful method for
controlling nonlinear systems. This method linearizes a
nonlinear system by utilizing a nonlinear transformation of
state variables and nonlinear feedback terms. Dwyer el
al.[13] have proposed an exact nonlinear controller in which
a reaction wheel is applied to the attitude control problem.
Kida et al.[14] have studied a position and attitude regulation
problem using an exact linearization method. However, their
method was based on the Euler angle representation, and the
singular problem of orientation representation was not
avoided in the formulation. In [15], a method based on exact
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linearization was proposed for the position and attitude controWhere the subscripts ¢ and ¢ denote the chaser and target

problem in which the listing parameter was used to

represent the relative attitude. This parameter is not as
common as quaternions because this parameter is not suitable
for representing the relationship between the angular velocity
and the derivative of the parameter. For this reason, some
terms in the formulation are neglected for the exact
linearization in [15]. Moreover, the inertia of the target
satellite was assumed to be known in [15]. This assumption is
not satisfied in reality, because determining exactly the
inertia of a malfunctioning target satellite in advance is
almost impossible.

In this chapter, an exact-linearization formulation is
introduced, utilizing quaternions to represent the relative
attitude of satellites. In the formation, control inputs are
calculated from the relative position and attitude, line of
sight(LOS) parameters, and the angular velocity of the chaser
satellite, which can be measured on the chaser satellite. In
other words, the control scheme does not require measurement
of the absolute position of the chaser satellite in the inertia
frame. LOS is defined based on the position of the target on a
camera screen on the chaser satellite. This parameter can be
controlled independently from the relative attitude, because
the LOS angles depend on not only relative attitude, but also
on relative position, and are decoupled from the relative
attitude motion by controlling the relative position of the
chaser satellite via the proposed nonlinear control scheme.
The proposed control method is thus suitable for achieving
fly-around motion, as well as multiple spacecraft formation
flight, using an on-board sensor on the chaser satellite.
Furthermore, an adaptive law is added to the present nonlinear
controllers to estimate the inertia ratios of the target satellite.
This law is effective for the case in which the target is a non-
cooperative satellite. The effectiveness of the proposed exact-

linearization method is demonstrated by numerical
simulations.
Model Description

In this chapter, the satellite maneuvering near the target
satellite is referred to as the chaser satellite. Figure 1 shows
the system model treated in this study. When gravitational and
orbital influences such as the Coriolis force are neglected, the
equations of motion and attitude kinematics for the chaser
satellite and the target satellite can be represented as follows:

mcvc +mca)cxvc :fc (1'13)
lo +o.xI.o =t, (1-1b)
. 1
%=§QMU% (1-1¢)
my,+mao,xv, = 0 (1-2a)
Lo +o,xIo,=0 (1-2b)
o1
q,= Q(a)t)qz (1-2¢)

2

satellite, respectively, f.

. and f_ are the control forces and
torques, respectively, given to the chaser satellite, 7, v, @
and ¢ are the position, velocity, angular velocity and
quaternions, respectively, of the satellites in their body-fixed
frames, m and [ are the mass and the inertia tensor,
respectively, of the satellites and

X

-0 o
Q(w) = 1-3
@=_" (1-3)

The notation Xx*,x =[x, X, X, ]" denotes the following
skew-symmetric matrix:

X =] x 0 -—x (1-4)

The , elements of the quaternions
9=1G4,1 =[4,-9,-95,9,]" are defined as follows:

q, = A, sin(f/2 (1-52)
q, = A, sin(f/2) (1-5b)
q; = A, sin(f/2) (1-5¢)
q, =cos(f/2) (1-5d)

where 4 =[4, 4, ﬂg]T is the direction cosine of the Euler

unit vector and /3 is the rotation angle about the Euler vector.
Any set of quaternions satisfies

~T~ | 2

g q+q;=1 (1-6)
In this study, differences in position, velocity, and angular

velocity between the chaser and target are defined in the
frame of the chaser satellites as follows:

r=r.-Crn, (1-7)
v, =v,.—Cy, (1-8)
w,=0,-C o, (1-9)

where C f is the direct cosine matrix between the body frame
of the chaser satellite and that of the target satellite. This
matrix can be represented using the relative quaternions as
follows:

th = (qu4 - é:@e)Um + 2q~gé: - 2qe4 éz

where U, ; is the 3x3 unit matrix. The attitude error is

(1-10)

defined as follows:

9, =0,(q,)q.

where

(1-11)
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9Uss—4 —q
o(q=" 3~3T
q q,

It is not difficult to show that the attitude error satisfies the

following equation:

G.4.+q:s =1 (1-13)
Since Eq.(1-1c) or Eq.(1-2c) can be used to represent the
kinematics of the attitude errors between the chaser satellite
and the target satellite, the first derivative of quaternion
errors is obtained as follows:

(1-12)

1
CLZEQ(%)% (1-14)
Equations (1-13) and (1-10) indicate that when ||, [|’=0,
the direct cosine matrix C; becomes the eigen matrix
(=U,,;). From Eq.(1-14), the angular velocity error can be
represented using the quaternion errors (g, ) as follows:

a)e = 2|:qe4U3><3 _q: _qe:lq.e (1_15)
Thus, the attitude errors and angular velocity errors become
zero when || G, || and || g, || become zero. The objective of
the following section is to obtain a nonlinear transformation
and a feedback control which can convert the nonlinear
system into an exact-linearized system. First, the definition
of line of sight parameters will be explained. Second, the
state vector will be defined, and the corresponding
derivatives will be derived. Finally, an exact-linearization

feedback controller based on the LOS parameters will be
derived.

