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Abstract
Theoretical studies in the thermally induced dynamic structural response of an asymmetric rolled-up solar 
array and its stability are presented.  Structural response analysis of the solar array subjected to 
deformation-dependent thermal loading was conducted considering with the thermoelastic coupling effect.  
The governing equations and the time dependent boundary conditions are formulated assuming that the solar 
array is heated by the unidirectional radiation and that net heat input depends on the angle of incidence of 
radiation with respect to the array axis.  Quasi-static responses of the solar array induced by external radiant 
heating were calculated, and it was shown that the difference of several percent arose in the steady-state value 
of the tip deflection between the case of coupled analysis and the case of uncoupled analysis.  Dynamic 
responses of the solar array induced by sudden radiation heating for a typical night-day orbital transition were 
determined and the stability of the system was discussed. Variations of the dynamic response are examined. 
The response becomes either a self-excited vibration or a damped vibration with the system parameters such 
as radiation incident angle.   Unstable boundary curves, which divide the parameter plane into regions of 
stability and instability according to the direction of radiation and system damping ratio, are also presented. 

1. Introduction 
The problem of structural vibration due to 

thermal effects was introduced by Boley1), who has 
taken structural inertia effects into account but no 
notice of influences of deformations upon 
temperature distributions. A number of review 
articles2),3) about thermally induced vibrations in 
aerospace applications have appeared. 

A series of research has been done starting 
with the failure of the Hubble Space Telescope solar 
array with a kink about midway along its length. 
Thornton and Kim4) describe an analysis of the 
thermally induced bending vibrations of a symmetric 
flexible rolled-up solar array model. Uncoupled and 
coupled thermal-structural dynamics responses were 
studied using an analytical model restricted to 
symmetric bending deformations of the solar array.   
Chung and Thornton5) focused on a torsional analysis 
of a symmetric FRUSA model. A torsional buckling 
analysis was conducted using an analytical model 
restricted to antisymmetric torsional deformations of 
the solar array. However, an HST solar array is not 
exactly symmetric about its centerline; its solar 
blanket is shifted slightly toward the outer BiSTEM. 
Even though the solar array was heated by uniform 
radiation, coupled bending-torsional deformations 
occur because of the asymmetry. Murozono and 
Thornton6) presented an theoretical analyses of the 
buckling characteristics and the quasistatic 
thermal-structural responses of an asymmetric 

FRUSA model. One of the results of the analyses 
considering the geometric asymmetry suggested that 
thermally induced quasistatic torsional deformation 
may have caused the failure of the HST solar array 
BiSTEM. Dynamic thermal-structural responses of 
the same asymmetric solar array model were also  
studied by the authors. Although the analyses 
showed quasistatic and dynamic thermally induced 
structural responses, the analyses did not consider 
the coupling of temperature fields and deformations. 

Thermally induced bending vibrations of 
thin-walled boom subjected to external radiant 
heating have been investigated7),8) considering the 
deformation-dependent thermal loading and the 
thermal-structural coupling effects. A theoretical 
analysis was carried out, in which the boom was 
modeled as an uniform thin-walled circular section 
cantilever beam or the same beam with a 
concentrated tip mass at the free end, and 
experimental verifications of the analysis executed 
under laboratory conditions both in air and in a 
vacuum chamber. The experiment showed that 
unstable bending vibrations can occur when the 
incident radiation is large.   

This paper describes a coupled thermal-structural 
analysis of an asymmetric FRUSA model to 
determine a better understanding of the response of 
the solar array subjected to deformation-dependent 
thermal loading. Basic equations of the heat 
conduction and the quasistatic and the dynamic 
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structural responses of the solar array subjected to
sudden radiant heating for a typical night-day orbital
transition are formulated. Numerical calculations are
presented for the HST solar array to show the
difference quantitatively between coupled and
uncoupled responses. Stability boundaries and the
dynamic structural responses of the solar array both
in stable and in unstable regions are also presented.

