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Consistency between continuous and discrete models — Another
modeling problem in numerical simulation procedure —

ATISO, Hideaki *

In the procedure of numerical simulation, which is widely used in science and engineering
research and development activities, there are two stages of modeling. First we describe
the phenomenon that we simulate by mathematical equations. It is called mathematical
modeling. The mathematical description is usually a kind of continuous model including the
concept of infinity or limiting etc., i.e. differentiation, integral and so on. Then we need the
second modeling that approximates the continuous model by some discrete model that can
be directly made into a computer program and computed by digital computers.

While the word “modeling” usually means the mathematical modeling, the second modeling
is also an important factor in establishing the reliability of numerical methods and it is
expected to realize some enough consistency between the continuous and discrete models.
The lack of consistency between both models might even do harm with the discussion on the
mathematical modeling.

We are concerned with the second modeling. We here discuss a few consistency (and incon-
sistency) problems that happen when the compressible Euler equations are discretized by

differencing

1. Introduction

From the word of modeling almost all the peo-
ple may imagine how to describe by mathemati-
cal equations the target phenomenon or machin-

Such
mathematical description is called mathematical

ery that we aim to analyze or optimize.

model and the procedure to obtain the equations
is called mathematical modeling.

But in numerical simulation technology using
digital computers we usually need another kind
of modeling. The equations obtained through
the mathematical modeling are usually contin-
uous models like partial differential equations,
which includes mathematical concepts of differ-
entiation, integral and so on. The equations of
continuous models can not be directly translated
into the computer programs. Therefore we ap-
proximate the equation of continuous models by
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discrete equation using finite difference method,
finite element method or other discretization
methods and compute the discrete equation by
digital computer. The obtained discrete equation
is called discrete model and the discretization is
another modeling to obtain the discrete models

from then continuous ones.

Between the both models we naturally expect
the consistency which means that the discrete
model should inherit the property of the orig-
inal continuous model. But it sometimes hap-
pens that the discrete model includes some fake
property that does not come from the continuous
model or that some essential property of contin-
uous model is missed in the discrete model. Such
inconvenience is called inconsistency between the
both models. The complete consistency is usually
impossible and some inconsistency is inevitable
because the continuous and discrete models are
different things that belongs to different cate-
gories. Then we require the discrete models’ in-

heritance of essential property to establish reli-
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able numerical simulation. What is essential may
vary according to the purpose of numerical simu-
lation even if the same continuous model is used,
and the required consistency may vary as well.

Such consistency-inconsistency problems as
above are usually mathematical problems. Con-
ventional viewpoint is that how well the discrete
model approximates the continuous model, but
it is also important to analyze the property or
behavior of both models in parallel and compare
them. In the case of partial differential equations
for the motion of fluid, where the theory of ex-
act solution is not enough, we especially need to
discuss the property of discrete model from the
viewpoint of consistency and inconsistency with
the continuous model to improve the reliability
of numerical simulation.

In this article we show and discuss a few in-
consistency problems when the compressible Eu-
ler equations are discretized by Godunov method.

2. Compressible Euler Equations.

We are here concerned with difference approx-
imation for the compressible Euler equations. We
restrict ourselves into the one and two dimen-

sional cases.

The one dimensional compressible Euler equa-
tions is written as follows.

Ui+ F{U),=0,—00<z<00,t>0 (1)

where U = U(z, t), a function of space variable

and time ¢, is the vector of conservative variables

p
pu
e

U=

with the density p, the velocity u, the total en-
ergy e per unit, and F' is the flux

pu

pu? +p
u(e + p)

F =

with the pressure p. Uy is the initial value.
Similarly, the two dimensional problem is
written in the form

Ui+ FU)., +GU)y =0,
—oo < z,y <o0,t>0

(2)
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where the vector U = U(z,y,t) of conservative
variables and the fluxes F' and G in z- and y-
directions, respectively, are

p é)u pv

U— pu F= pu”+p G = ;;uv
pv puUv pve+p
e u(e + p) v(e +p)

u and v are velocity components in z- and y-

directions, respectively.