Chaser Satellite

Target Satellite
Maneuvering

~

Observing the specific
surface of the target

Spin, or nutation,
or tumbling

Fig.1 Schematic view of fly-around motion

Line of Sight Parameter

In this section, the definition of line of sight (LOS)
parameters as applied in this chapter will be explained. The
following assumptions are made: (1) the direction of the
camera sight is coincident with the —x direction of the
body frame of the chaser satellite, (2) the relative distance of
the target in the x direction and the velocity of the target on
the camera screen can be sensed by the chaser.

Although the LOS angle is usually referred to as the relative
angle between the sight direction of the camera on the
chaser satellite and the direction from the chaser to the target,
the LOS angle parameter is defined in this paper as follows:

T
7
Lang :|:rex dy dz:|T =|:r8x 5= Sre;z:| (1-16)

r r

ex ex
where s is the focus distance of the camera, and d, and d_

are the y and z coordinates, respectively, indicating the
position of the target on the camera screen, as shown in Fig.2.
Note that s can be set as 1 without loss of generality.

The first and second derivatives of the position error can be
represented using the position and velocity of the target on
the camera screen as follows:

ddr,) .
Fo, = =d)f +d 7, (1-17a)
ddr,) .
Fe, :T= dr, +d r., (1-17b)
Fo,=d g, +d i +2d,F (1-18a)
Fo.=dr, +d i +2d i (1-18b)

Solving the preceding equations with respect to y and

d . > one has
d,=—Fi.+Pi.,-2Pd,r. (1-19a)
d.=—Pi#. +Pji, =2P 4 j. (1-19b)
where P, P, and P, are, respectively,
1 e, 1 r 1
P=—, P=—=—d, P=-%=—d_(1-20)
T Te,  Tex .. T

X x x

NQ‘
!
T P
Y R g

Camera screen

Fig.2 Definition of the line of sight

Relative Attitude
The derivative of quaternion error (Eq.(1-14)) can be
rewritten as follows:

o |
qe=5Qz(qe){wc}+5Q3(qe){wt}

where

(1-21)
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g U . +3 G

0,(q,) =| 17 T e e (1-220)
L _qe qe4
—4.Uss+7. 4.

O(g,)=| 17T e 4o (1-22b)
L qe qe4

{o} =[o" 0] (1-23)

The second derivative of ¢, is obtained from Eq.(1-21) as

follows:

1. 1 .
=5Q(qe){ o+ 2Q(qe){m}

(1-24)
The first three elements of the preceding derivative, éjg, can

Qz(qe )+ Q,(qe )@

be rewritten as follows:

ée = E](qe)wc + E1(qe)d)c - {Ez (qg)wt +E, (qc)wt}

(1-25)

where

1 o
£ =5(4.Uss +4.) (1-262)

1 .
E, = E (4..U35—4.) (1-26b)
From Egs.(1-1b) and (1-2b), one has
o.=1"'(~o'lLw +t) (1-27)
o =1 (~olo,) (1-28)

State Variables
It is assumed that the angular velocity of the chaser satellite
can be measured on the chaser satellite using a device such as
an inertia reference unit (IRU). Let parameter x consist of the
angular velocity of the chaser satellite, relative position and
attitude between the chaser and the target satellite, and the
relative velocity and angular velocity as measured by the
chaser satellite, as follows:

oyrogrovr

T
T

I T o | (1-29)

and the error vector, which is used to represent the difference

between the state of the chaser and that of the target satellite,

be defined as follows:
T
" } (1-30)

In addition, it is assumed that the position of the chaser
relative to the target satellite in the X -direction of the body
frame of the chaser, the LOS parameters, the relative attitude,
and the derivatives of these variables can be measured on the
chaser satellite. Under this assumption, the state vector X is
defined as follows:

x=o

T ~ T
e:[r g v

e e e

A [T AT AT T
X=X X X3 Xa

r d d g qq.d] 0

Using Eqs.(1-29) and (1-30), Eq.(1-31) can be rewritten as
follows:

where

x=T(x)e (1-32)
R 03><3 03><3 03><3
" ol 0|
O,; Oy Oy E(q,)
1 0 o
R=[0 1/r, 0 (1-34)
0 0 1/r
10 0
P=|-P, P. 0 (135)
-P 0 P,

Nonlinear Control for Exact-Linearization
Let a nonlinear feedback control that includes forces and
torques be as follows:

/. :{al(x)j|+{ﬂ11(x) ﬁn(x)}{ﬁl} (136)
! a,(x) Boi(x)  Brn(x) ][4
where a,(x) and a,(x) are vectors € R’ ,B”(x)

c
B, (x) B,,(x) and ,322 (x) are matrices € R , and 7,
and g3, are vectors € R?. From the preceding equatlon one
has

1, =a,(x)+ [ﬁzl(x) P (x)]{gl}

First, in order to obtain the nonlinear feedback torques, 7_,
substituting Egs.(1-27) and (1-37) into Eq.(1-1b), and letting
the left-side of the equation become jj, , the nonlinear
functions for the exact linearization, &,(x), f,,(x) and
., (x), are obtained as follows:

=X L E QN EG)a+E@)a) ~LE @EG)?