2. Solar Array Model 
The Hubble Space Telescope solar array in-orbit 

configuration consists of two identical wing-like
structures. Each wing has two flexible solar blankets
that are deployed from a drum mounted on a shaft
cantilevered from the spacecraft. Each solar blanket
is unfurled by a rotating actuator mechanism that
pushes the two BiSTEM booms from the drum. The
deployed ends of the BiSTEMs are connected to a
spreader bar to which the solar blanket is attached. A
BiSTEM is made from thin stainless-steel tapes
formed into circular open cross sections. In their
stored configuration, each tape is flattened and stored
on a spool within the drum mechanism. During
deployment, the stored elastic energy in the flattened
tape assists the unfurling mechanisms as each STEM
extends and curls back to its original shape forming a 
BiSTEM with seams diametrically opposed.  The
spreader bar houses a mechanism that compensates
for a slight difference in the BiSTEMs lengths. The
storage drum houses a torque mechanism that
maintains blanket tension. Thus, during orbital
operations, the blanket tension on the spreader bar
exerts a compressive force on each BiSTEM.

The mathematical model and coordinate system
used in the subsequent analyses are shown in Fig.1.
The solar array length and the half spreader bar
length are denoted by L and b, respectively. The
model assumes that 1) the solar blanket is an
inextensible membrane whose thermal expansions
and contractions are neglected, 2) the solar blanket is
subjected to uniform tension in the x direction, and 
the membrane tensile force Fx per unit width is
constant, 3) the inner and outer BiSTEM booms are 
identical cantilevered beams subjected to different
axial compressive force P1 and P2, respectively, 4)
torsional rotations are sufficiently small so that
BiSTEM’s bending displacements occur only in the
x-z plane, 5) thermal expansions of the BiSTEMs are
neglected, and 6) the spreader bar is a rigid member
of length 2b and supports the membrane tensile force
over a length b1+b2. For the determination of the
temperature distributions, the BiSTEM booms are
assumed to be one-piece thin-walled circular section
beams.

When the solar blanket is subjected to uniform
tensile force Fx  per unit width,  the inner and the

Fig. 1  Solar array analytical model.

outer BiSTEM booms are subjected to axial
compressive forces P1 and P2, respectively. The 
compressive axial forces are determined by 
considering force equilibrium of the spreader bar in
the x direction and moment equilibrium about the z
axis. The results may be represented as 
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and the subscripts 1 and 2 denote the inner and the
outer BiSTEMs, respectively. The average axial
compressive force P of the BiSTEMs is defined by

)()2/1( 21 bbFP x (3)

3. Formulations

3.1 Thermal Analysis
Here, a brief description of the perturbation

temperature of the BiSTEM boom is given. Detailed
discussions of the thermal analysis are found in Refs.
7 and 11. Coupled thermal-structural analyses will be
presented based on the assumption that the absorbed
heat flux is affected by the boom’s deformation. A
deformed boom with the incident heat flux s0 is 
shown in Fig. 2. The solar array is subjected to an
incident solar heat flux s0 that varies as a step
function with time from the direction inclined to the
vertical by the angle . In writing the energy
conservation equation, the heat flux absorbed by the
boom is the component normal to the surface.
Because of bending, a normal to the beam surface 
has rotated through a small angle equal to the beam
slope. Then, the incident normal heat flux to the
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Fig.2 Heat flux for coupled thermal-structural 
analysis

surface can be expressed by

)(cos0 x
w

sq i   (4)

where w1 and w2 are deflections of the inner and the
outer BiSTEMs, respectively. After the thin walled
circular boom is idealized by some heat transfer
assumptions7), conservation of energy including
circumferential conduction and radiation from the 
external surface yields
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where k, , and c are the thermal conductivity, the
mass density, and the specific heat of the BiSTEM,
respectively, R and h are the radius and the wall
thickness of the BiSTEM cross section, s and s are
the thermal emissivity and the thermal absorptivity
of the boom surface, and is the Stefan-Boltzmann
constant. And where  is the angular coordinate of
the BiSTEM cross section and parameter  indicates
that only front half of the boom is heated.
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The temperature distribution is represented as the
sum of an average temperature ),( txTi and a
perturbation temperature , that is cos),( txTmi

cos),(),(),,( txTtxTtxT miii   (7)

where the amplitude of the perturbation temperature
is assumed small compared with the average 
temperature so that 1/ imi TT . In addition, the
heat flux distribution is presented as a truncated