We also assume the equation of state for ideal

gas,

2
U
e:L—kp—ore: P

1
v — 1 2 +—p(u2+1)2), (3)

¥y—1 2
where 7 is the adiabatic constant.

3. Godunov method

While various methods of differencing the
compressible Euler equations are proposed and
each of them has its own advantage and disad-
vantage, we restrict our interest into Godunov
method.
structed difference methods with the use of fi-

It is one of the most naturally con-

nite volume concept and Riemann problem, al-
though the cost of computation is not so cheap.
Therefore it is a aimple and basic method in the
theoretical sense and it is an appropriate dis-
crete model to discuss the consistency problem
between the continuous and discrete models.

Godunov method is finite volume scheme.

First we discretize the space. We assume a

discretization of uniform mesh. In one dimen-

sional case (—o0, 00) is discretized by the family
{L:},.011 the integers of finite volumes, where

_1,I;
=3

z-l—%)’

x = (i + %)Am with a space discretiza-

it3
tion increment Az. In the two dimensional
(—00,00) X (—o0,00) is discretized by

{Zi }i,j:all the integers> where

case

Iy = (i~ 5)Az, (i+5)A2)x ((— ) Aw, (54 5) ),

i1 = (i + 3)Aw, Yjr1 = (j + 3)Ay with space
discretization increments Az and Ay in z- and y-
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directions, respectively. The temporal discretiza-

tion is given by {tn}n:integers noor 1t = nAt. Let

U;* or U}'; an approximate value of the avarage
of U )
U = i U

over each finite volume I; or Ii,j at the time t".
Using the law of conservation, the temporal evo-
lution of integral of U over each volume I; or I; ;
is calculated as the sum of fluxes going across
the boundary of the volume I; or I;; during the
considered time. Then the finite volume scheme
of difference is written in the following general

form,

At (- _
n+1l _ rmn n n
Ut =Ur - {Fi+l - Fz._%} (4)

2

_ }
1'__7]
),

in the two dimensional case, where F Y F’jr i
2 9

G?. ;1 are numerical fluxes crossing the bound-
LI TS

aries between I; and I; 4, [,

in the one dimensional case, or

n
{Fi+%u

J+2

Ut =up -

1,

Aa,',

(5)

.7 and Ii+1,j, Ii,j and
I; j 11, respectively.

Godunov method employs the exact solution
of Riemann problem naturally given at each
boundary between neighboring finite volumes at
each time step. In the one dimensional case a

Riemann problem

U+ F(U), =0
U(w’o):{U ,x <0 (6)
1T >0

is given. The problem has a self-similar exact so-
lution U = U(z,t; U, U ) = U(z/t; UP, UR ).
In Godunov method the numerical flux crossing
the boundary between I; and I;; during the time
interval [t",t"*1) is given by

Fry = FU(O;UP,UT) (7)

and (4) and (7) determine the scheme of tempo-
ral evolution. In the two dimensional case, the

numerical flux F’jr . and G" 1 are given by
2’ 2
Fi”—li—%,j (U(O Uzn_y; ﬁ&—l,j))’ (8)

177

Grp1 = GUO U U7 1)

1,57

using the solution to Riemann problems

U+ F(U)y =0

U(m,O):{ Ur,z <0, (10)
H_l,an>0

U+ F(U), =0

U(w,O):{ Ur,z <0, (11)
1T >0,

respectively.

Unfortunately, in the case of compressible Eu-
ler equations the existence and uniqueness of exat
solution is still an open problem, and any dif-
ference scheme is not proved to converge to the
exact solution in any sense. But it might be ex-
pected that Godunov method would be one of the
converging difference schemes if some difference
schemes could be proved to converge to the exact
solution.