(1-37)

(1-38)
B (x) =0, (1-39)
B (x)=1.E(q,) (1-40)

Next, in order to obtain the nonlinear feedback forces, f,,
one needs to consider the second derivative of 7, d and
d. . The second derivatives of these Varlables can be
represented by the second derivative of 7,, and 7, can be
represented in the terms of 7, d and d Thus in this
section, the second-derivative of r 1s con51dered temporally
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instead of the second-derivative of 7, , dy and d_, and the
nonlinear feedback control force, which converts the position
errors between the chaser and target satellites into an exact-
linearized system. The first and second derivatives of 7, are
represented as follows:
Fe=V,—0. XT, (1-41)
Lo : :
ré‘z_»fc_2a)cxr€_a)cx(a)cxre)_a)cxre
m,
(1-42)

where Egs.(1-la), (1-2a), (1-7) and the relation
Cl=Clw* (i=c ort)areused.
Substituting Egs.(1-27), (1-37), (1-38), (1-39) and (1-40) into

Eq.(1-42), one has

1
Fe=—f =20, %j.~0,x(0,Xr,)
m

c

~E ' (g){E,(§ )0, + Ey(q,)e. ) %7,
+E(4)E(§ )0, <1, —E(q,)inxr,  (1-43)

From Eq.(1-36), the nonlinear feedback control force is
represented as:

£ =a,(0)+[ A, @) Mx)]m

Substituting this control force into Eq.(1-43) and comparing
both sides of equation in order to convert the relative position
system into an exact-linearized system, the nonlinear
functions ¢,(x) , f,,(x) and pS,(x) are obtained as
follows:

a,(x)=2m.w,xj,+maw,x(o,xr,)
+mcE171 (qe){EZ (q.e)a)t + E2 (Qe)a)t} X re

(1-44)

-m.E(q,)E,(¢,)o, xr, (1-45)
Bu(x)=mU,,, (1-46)
ﬁlz(x) = _mc”eXEfl (q.) (1-47)

Note that the preceding feedback control forces are used to
convert the relative position system, rather than the LOS
parameters, into an exact-linearized system. Therefore, an
additional nonlinear feedback term and a transformation
matrix are still necessary in order to exactly linearize the LOS
parameter. In order to obtain the required term and matrix, let
the position control force be considered by adding a nonlinear

term ¢, and matrix D as follows:

i
f.=a,(x)+ e, (x)+[ B,,(x)D ﬂu(x)][A }(1-48)

Uz
Substituting Eqgs.(1-45), (1-46), (1-47) and (1-48) into Eq.(1-
43), and taking Eqs.(1-19a) and (1-19b) into consideration, the
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additional nonlinear term ¢, and matrix D can be

obtained, respectively, as follows:

0
al (x) = 2mc’;€xdy (1-49)
2mc I;'exdz
D=p" (1-50)

where P is a matrix defined in Eq.(1-35), and is invertiable
if 7, is not zero, that is, if the difference between the chaser

and target satellites in the x direction of the chaser body
frame is not zero.

Consequently, an exact-linearized system and the nonlinear
feedback control inputs for exactly linearizing the system,
that consist of the LOS parameters, the relative attitude and
their derivatives, can be represented as follows:

=A%+ Bi (1-51)
where
03><3 03><3 U3><3 O3><3
~ 10 (@) O. U
A — 3x3 3x3 3x3 3x3 (1_52)
O3><3 03><3 O3><3 03><3
7O3><3 03><3 O3><3 03><3
03><3 O3><3
.~ 10 0.
B=| ¥ 79 (1-53)
U3><3 O3><3
703><3 U3><3
a,(x)| |2mo,xj,+mo, x(o,xr,)
a(x)= +
03><3 a)c x ]ca)c

m E;N(q,)E,(¢,)o, <7 |
+mcl(qe) Z(qe)t re+

{”,/ZCE']_1 (qe )E2 (qe )d)l X re
IL'Efl (qe)E2 (qe)mt

LE(q,)E,(q,)a

|

m.E " (q,)E (4,)®, %,

- P : (1-54)
L IcEl (qe )El (qe)a)c ]
_ x -1
Oy LE'(q.)

From Eq.(1-54), it is found that the nonlinear function &(x)

includes the derivative of the angular velocity of the target
satellite. This derivative can be estimated using Eq.(1-2b) if
the inertia of the target is known and the angular velocity of
the target can be sensed. The case in which the inertia of the
target is known is almost never satisfied in reality, because
the target satellite is assumed to be a malfunctioning, non-
cooperative satellite. In order to overcome the problem of the
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preceding formulation, an adaptive law to estimate the inertia of
the target will be described for a simple case in the next section.

After linearizing the system, any type of control method, such
as LQR, can be employed for the exact-linearized system.
However, the preceding linearizing formulation requires that
matrices E, and P are not singular, which
occurs when elther q,, or r, is zero. Applying the LQR
method to the preceding exact linearized system cannot
guarantee these requirements. The former singular case can be
easily avoided by employing techniques, such as perturbation of
the quaternions with small values or skipping control for a short
period near the singularity. In the next section, the controller for
avoiding both singular cases will be derived from a Lyapunov
function that includes a repulsive potential for avoiding both
singularities. The attitude part in the controller is basically
equivalent to that in [15].