Fourier series with higher order terms neglected.
With these assumptions, substituting Eq.(7) into
Eq.(5) yields an ordinary differential equation for the
average temperature and an equation for the
perturbation temperature.,
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At steady state, the incident heat flux approaches a
constant value which is approximated by neglecting
the BiSTEM’s slope. The steady-state average
temperature is given from Eq.(8) as
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Assuming that the term 3
iT on the left-hand side of

Eq.(9) may be approximated as produce a linear
differential equation for mi . The thermal bending
moment M

3
ssT

T
Ti is defined as an integration over a cross

section by 
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where E is the Young’s modulus,  is the coefficient
of thermal expansion, and T denotes a BiSTEM’s
cross-sectional temperature gradient. Linear equation
is solved to yield Tmi and the thermal bending
moment can then be obtained as 
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The temperature T* denotes the steady-state value of
the perturbation temperature, and the parameter  is a
characteristic thermal response time. The
temperature distribution at a BiSTEM boom cross 
section is represented as the sum of the average
temperature and the perturbation temperature.
Among these terms, the perturbation temperature
that varies over the cross-section induces a thermal
bending moment that causes the BiSTEM boom to
bend.

3.2 Structural Analysis
We now consider the coupled thermal-structural

response of the solar array when both BiSTEM
booms are subjected to the same uniform radiation
heating. The structural analysis is performed using
equations of motion for the boom bending, boom
torsion, and the solar blanket. The equations are
solved under the boundary conditions at the support
and the interface conditions at the spreader bar. First,
considering effects of the compressive axial forces,
the partial differential equations and the boundary
conditions for BiSTEM bending are
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where wi(x,t) is the BiSTEM boom deflection, EI is 
the BiSTEM bending stiffness, A is the mass per 
unit length,  and Myi is the bending moment defined
by
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and MTi is given in Eq.(11).
The partial differential equations and the

corresponding boundary conditions for the BiSTEM
boom torsional deformation including the axial
compressive force effects are expressed as follows:
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where xi(x,t) is the BiSTEM angle of twist, E  is the
BiSTEM warping stiffness, GJ is the torsional
stiffness, IE, A, Ix are the polar moment of inertia,
cross-sectional area, and the mass moment of inertia
per unit length, respectively. The latter two
boundary condition means that the BiSTEM cross
section is restrained from warping at both ends.

The solar blanket is modeled as a membrane
with constant tension Fx per unit width. The tension
Fy perpendicular to Fx is neglected since the
membrane has a high aspect ratio and the tranverse
edges of the membrane are free. The equation of
motion and the boundary conditions for vibration of
the membrane are expressed as 
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where wm(x,y,t) is the solar blanket deflection, m is 
the solar blanket mass per unit area, and wsd is the
spreader bar deflection. Because we assume that the
spreader bar is rigid, wsd may be written using the
deflection of its center of mass, ws0, and the rotation
angle of the spreader bar s0. For small rotations the
deflection and the rotation of the spreader bar are
presented using the tip deflections of the BiSTEMs
as
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3.3 Approximate Solution
Because the thermal bending moment depends

on the BiSTEM boom slope that appears in the
integrand of Eq.(12), a modal representation of the
solution could not be obtained. Then, an approximate
solution based on the method of weighted residuals
is developed. The solutions for the BiSTEM boom
deflection and rotation and the solar blanket
deflection are taken in the form
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where the approximate functions Wi(x), i(x), and 
Wm(x,y) are assumed to satisfy the geometric
boundary conditions. In the following calculations,
functions that represent the deformation obtained in
the quasistatic thermal-structural response analysis
are used as the approximate functions. The method
of weighted residuals is based on