In the following sections, we discuss a few
inconvenient numerical behaviors of Godunov
method. They may happen regardless with the
But the behav-
iors are those of discrete model and they do not

sizes of difference increments.

necessarily prevent the scheme from convergencs
On
the contrary a difference scheme may still admit

as the difference increments tend to zero.

such kind of inconveniences even if its conver-

gence proof is given.

4. Numerical instability around a

strong shock wave.

It has been recognized from a time even be-
fore the article ? that mentions it first that
some strange instability may occur in the numeri-
cal computation for compressible Euler equations
when strong shock waves are formed. The in-
stability is called carbuncle phenomenon or car-
buncle instability. » gives discussion from the
viewpoint that the instability is from difference

schemes.

From the experience, we already know some
facts on the carbuncle instability. The instabil-
ity occurs only in the case of multidimensional
computation, even though the flow phenomenon
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is sometimes only one-dimensional. The instabil-
ity occurs when the shock surface is almost par-
allel to some axis of computational coordinate,
but it seldom occurs when the shock surface is
oblique enough to any of the axes. The stronger
the shock, the more likely the instability occurs.
The scale of instability has similarity to the size
of computational grids, which implies that the
instability comes from discrete models used in
numerical computation but not from the original
PDE.!

In f) Moschetta et al. try to analyze the insta-
bility by comparing the linear stability of “large”
system including all the variables in the compu-
tation and the occurrence of carbuncle instability
in the real computation that is nonlinear. They
do it in the case of stable shock that does not
move in physical phenomenon, and they test a
few kinds of difference schemes by using numer-
ical derivative method to obtain each element of
matrix of the “large” linear system.

In this section we observe the correspondence
between some linearlized analysis and the occur-
rence of carbuncle instability in the case of pro-
gressing shock wave.

4.1. Numerical computation of pro-

gressing shock wave

We are concerned with the numerical compu-
tation of progressing shock wave.

We consider the initial value problem (2) with
the initial value

UL =t [pln pLur, O,GL], z < 0,

Ur =t [PRaPRURaO,eRL z>0
(12)

that satisfies the Rankine-Hugoniot condition

U(z,0) = {

F(Ug) — F(Ur) = s(Ug — Uyr). (13)
Ur, and Ug are the states of both sides of pla-
nar shock parallel to y-axis progressing at the
velocity s. For the physical relevancy of shock

!There are several different kinds of phenomena called
“carbuncle”. We restrict the statement only into the case
of carbuncle mentioned above.
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we assume the following entropy condition

Urp —Cr >8>UR—CROrur+cr >8> UR+CRr
(14)
where ¢y, = \/m and cp = \/'ypT/pR are
the sound speeds of both side. We also assume
the situation is always “fully upwind enough ”;

utc,u>>0,c=4/vp/p (15)

everywhere. Then the initial value problem (2),
(12) has an entropy solution;

U, =< st,
U(wayat) = U(m — st, y’O) = { Uf{ z > st.
(16)

It means a progressing planar shock.

This solution is numerically calculated by
Gudonov method. We impose the following CFL

restriction
lul+c¢  |v|+ec 1
< —.
Az Ay — At (17)
4.2. Analysis on practical model of

computation

We analyze the discrete temporal evolution
(??) by Godunov method to examine the ma-
chinery that causes the carbuncle.
if the
{Uz-?j }i,j never depends on j and the discrete

No carbuncle occurs initial data

temporal evolution (??) 1is exactly calculated
without any error. Even with errors, no carbun-
cle should not occur if the error at each cell I; ;

does not depend on j.

In practical computation the errors at cells
I; j, and I; j, might be different if j; # Ga.2

But the simple accumulation of such error is
not enough to cause the carbuncle of our inter-
est because, once any small carbuncle is recog-
nized, it grows much faster than expected from

the simple accumulation of error. Therefore it

2 It might come from the round off error in the dig-
ital representation of Ay = Yirl — Y 1 In fact, if we
take y; + % = j as variables of “integer”-type, there is no
difference of round off error at the cells I;; of the same ¢
and no carbuncle occurs. It is easily observed. But, also
in this case, the instability may occur once a very small
perturbation is artificially given.
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is thought that the discrete temporal evolurion
includes some machinery to amplify the error.