Design of Adaptive Law

In this section, an adaptive law for estimating the inertia ratios
of the target satellite is designed under the assumption that the
principal axis of the target satellite is coincident with its body
axis, and the inertia tensor of the chaser is known exactly.
This assumption is at least necessary. This is because the
inertia ratios are dominant parameters for the rotational
motion of a rigid body, and it is impossible to determine the
orientation difference between the body frame and principal
axis frame from only the angular velocities. The objective of
the law is to improve the performance of the preceding exact-
linearization controller. Attitude tracking error, and the
velocity and angular velocity of the satellite are used to update
the inertia parameters in this study. In order to quantify the
parametric mismatch, the parameter estimation error is
defined as follows:

k=k—k (1-56)
where k is constant, unknown vector of the inertia
parameters and is defined as follows:

; ( 22 ;33)/]
k=\k, k, k| =y—1,)/1y (1-57)
( - t22)/1
Let 77 and o be defined, respectively, as:
n=ax+x; (1-58)
O-:b_)’(\:2+),(\f4 (1-59)

where a and b are constant, positive, definite, diagonal
matrices or are simply constant scalars, x,, x3 and x, are

defined in Eq.(1-32), and x; is defined as:
. T
f=|n, - d, d]

A candidate Lyapunov function is selected as:

(1-60)
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1 1 1 |
V:577T77+EO]G+51{ — / J +— ]x2 2/(1 )’g)%z +§k G_lk

(1-61)
where G is a constant positive definite diagonal matrix.
Taking the time derivative of the preceding equation, one
has

V=ifipd o, (- Yo+ (-5 Gk
(1-62)
Control inputs g3, and j;, are designed as follows:
u=—axs—cn+i, (1-63)
i, =-bxs—do+i, (1-64)
where 77, and g3, are, respectively,

T
0= [—irc(l—rc/lgl)/rj 0 0] (1-65)
o =—j&/(1-31%,)" (1-66)

Substituting Eqgs.(1-58)-(1-60), and (1-63)-(1-66) into
Eq.(1-62), and taking the parameter mismatches (Eq.(1-
56)) into account, the time derivative of the candidate
Lyapunov function can be rewritten as follows:

V=—dir(s; .Y} 505 z)z—afn—doro#kTGfmfo#-G*k)

(1-67)
where
Y, =r'NE,W (1-68)
Y, =—E,W (1-69)
W =diag(w,,0,;, 0,,0,,»,0,,) (1-70)

If an adaptive law to estimate the inertia ratios of the target
is designed as:

k=-GY/n+Y! o) (1-71)
the time derivative of the candidate Lyapunov function
(Eq.(1-67)) becomes
V=—dir(r, 1)’ It} ~bjz 3/ (-3 2) ~af n-do’ o
(1-72)
If the following conditions are satisfied at the initial time
A ~ ~T o ~
r, (0)>0 and £,(0)" £,(0)(=7,(0),(0)) # 0
(1-73)
From Egs.(1-61), (1-67) and (1-73), it is easily shown that
0<V(@)sV(0)<ow (1-74)
Thus, it is clear that 7, (¢)#0 and || q,(¢)]|,#1 for all
time. Therefore, NV, (X2) is always invertible, and 7, is
always positive. ThlS means that if the target can be seen on
the on-board camera installed on the chaser satellite at the
initial time, the target never escapes the camera screen as
long as the control inputs (Egs.(1-63)-(1-66)) and the
adaptive law (Eq.(1-71)) are employed. In addition, it is
obvious from Eq.(1-72) that 7, convergesto 7, and d , d_,
dv R dz s Fe s 4, and q asymptotlcally become zero as
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time increases, that is, the chaser satellite can fly around the
target satellite, tracking the attitude motion of the target
correctly and maintaining the specified distance 7, from the
target.

The estimated inertia ratios of the target satellite,
k=[f, ]éy ]QZ]T are obtained by integrating the following
equation based on the adaptive law (Eq. (1-71)):

A A t ~
k(t) = k(0) —jo kdt
where /2(0) is the estimated inertia ratios for the target
satellite at the initial time.

(1-75)

Numerical Simulation

A. Simulation Parameters
Euler rotational motions are classified into four types
according to the inertia ratio and angular velocities
assuming no internal or external forces or torques on the
rigid body: (1) non-symmetric rotational motion, (2) non-
periodic rotational motion, (3) symmetric axis rotational
motion, and (4) single-axis rotational motion. In this study,
only a symmetric axis rotational motion is examined as the
target attitude motion.
The validity of the proposed adaptive position and attitude
tracking controller based on the exact linearization is
verified numerically, compared with the position and
attitude tracking controller without the adaptive law,
where the chaser satellite is controlled to synchronize its
attitude with that of the target satellite and to maintain its
relative position to the target at some constant distance so
as to avoid collisions with the target. The parameters of
the numerical simulations are listed in Table 1.
The following numerical simulations are conducted.
e Case (a) The adaptive law to estimate the
inertia ratios of the target satellite is not
employed, even though the model parameter for
the inertia ratios of the target satellite includes
some errors.
e Case (b) The adaptive law to estimate the
inertia ratios of the target satellite is employed.
The position of the target is assumed to be on the origin in
the inertia frame for all cases. The angular velocities of the
target about each axis are chosen as 0.1 rad/s at the initial
time.

The performance of the adaptive law is assessed by
setting the initial estimated inertia ratios of the target at the
same erroneous value for Cases (a) and (b). As mentioned
previously, the proposed controller is an adaptive sliding-
mode controller including repulsive control inputs to avoid
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singularities. These repulsive control inputs could have an
undesirable influence on the adaptive law used to estimate
the parameters. Thus, in the present study, parameters I
and j are set small (i.g., 0.001) so as to avoid to the

greatest extent possible the effect of the repulsive control
inputs on the adaptive law.