0)(),( dxxWtxR (24)

where R(x,t) is the residual obtained from
substituting an approximate solution into a
differential equation, and W(x) is a weighting
function. In the present analysis, the approximate
functions are used as the weighting functions
according to the Galerkin’s method. Thus, residual
form for the governing equation can be written as
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To consider the mass Ms and mass moment of inertia
Is of the spreader bar, both the mass distribution A
and distribution of the mass moment of inertia Ix are
replaced as follows:
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where (x) denotes the delta function.
Introducing the approximations for wi, xi, and wm
from Eq.(23) and integrating the special derivatives
by parts, an ordinary differential equation for the
unknown function U(t) is obtained as 
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where 0 is an approximate value to the first mode
natural frequency 

MK /0 (28)

And K, M, and F(t) are the stiffness, mass, and force,
respectively, for the equivalent single degree of
freedom system and are written as follows:
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Both the stiffness K and the mass M depend on the
shapes of the approximate functions and the
geometric and physical properties of the solar array,
and independent from the thermal properties such as
the heat flux s0, characteristic thermal response time
, and the incident angle . Approximate functions

for the BiSTEM bending and torsion used here are
written as follows:
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For the solar blanket deflection, the approximate
function is expressed as
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where the deflection of the center of mass of the
spreader bar Ws0 is given
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Detailed discussions of the quasistatic
thermal-structural response analysis are found in
Ref.6. Parameters i and i ( i=1, 2 ) are defined in
terms of the compressive axial force of the BiSTEM
by
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The parameter i ( i=1, 2 ) , which determine the
magnitude of the BiSTEM bending deflection, is
obtained by solving the simultaneous equations
given by
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where each term of the coefficient matrix Cij ( i, j =1,
2 ) is determined by the BiSTEM compressive axial
forces and properties of the solar array as
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The terms on the right-hand side of the equation are
defined as 
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The magnitude parameter i (i=1, 2) for the BiSTEM 
angle of twist is obtained as 
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The numerator is the BiSTEM tip angle of twist. It is
given by Eq.(36).

Because the thermal bending moments appearing
in Eq.(31) contain the BiSTEM boom slope 

in the cosine term inside of an integral as
shown in Eq.(12), which represents the coupling
between the structural and the thermal responses, the
equivalent single-degree-of-freedom equation 
remains difficult to solve analytically. Then, Eq.(31)
can be linearized by approximating the cosine term
inside of an integral based on the assumption that the
BiSTEM boom’s slope is small as 

xwi /
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Using the approximation and considering the system
damping, the ordinary differential equation of the
unknown function U(t) becomes a linear equation as
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where  is the damping ratio, and
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The force F(t) appearing in the right-hand side of
Eq.(43) still contains the unknown function inside of
integrals
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3.4 Quasistatic Responses
To evaluate the effect of thermo-elastic

coupling quantitatively, quasistatic responses are 
obtained by neglecting the effect of inertia term.
Equation for the unknown function U(t) has the form
as

)(tFUK (45)

With the Laplace transform for the convolution
integrals and the inverse transform, a solution is
obtained as 
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Where K is the stiffness defined in Eq. (29), and
parameters A, B, and C are defined as follows
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Quasistatic structural responses of the solar array are 
calculated by using Eq.(23) with Eq. (46).

3.5 Dynamic Responses and Stability Criterion
The dynamic responses and the stability of

them of the solar array are determined by obtaining
the Laplace trancform of the differential equation.
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The dynamic response is calculated by inversion of
the Laplace transform )(sU obtained by solving Eq. 
(49) to yield U(t). The inverse transform can be 
practiced analytically by solving the cubic equation
and using the inverse transform for convolution
integrals. Approximate solutions are given by Eq.
(23) with the U(t). The characteristic equation can be
written in the dimensionless form as 
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In the last equation, K is the stiffness by Eq. (29) and
B is defined in Eq. (47). The parameter  means the
ratio of the characteristic mechanical response time
to the characteristic thermal response time and its
inverse number 1/  is an equivalent to the
nondimensional parameter used by Boley12) in the
analysis of thermally induced bending vibration of
beams. The parameter  is in direct proportion to the
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intensity of the heat flux s0 and is also dependent on
the direction of the radiation heating . From the
Routh-Hurwitz stability criterion, following
condition is required for a stable response.