3,1)

Some other articles, for example, etc. also

give discussion from a similar viewpoint.

For simplicity of analysis, we restrict the error
into the exact odd-even mode;

U, =Upr+ (-1)70p,
U [pz,(pu)z,O €; s

n "'n]

ﬁ [pz ’ (pu)z 7(pv)z ) z

(18)

The assumption is not so artificial. As mentioned

n ? the carbuncle is almost odd-even. Further-
more, when the calculation is controlled like the
footnote 2, a perturbation of the exact odd-even
mode triggers the instability satisfying (18). But
such control changes the property of instability
very little.

The following theorem is basic in the analysis.

Theorem 1. Asume the Godunov method.

We obtain
Ut
—UF A {5 <U”>U“——( L0 )
2\%«1” + 0(9)
= {1- &85 wp - 24 wp)} or
+RLSEUR )UP 1 + 0(9),

(19)
or, in another expression,

aurtt At 8F At | 0G

Uy :{ ~ 2z 00 (UP') — 25y BU(UTL)’}
UM At aF

aur, — Az aU( 1)

5Un+1

U = =0,i—k#0,1
(20)
where |A| is determined for a diagonalizable ma-
triz A by

|A| = P - diag(| A, [Ae], -+, [An]) - P
Ml 0 0 -~ 0
| 0 el 00|
0 M|
(21)
with  the  diagonalization P 1AP =
diag(A1, A2, - -+, An) with some matriz P.3

%) A| does not depend on P,the matrix used for diago-
nalization.

The proof is straightforward by the following lem-
mas 1 and 2. They are from the assumption
(15) of full upwindness in z-direction and the fact
that the flow in y-direction is almost acoustic.

Lemma 1.

Fy, ;= F(UF). (22)
Lemma 2.
ézj+% = 3{GWUY) + GUF;1)}
~1|36 @D)| (U1 — UP) + 0(9).
(23)

The both lemmas are easily proved by observing
the observation of Riemann problem (??) or (?7?)

to determine the numerical flux F* , .or G*. , ,
7’+§»] 7’a.7+§

respectively.
Let U™ =* [ Y (pu)? ) (pv)? y €7 s [’?—4-1 )

(ow)? 1 5 (pv)7,1,€% 1, --|. Determine the

infinite matrix E""“:l by

OU
Ertl = [ aUT (Uk )} , where each
i,k:integers
aurtt . . . .
sun— (Up) is submatrix of the size 4 x 4 and in-
k

dices ¢, k move over all the integers. Then Um —
U™ is described as U1 = EP+L. U™ + o(6).
With the matrix E'" determined by E?*! =

ntr - s
Crwn| o= By 0o,
i,k:integers
Note ERT" = EpiT_; x --- x En*l r > 1 and
aaUUn (UZ) =0 unless i —r < k < 3.

We discuss the relation between the carbuncle
and the linear stability of the map U™ — U™ =
E"" using discrete stable profiles of progressing
shocks?, which is explained in the beginning of
next section. Our main insist is the following.
Insist. The occurrence of carbuncle instsbility
coincides with the linear instability of the map
Ur — gntr

4.3. Numerical experiments

There are two parts; preparing the profile of
shock and seeing the instability.

4The existence of such discrete stable profile of pro-
gressing shock is still open in theory. But it seems possible
to obtain such profile numerically. It is discussed further
in the next section.
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4.3.1. Computation of profile

First we prepare a discrete stable profile of
progressing shock numerically.

1. We use Godunov method for one dimension;

UV’s are those assumed in (18). ﬁ—fc

n+1
Ui

is the
same as that in the two dimensional compu-
tation later.