B. Simulation Results

The time response of the inertia ratios for the target as
estimated by the adaptive law is shown in Fig. 3. The
results for Cases (a) and (b) are shown in Figs.4 and 5,
respectively. Each figure shows the time responses of LOS
errors, quaternion error, control input force and control
input torque for the chaser satellite. LOS errors are
completely eliminated, but the attitude errors are not
completely eliminated for Case (a) even after a long time
(i.e. 500 s). This is because the controller for Case (a) does
not include the adaptive law, and some errors are
contained in the model of the target satellite. On the other
hand, although the attitude errors for Case (b) change
dramatically at the beginning of a tracking maneuver, the
errors are completely eliminated after approximately 100 s,
as shown in Fig.5. The correct values of the inertia ratios
for the target are k,=-0.5, k, =05, and k. =0.

The estimated inertia ratios converge to the correct values
after approximately 150 s. From a comparison of Fig.4
with Fig.5, and taking the convergence of the estimated
inertia ratios for the target satellite into account, the
inclusion of the adaptive law improves the tracking
performance of the exact-linearization controller
effectively.

0 50 100 150 200 250 300 350 400 450 500
e [s]

:gtimated inertia ratios for the ta:

Fig.3 Time response of the estimated inertia ratios of
the target satellite.
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Table 1. Parameters for numerical simulations.

inertia target I,=10 1,=10 I,=15 kgrn2
chaser 300 -30 -50 m, =500 kg
I,=|-30 400 -40 kgm’
=50 —40 300
Initial target _ T _ T
state r=[0 0 O]T m ¢=[0 0 0 1] .
v,=[0 0 0] m/s @,=[0.1 0.1 0.1] rad/s
chaser | . =[10 0 0 m @, =[0 0 (}]ﬁrad/s .,
v=[0 0 o mis q.=[0 0 2/2 V2/2]
gains a=b=c=d=0.1, i=j=0.001 G=4x10'U,,
5 T o T
1= d: e
4 dz ............. 4
E 8
o
: 8
5 2 d
H 4 -
-1
-10 5IU 100 1;0 ZEI)D 250 300 350 460 4;0 500 0 50 1;'.‘0 1;0 2*;0 250 3(IJU 35I0 4;]0 4;0 500
t [s] t [s]
400
E 300 g
§ 200 .I %
S 100 f 5
| 4
f -100 { %
?; -200 ' '-g'
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S -300 §
B 0_52‘ 100 150 200 2;0 3‘.30 350 4EINJ 450 500 0 SIU 1(;0 1;')0 2‘.:!0 2;0 3;'.'0 3EI|U *NI]O 450 500
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Fig.4 Time response of LOS error, quaternion error, and control input forces and torques for case (a).
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Fig.5 Time response of LOS error, quaternion error, and control input forces and torques for case (b).

III.  Stabilization of Angular Velocity of
Asymmetrical Rigid Body Using Two Constant
Torques

Research Background

The problem of stabilization of angular velocity using
less than three control torques has been investigated by
several authors[16-26]. The present system can be
stabilized by nonlinear control schemes, which may be
categorized into three types: time-varying control
schemes, discontinuous control schemes, and time-
invariant control schemes. In those studies, it is assumed
that an arbitrary magnitude of the torques can be fed to a
satellite to attenuate its rotational motion using gas jet
thrusters employing the Pulse Width Pulse Frequency
(PWPF) Modulator. If thrusters provide two control
torques without the use of PWPF, then the magnitude of
the torque does not linearly respond to the input
magnitude, and, indeed, is constant. No previous studies
have considered this special case. If a control scheme
could be derived for this case, then the resulting control
method can facilitate a reduction in the use of PWPF
modulation from satellites, or can form a backup system
in the event of malfunction of the PWPF modulators,
subject to the two-control-torque problem.

In this chapter, provided that the model uncertainties
and external disturbances are neglected, a constant
control torque method to attenuate the rotational motion
of an asymmetric rigid body is proposed. The proposed
control method is classed as a discontinuous and open
loop control method. Because the magnitude of the
control torque is constant, that is, it can only be applied

On-Off, and the control timing is pre-determined. In this
chapter, the set of angular velocities of an asymmetrical
rigid body achievable by employing a single constant
control torque is defined as “constant-torque-manifold”
or simply referred to as the manifold. In the case when
only a single constant control torque is used, this
manifold can be analytically obtained by integrating the
equations of motion backwards in time from the angular
velocities that are accessible to the origin by employing a
single constant control torque, where the set of angular
velocities that can access the origin by a single constant
control torque is hereafter referred to as a transient goal.
A trajectory resulting from the proposed control method
consists of three steps: If the polhode starting from initial
angular velocities has intersection points with the
manifolds, then the rotational motion does not need to be
either boosted or damped. On the other hand, if the
polhode starting from the initial angular velocities has no
intersection points with the manifold, the rotational
motion must be boosted around the maximum or
minimum principal moment of inertia and damped
around the middle principal moment of inertia to ensure
that the trajectory has at least one point intersecting the
manifolds. The first step is thus given by the trajectory of
the angular velocities to an intersection point with the
manifold,  without the control torques, or
boosted/damped by the control torques if necessary. The
second step is a trajectory sliding on the manifold, by
means of a single constant torque, until the transient goal
is reached. The final step is a trajectory from the
transient goal to the origin. The control timings,
durations and the sign of control torques can then be
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determined by calculating the intersection points
between the manifold and polhode or the
boosted/damped trajectory, between the trajectory sliding
on the manifold and the transient goal, and between the
single spin motion and the origin. A schematic
representation of these trajectories is shown in Fig. 6.
The idea of the constant-torque-manifold for stabilization
of the rotational motion of an asymmetric rigid body is
inspired by [27], which describes a method to obtain a
trajectory of the angular velocities of an asymmetric
rigid body when a single constant torque is employed
along either the maximum, minimum, or middle
principal moment of inertia axis. Contrary to the robust
feedback schemes[24-26], a demerit of the proposed
method is that it is not robust to the modeling errors, and
external disturbances. On the other hand, a merit of the
proposed method is that it can easily estimate the
convergence time. This is because the manifolds are
obtained analytically and the dynamic control problem is
converted into a kinematics problem of the calculation of
intersection points between the manifolds and polhode or
boosted/damped trajectory, and this converted problem
can be solved by the bi-section method. Results of a
numerical simulation of the present method applied to a
test problem are given later in this chapter to show that
the complete attenuation can be achieved by using the
proposed manifold, provided that external disturbances
and modeling uncertainties are absent, and the
intersection point between the manifolds and polhode or
boosted/damped trajectories is completely obtained.