)12(2 2

  (52)

Because  and  are positive quantities, right-hand
side of the equation is always positive. Thus, the
stability criterion shows that negative or zero
incident angles of solar radiation heating, 0 ,
produce stable responses. 

4. Numerical Calculation Results 
Numerical calculations presented hereafter use

data9), 10) for the HST solar arrays as shown in Table
1. The BiSTEM material is stainless steel.

4.1 Quasistatic Thermal Structural Responses
Since it is expected that structural responses

Table 1 Solar array properties of the HST

Solar array length L=5.91 m
Half width b=1.428 m
Solar heat flux s0=1.350 x 103 W/m2

Stefan-Boltzmann
constant =5.670 x 10-8 W/(m2.K4)

Solar blanket
Width b1+b2

b1=1.138 m
b2=1.249 m

Mass per unit area m=1.589 kg/m2

Spreader bar
Mass Ms=1.734 kg 
Mass moment of inertia Is=1.179 kgm2

BiSTEM
Cross-sectional area A=1.613 x 10-5 m2

Bending stiffness EI=1.711 x 102 Nm2

Warping stiffness E =4.991 x 10-1 Nm4

Torsional stiffness GJ=6.503 x 10-3 Nm2

Polar moment of inertia IE=1.948 x 10-9 m4

Mass moment of inertia
per unit length Ix=1.348 x 10-5 kgm2/m

Density =7.010 x 103 kg/m3

Wall thickness h=2.35 x 10-4 m 
Radius R=1.092 x 10-2 m 
Specific heat c=5.020 x 102 J/(kgm)
Thermal conductivity k=1.661 x 101 W/(mK)
Coefficient of thermal

expansion =1.629 x 10-5 1/K
Thermal absorptivity s=0.5
Thermal emissivity s=0.13

significantly vary with P, the average axial
compressive force P is assumed to take the design
value 14.75 N unless otherwise specified.. The
quasistatic structural response of the BiSTEM tip
deflection was calculated using Eq. (46) to evaluate
the effect of thermo-elastic coupling quantitatively.
Figure 3 shows time histories of the BiSTEM tip
deflections and the distributions of the steady-state
deflections when the solar array is heated from a 
direction within the fixed-end side, >0. Figure 4
shows the responses when the solar array is heated
from a direction of the tip-end side, <0. Quasistatic
responses calculated based on the uncoupled analysis,
that the temperature is independent of the deflection
or the slope of the BiSTEM boom, are also shown in
these figures. Because the temperature difference
between the heated and the unheated sides increases
with time, the deflections also increase with time.
Figures 3 and 4 show that deflections of the outer
and the inner BiSTEMs are different in spite of the
uniform heating, due to the coupled bending-
torsional deformations because of  the geometric
asymmetry of the solar array. Figure 3 shows that
coupled thermo-elastic responses are slightly smaller
than the uncoupled calculation results when the
incident angle  is positive. Contrary to this, Fig. 4 

Fig.3  Quasistatic responses of the solar array
subjected to uniform radiation heating from the 
direction = /6.
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shows that deflections calculated based on the
coupled analysis are larger than that of the uncoupled
analysis when the angle  is negative. Variations of 
the steady-state tip deflections of the BiSTEM
obtained by the coupled analysis with the solar
incident angle  are shown in Fig. 5 for several
values of the axial force P. Because the deformations
are almost pure bending when P is small, the curves
are shown for P > 12 N. It is clearly shown that the
largest value of the tip deflection occurs at the case
of 0 in which the solar array is heated from the
direction normal to the undeflected boom axis.