Problem Statement and Equations of Motion

Throughout this chapter, it is assumed that the principal
axes of a satellite are coincident with its body frame
coordinates. Because in this chapter, only the case of an
asymmetrical rigid body, principal moments of inertia

satisfy j, # J, # J; is treated. Without loss of

generality, it is assumed that j, > j, > j, . Referring to

[27], the equation of motion can be rewritten in the form

€, ({)Polhode
4 / (=control free)

—\ - Gmanifold

origin
(=goal pomt)

a)l
o, @single spin
accessible to the origin
Fig. 6 Schematic view of the trajectory resulting
from the constant control torque method.

!

X Xy X3 H
! J—

Xy | =] =X, [+]| K,y (2-1)
!

X3 XX, H

where ()’ denotes the derivative operator d()/dt
where 7 is the scaled time, (X;,X,,X;) is the scaled
angular velocity vector and (44, i4,, i4;) is the scaled
constant torque vector. The detail of the variable
changes is described in [27]. In this chapter, the
derivation of a control method using less than three
constant control torques that can attenuate the
rotational motion of an asymmetric rigid body is
considered.

Constant Control Torque Method
A. Transient Goals and Constant Torque Patterns

If the angular velocities along the uncontrolled axis and
one of the remaining controlled axes are both zero, then the
system is both controllable and accessible to the origin.
This situation, which is a single spin motion around the one
of the controllable axes, can be therefore treated as a
transient goal. In this paper, the control torques are assumed
to be generated by gas jet thrusters without using PWPF
modulators. In this case, the torque takes a plus or minus
sign, or can be zero in magnitude (i.e. switched off), and the
total number of combinations of the signs of the thrusters is
nine. Although all the above sets of signs of the control
torques can be used to generate manifolds, the analytical
manifolds can be obtained only for the case when a single
constant control torque is not along one of the principal
axes corresponding to the single spin motion. Therefore in
this chapter, only this case will be considered.
Because there exist three possibilities for the uncontrolled
axis; the maximum, middle, or minimum principal moment
of inertia, and there are two cases for the single spin motion
around the controllable axis, there thus exist six cases for
generating the manifolds, as listed in Table 2.

B. Manifolds

The manifolds can be obtained by integrating the equations
of motion backward in time from transient goals with the
employment of a single constant control torque. With
reference to [27], and taking the angular velocities of the
transient goals into account, the manifold for each case in
Table 2 can then be analytically obtained as follows:

(D x; =2u,0 — A’ sin* @ (2-2a)
x, =—Asinf (2-2b)
x, = Acosd (2-2¢)
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Table 2. Transient Goals.

maximum middle minimum transient goal*
(I) constant torque uncontrollable controllable x(0)=0,x,(0)=0,x,(0)#0
(IT) constant torque controllable uncontrollable  x,(0)=0,x,(0)#0,x,(0)=0
(111) uncontrollable constant torque controllable x,(0)=0,x,(0)=0,x,(0) =0
(IV) controllable constant torque uncontrollable  x,(0) #0,x,(0)=0,x,(0)=0
(V) controllable uncontrollable constant torque  x,(0) #0,x,(0)=0,x,(0)=0
(VI) uncontrollable controllable constant torque  X,(0)=0,x,(0)#0,x,(0)=0
*axis 1: maximum, 2: middle, 3: minimum
Note that the periodic parts of the manifolds are shown
I xl2 =210+ A’sin’ 6 (2-3a) in Figs. 7(a) and 7(b) as open ones due to the limitation of
the programming code based on Mathematica .
x, = Acos 0 (2-3b) C. Calculation of the Points of Intersection with the
x,=A siné@ (2-3¢) Manifolds . .
. Let & be the parameter given by ¢ = H*/2FE , where
) - x, = Asinh 6 (2-4a) H is the magnitude of the angular momentum given by
x> =24,0 — A’ sinh* 0 (2-4b) H :\/(jlwl)z +(joo, )’ +(j3.a)3.)2 ,and E is the rotational
energy of  the rigid body given
x; = Acosh@ (2-40) E= ( Jiok+ j,0, + jyo2)/2 . The intersection points

where @ is the parameter determined by integrating the
angular velocity along the constant control torque
backward in time associated with the initial condition
6(0)=0, and A is the parameter to describe the scaled
angular velocity of the transient goal. Note that the
manifolds for cases (IV), (V), and (VI) are omitted here,
because when X; is swapped with Xx;, the manifolds for
cases (IV), (V), and (VI) are the same as those for cases
(I10), (1), and (II), respectively. In cases (IT) and (VI), € is
not limited and the trajectories on the manifolds are open
and non-periodic. In cases (III) and (IV), @ is limited and
the trajectories on the manifolds are always closed and
periodic. In cases (I) and (V), the trajectories on the
manifolds are open or closed, depending on the parameter.
Let £ be a parameter defined as f:= | ,U;|/ A% to simply
obtain the separatrix between the closed and open
trajectories on the manifolds for cases (I) and (V). Solving
the  equations  f(f3,0):=2B0-sin®@=0 and
f,(B,0):=28-2sin6cosd =0 with respect to [ and
0 yields B =0.362306 and 6 =1.16556 . The scaled
angular veloci*ty of the transient goal corresponding to the
separatrix, 4 , is given by 4 _ ,[/5 - Note that if
S>3, then @ for cases (I) and (\)3“1‘5 got limited, that is,
the trajectories on the manifold are open and non-periodic.
On the other hand, if < /3, then @ for cases (I) and
(V) is limited, that is, the trajectories on the manifold are
closed and periodic. The upper bounded value of
parameter @ can be determined by imposing the condition
that the angular velocity around the constant control torque
equals zero with respect to @ for cases (IIT) and (IV), and
under the condition 8 < 8 for cases (I) and (V).

Figures 7(a), 7(b) and 7(c) show the manifolds for cases
(D, (IIT) and (VI), respectively, where the scaled control
torques are assumed to be unit for the sake of simplicity.

between the polhode or the boosted or damped trajectory
and the manifolds can be obtained numerically by using
several
intersection points; one of these points should be selected
according to control criteria, such as settling time or
energy optimality. Because the control input is assumed
to be constant in this paper, the point with the minimum
control duration can be chosen as the energy optimal

the bi-section method. There may exist

solution.

C-1. Calculation of the Intersection Point between the

Polhode and the Manifolds

By replacing the constant control torque with no control
torque, and introducing a new variable |, the polhode
scaled by the variable changes given in [27] can be
expressed in the form of a function of parameter ¥ as

follows:

For the case & 2 j,,

X, =sgn(x,, (0))J X, (0)+%{cos277—008(2(w+ )}

(2-5a)
x,, =Dcos(y +7) (2-5b)
x,3 =Dsin(y +7) (2-5¢)
where
D =/x2,(0)+x,,(0) (2-6a)
n=atan2(x,,(0),x,,(0)) (2-6b)
w(z)=| x,(£)de (2:60)

For the case & < j,, the expression for the polhode can
be obtained by swapping X, with X ; in Eqs.(2-5) and
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(2-6). Note that for the case ¢ = j,, the angular velocities
converge to the one around the middle principal moment
of inertia, and in this case, by solving x =X = 0 with
respect to |/ , the range of parameter ¥/ is limited
between 0 and (sgn(n) + sgn(xpl (0)))7[ /2 — n-

An intersection point between the manifolds and the
polhode can be obtained numerically by solving three
equations X, =X, X, =X, and X ,; = X; with respect
to A, 0, and Y . Note that, as mentioned earlier, the
range of phase parameter & is limited for cases (III) and
(IV), and under the condition 4> A~ for cases (I) and
(V), and that the range of i is limited for the case of
o = j, , This calculation process is repeated until all
combinations of the manifolds corresponding to the
constant control torque along the controllable axis are
completed.

C-2. Calculation of Intersection Point between Boosted
or Damped Trajectory and the Manifolds

If the scaled polhode trajectory has no intersection points
with the manifolds, then, under the proposed method, the
rotational motion has to be boosted or damped until it has
at least one intersection point with the manifold. A typical
example is the case given by a single spin motion around
the uncontrollable axis. If the intersection points exist, then
it is obvious that the angular velocity of an asymmetric
rigid body can be stabilized to the origin by the presented
piecewise steps. A problem left open is whether or not an
intersection point exists between the boosted/damped
trajectory and the manifolds. This problem is briefly
discussed here. Note that hereafter for the purpose of
simplicity, the scaled constant torque is assumed to be unit.
The rotational motion of a rigid body with damping around
either the middle or minimum principal moment of inertia
and boosting around the maximum principal moment of
inertia is likely to converge to a flat spin motion around the
maximum principal moment of inertia. The polhode near
the flat spin motion is a closed loop trajectory around the
axis of X, , the manifold for case (I) is connected with the
axis of x,, and its radius around the axis of X, is limited
within A*J; 1.66135, as shown in Fig. 7(a). The manifold
for case (II) is also connected with the axis of X, , but its
radius around the axis of X, is not limited. This implies that
the polhode satisfying o > j, and [2 4y <|4| always
has an intersection point with the manifold for cases (I) and
(IT), and that the polhode satisfying o« > j, but not
/x22+x32 < A;J always intersects the manifold for case (II).
herefore, if the axis of the maximum principal moment of
inertia is controllable, then to easily have an intersection
point with the manifold for case (II), the following control
method, which boosts around the maximum principal
moment of inertia and damps around the other controllable
axis, should be conducted.

M, =sgn(x,), p, =—sgn(x;) (angular velocity
around the axis of X; is controllable) (2-7a)

M, =sgn(x,), i, =—sgn(x,) (angular velocity
around the axis of X, is controllable) (2-7b)

On the other hand, if the axis around the maximum
principal moment of inertia is uncontrollable, then the
radius of the manifold around the axis of X; is not limited,
and the manifold is connected with the axis of X, , as
shown in Fig. 7(c). Beside, the polhode for the case of
a < J, is a closed loop trajectory around the axis of X, .
This implies that polhode for the case of & < j, always
has an intersection point with the manifold for case (VI).
Therefore, in this case, to have at least one intersection
point with the manifold, the following signs should be
selected for the constant control torques.