Next, we examine the variation of the effect of
the thermoelastic coupling with the radiation heat
incident angle . Because time histories are
considered to be essentially similar to the results
shown in Figs. 3 and 4, we only consider the
steady-state deflections of the BiSTEM. The
thermoelastic coupling effect on the quasistatic
responses is determined quantitatively using the
relative difference defined as

uncoupled

uncoupledcoupled

w
ww

(53)

Fig.4  Quasistatic responses of the solar array
subjected to uniform radiation heating from the 
direction =- /6.

where wcoupled and wuncoupled are the steady-state
deflections calculated by the coupled and the
uncoupled analyses, respectively. Figure 6 shows
variation of with the angle . The horizontal
axis uses an absolute value of . When the heat
incident angle  approaches 2/ , the parameter
of the effects of thermoelastic coupling
becomes large although the magnitudes of the
deflections themselves become small.

Fig.5 Variations of BiSTEM tip deflections with
the solar incident angle .

Fig.6  Quantitative effect of the thermoelastic
coupling on quasistatic responses of the solar
array.

4.2 Stability Boundaries and Dynamic Responses
According to the stability criterion given in Eq.

(52), the stability boundary curves which divide the
parameter plane into stable and unstable regions are
shown in Fig. 7. The vertical axis of the figure is the
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angle  that measures the inclination of the radiant
heat flux from the vertical and on the horizontal axis
is the system damping ratio . The stability criterion
shows that the response is unconditionally stable for

0 . There exists the lower limit value of the
damping ratio  that the system is stable, and if the 
damping ratio is lower than the critical value then the
responses will be unstable. Boundary curves for the
asymmetric and the symmetric solar array models
are drawn in solid line and dotted line, respectively.
It is shown that the unstable region is enlarged when
the solar blanket moves toward the outer BiSTEM.
Although the results are not shown, the stability
boundary also depends on the axial compressive
force P. Calculation for the asymmetric solar array
model shows that the unstable region is enlarged as
the axial force P becomes large.

Fig.7 Stability boundaries in the -  parameter
plane

The dynamic responses based on the coupled
analyses can be determined from the inverse Laplace
transform of U(s) in Eq. (49) and substitution into Eq.
(23). The procedure used in calculations of responses
are as follows: solve the cubic characteristic equation
to obtain three roots for the parameter s, expand U(s)
into a partial fraction decomposition, and practice
inverse Laplace transform of U(s) by using the
convolution integrals. In order to demonstrate the
thermoelastic coupled structural responses,
deflection time histories for stable, unstable, and
neutral cases were calculated. Figure 8 presents time
histories of the BiSTEM tip deflections at the
stability boundary. The steady-state vibrations with
constant amplitude about the quasistatic deflections
are shown. Because of bending-torsional coupling,
torsional deformation causes the difference between
quasistatic deflections of the inner and the outer
BiSTEMs. Figure 9 presents time histories of the
BiSTEM tip deflections both in stable and in

unstable regions. Stable responses for a solar 
radiation incident angle =15 deg in the upper figure
show that the quasistatic deflection of the outer
BiSTEM is much larger than that of the inner
BiSTEM and vibrations about the quasistatic
deflections decay with time. In contrast, unstable
responses for an incident angle =60 deg show that a
self-excited vibration occurs. Because of the large
incident angle , only a small amount of the radiant
heat flux is absorbed by the BiSTEM boom, then the
magnitude of the total response becomes relatively
small in the case of =60 deg.

Fig.8 BiSTEM boom deflection time histories at 
the stability boundary

Fig. 9 Stable and unstable time histories of the 
BiSTEM boom tip deflection from the coupled
analysis
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The occurrence mechanism of the self-excited 
vibration or thermal flutter depends on the 
time-dependent radiation heat flux. The amount of 
heat flux absorbed by the BiSTEM boom is 
determined by the angle between the incident 
radiation heat flux and a normal to the boom surface. 
In the case of > 0, when the boom deflects toward 
the radiant heat flux, the net incident angle decreases 
and the absorbed heat flux increases. When the boom 
deflects in the opposite direction, the net incident 
angle increases and the absorbed heat flux decreases. 
If the boom is vibrating, these variations of heat flux 
produce the time-dependent temperature gradient, 
and so time-varying thermal bending moment. 