My =—sgn(x,), iy =sgn(x;)
Test Problem
An example numerical simulation is conducted to
demonstrate the validity of the proposed control method. It
is assumed that the uncontrolled axis is around the
minimum principal moment of inertia. The parameters for
numerical simulation are as follows: the moments of inertia

(Jis Jos J3) = (15,10, 7) [kgm?], the constant control

(2-8)

torque is T},

vector is (@, (0), ,(0), »,(0))=(1.54, -1.95 -0.58) [rad/s] .-
Firstly, to determine if boosting process is needed, it is
checked if the polhode intersects the manifolds. Two
intersection points between the polhode and the manifold
are found, and they are the angular velocity vectors (1.6296,
1.6329, -1.1622) [rad/s], and (1.6296, -1.6329, 1.1622)
[rad/s], respectively. This means that no control torque is
needed until reaching the manifold. The time response of
the angular velocities, the time history of the control
torques, the trajectory of the time and energy optimal
solution along with the manifold, and the trajectory of the
energy optimal but not time optimal solution are shown in
Figs. 8(a), 8(b), 8(c), and 8(d), respectively. It can be seen
that the angular velocities are successfully controlled to the
origin by the proposed method. The time required to reach
each intersection point from the initial angular velocities is
determined as 1.6848[sec], and 4.1845[sec], respectively.
The energy consumption of the second solution is the same
as that of the first solution, but the first solution was
selected from the viewpoint of the settling time in this
paper. When the angular velocity vector reaches the first
intersect point, the sign of the control torques is determined
to be (-, 0). That is, a trajectory sliding on the manifold is
generated by a negative constant control torque along the
maximum principal moment of inertia.

The constant control torque is employed until the

=120 [Nm], and the initial angular velocity
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Fig. 7 Scaled constant-control manifold for case (I)
(a), for case (III) (b), and for case (VI)(¢c).

uncontrolled angular velocity @, and the one of the
controlled angular velocity @, converge to zero. The time
required to reach the transient goal from the intersection
point is found to be 1.1003[sec]. After the two angular
velocities become zero, the angular velocity of the
remaining controllable axis @, is controlled until reaching
the origin by a negative constant torque along the middle
principal moment of inertia. The time required to converge
to the origin from the transient goal is found to be
1.0222[sec]. The total time required to converge from the
initial angular velocity to the origin is, therefore, given by
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Fig.8 Time response of the angular velocities (a), time
histories of the constant control torques (b), the time
and energy optimal trajectory along with the intersected
manifold (c), and the energy optimal but not time
optimal trajectory along with the intersected manifold
(d) (The start and endpoints of each segment of the
trajectory are indicated by the markers).

approximately 3.8073 (1.6848 +1.1003+1.0222)[sec].

IV. Conclusion

In this paper, sliding-mode controllers have been studied
for two topics related with the space debris elimination: fly-
around motion control, and angular velocity stabilization by
means of two-control-torque.

For the fly-around motion, a linearization feedback
controller based on an exact-linearization method has been
introduced in order to control the position and attitude of a
chaser satellite for the purpose of constellation flight with a
target satellite in the absence of a gravitational field and
other disturbances. The derived controller is basically a
sliding-mode controller, including the potential control
inputs to avoid the singularities that take place when the
line of sight is lost and the target escapes the on-board
camera screen on the chaser satellite, or the attitude of the
chaser satellite is opposite to that of the target satellite. In
order to improve the performance of the proposed exact-
linearization controller, an adaptive law has been provided
for the presence of the inertia ratios uncertainty of the target.
Numerical simulations have been conducted to demonstrate
the effectiveness of the proposed method. The results of
numerical simulations show that the proposed exact-
linearization method with the adaptive law can precisely
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control the position and attitude of the chaser satellite in
order to track those of the target satellite by estimating the
inertia ratio of the target, even if the inertia ratios
uncertainty of the target satellite are included in modeling
at the initial time.

For the two-control torque problem, a constant control
torque method has been proposed for attenuating the
rotational motion of an asymmetric rigid body. The
manifold is defined as a set of the angular velocities of an
asymmetrical rigid body that can approach the transient
goal by employing a constant control torque, and can be
obtained analytically by integrating the equations of
motion backward in time from the transient goal, which is
accessible from the origin by means of a single constant
control torque. The obtained manifold can be used as the
reference state for the sliding mode control. The trajectory
resulting from the proposed method consists of three steps:
First, a trajectory boosted around the maximum or
minimum principal moments of inertia, and damped
around the middle principal moment of inertia by control
torques if necessary (if unnecessary, a trajectory of torque-
free motion (polhode)) until an intersection point with the
manifold is reached. Second, a trajectory sliding on the
manifold, and finally a trajectory along the one
controllable axis until the origin is reached. Thanks to the
analytically obtained manifolds and polhode, the time
required for convergence to the origin can be obtained
numerically by calculating the intersection point between
the manifolds and trajectories. To delete ambiguities of
multiple solutions, the energy optimality and settling time
is considered. The results of an example numerical
simulation showed that the complete attenuation of the
angular velocities of an asymmetrical rigid body can be
achieved by the proposed method, provided that internal
and external disturbances and modeling uncertainties are
absent, and the intersection point between the trajectory
and the manifold is completely obtained.
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