5. Conclusions 
Theoretical analyses of the coupled thermal- 

structural responses of an asymmetric flexible 
rolled-up solar array were presented. The analyses 
were based on a generalized flexible rolled-up solar 
array model assuming asymmetric loading 
conditions because of geometric asymmetry. The 
coupled thermal-structural analysis includes the 
effects of structural deformation on external heating 
and temperature gradients. Numerical calculations 
were conducted using the data for the solar arrays of 
the HST. 

An approximate solution was obtained by 
using the method of weighted residuals for the 
coupled thermal-structural responses of the solar 
array model. Effects of thermoelastic coupling were 
estimated quantitatively by calculating the 
quasistatic responses based on both the coupled and 
the uncoupled theories. The differences between the 
calculated results of the coupled and the uncoupled 
steady-state tip deflections of the BiSTEM booms 
are 9 % at the most.   

Stability criterion and the dynamic coupled 
thermal-structural responses were also presented. 
According to the closed form stability criterion, the 
boundary curves which divide the parameter plane 
into stability and instability regions were shown. 
System parameters in determining the stability 
include the ratio of the structural and thermal 
response times, radiant heat incident angle, and the 
system damping. Dynamic structural responses of 
the solar array subjected to sudden radiation heating 
such as typical night-day transition in orbit were 
presented for stable, unstable, and the neutral cases. 
The time history of tip deflection in the unstable 
region shows the occurrence of thermal flutter. 

References 
1) Boley, B. A., “Thermally Induced Vibrations 

of Beams,” Journal of the Aeronautical Sciences, 
Vol.3, No.2, 1956, pp.179-181. 

2) Malla, R. B. and Ghoshal, A., “Thermally 
Induced Vibrations of Structures in Space,” 
Aerospace Thermal Structures and Materials for a 
New Era, edited by E. A. Thornton, Progress in 
Astronautics and Aeronautics, Vol.168, 1995, 
pp.68-95. 

3) Thornton, E. A., Thermal Structures for 
Aerospace Applications, AIAA, 1996, pp.343-396. 

4) Thornton, E. A. and Kim, Y. A., “Thermally 
Induced Bending Vibrations of a Flexible Rolled-Up 
Solar Array,” Journal of Spacecraft and Rockets,
Vol.30, No.4, 1993, pp.438-448. 

5) Chung, P. W. and Thornton, E. A., “Torsional 
Buckling and Vibration of a Flexible Rolled-Up 
Solar Array,” AIAA Paper 95-1355, April 1995. 

6) Murozono, M. and Thornton, E. A., “Buckling 
and Quasistatic Thermal-Structural Response of 
Asymmetric Rolled-Up Solar Array,” Journal of 
Spacecraft and Rockets, Vol.35, No.2, 1998, 
pp.147-155. 

7) Murozono, M. and Sumi, S., “Thermally 
Induced Bending Vibrations of Thin-Walled Boom 
with Closed Section by Radiant Heating,” Memoirs 
of the Faculty of Engineering, Kyushu University,
Vol.49, No.4, 1989, pp.273-290. 

8) Murozono, M. and Sumi, S., “Thermal Flutter 
of Thin-Walled Circular Section Beams Subjected to 
Radiant Heating,” Proceedings of the IV Conference 
of Asian-Pacific Congress on Strength Evaluation,
1991, pp.676-681. 

9) Reynolds, J.,”The Analysis of the Deployed 
Space Telescope Solar Array,” European Space 
Agency, ESA Doc. TN-SA-B142, British Aerospace, 
Bristol, England, UK, Jan. 1983. 

10) “STEM Design Characteristics and 
Parameters,” Astro Aerospace Corp., TR AAC-B-006, 
Carpinteria, CA, Sept. 1985. 

11) Rimrott, F. P. J. and Abdel-Sayed, R., 
“Flexural Thermal Flutter Under Laboratory 
Conditions,” Transactions of the Canadian Society 
for Mechanical Engineering, Vol.4, No.4, 1977, 
pp.189-196. 

12) Boley, B. A., “Approximate Analyses of 
Thermally Induced Vibations of Beams and Plates,” 
Transactions of the ASME, Journal of Applied 
Mechanics, Vol.39, No.1, 1972, pp.212-216. 

This document is provided by JAXA.