2. The computation domain is given by imin <
% < imax SO that imax — imin is large enough,
and the initial values U’s are given by

U
0 __ L,
Ui N { UR>

where Ur, and Upg satisfy (13), (14), (15)

and (17), and the shock speed s has a

s = 9.
r

imin S 1 S is
is <1 < 'imaxa

(25)

rational ratio to %—f, i.e.
%, q,r are positive integers relatively prime.
The boundary is treated by the inflow condi-
tion at iy, and by the outflow condition at

Tmax-

3. Proceed the discrete temporal evolution by
(24).

4. Our goal is to obtain some stable profile of
progressing shock. To do it within a limited
domain, we shift the data every r steps of
discrete temporal evolution, i.e. when n =
0(modr),n > 0, we shift back the data {U]*}
by 7 spatial nodes;

do i = Tminy tmaz — 4

U= Uﬁ—q

enddo

do @ = imaz — q+ 1, tmax
Ur = Ug

enddo

5. Obtain the “convergence” of profile. Thanks
to the data shift, in practical computation
we can do it by comparing U*""’s and U}’s,

for example, monitoring

tmax—T

> {ler =l

1=%min

Hl(pw)P T = (pw)| + e — €|} -

S(n) =
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Usually the numerical convergence is rather good
and the relative order of S finally goes to 10713
or so in the case of double precision computation.
The obtained profile is used as the initial data
{U?}; for the test of instability.

We choose imin = 0,imax = 1000,75; = 100.
The choice imin = 0,%max = 2000, ¢s; = 200 is also
tested. Both gives essentially the same profile.

4.3.2. Test of instability

Second we conduct two tests of instability us-
ing the data obtained above.

We see the linear stability of Un — Untr
using E". But we need to extract some essen-
tial finite submatrix from E7™" and choose the

value of n. We choose i_ and i,° so that

10? — pr| < 107%|pr — pr|,i < i,

_ g 26
lor — p7| < 107*pr — pL|,i > iy — 7. (26)

Then we determine {4(¢y —i_ —r)} x{4(i4 —i_ —
. E = ur

)} matrix Ej by Ef = [a—lﬁg)]i_wgigq,i_gkgu —7

and numerically obtain the eigenvalue that has

the largest absolute value.

We also conduct the usual two dimensional
calculation by Godunov method. We test two
kinds of computational domain and error trig-

gering.

1. Computational domain is 1 <z < 10000,1 <
j < 2m, m is a positive integer.® To control
the error (see the footnote 2), the type of val-
ues ;1 and Ay on the computer program
are to be “integer”. The initial data {Ui?j}
are given by {U?} if 1 < i < 1000, other-
wise Ur. The boundaries at ¢ = 1,10000 are
treated in the inflow and outflow manner,
respectively. The boundaries at j = 1,2m
are treated by the cyclic manner. We trig-
ger the error by odd-even random error at
50 < i < 100 of the relative order 10710 or
so.

®Practically, there is no difference in the final result of
eigenvalue even if we replace 10~* in (26) by 1075.

8There is no essential difference even if m is different.
m = 1 is enough.
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2. Computational domain is 1 <7 < 10000,1 <
j < 2. The initial data and boundary treat-
ment are the same as the previous. The value
Ay is determined so as to cause the round off
error, for example, 0.7D-1.

As far as we examined, there is no difference
in the occurrence of instability between the two
cases above.

4.4. Result of numerical experiments

We test various cases changing the condition.
As far as our numerical experiment, the occur-
rence of carbuncle instability well coincides with
the existence of E}’s eigenvalue with its absolute
value exceeding 1.

We show a part of experiments’ result. The
part are done in a following manner.

1. The 3-shock with the characteristic u + c is
calculated. The parametrization pg/pr = et
determines the pressure ratio. £ < 0 gives a
shock wave. For the parametrization see ¥

etc.

2. The velocity (in z-direction) is modified at
the both sides of shock so that all the six
characteristic speeds (u + ¢, u of both sides)
are positive and the ratio of the largest of
them to the smallest is 10.

3. Then for (¢ = -1.0,-1.1,---
profiles numerically with s =

, —2.0 we obtain
1 Az
2 At?
examined the linear system and two dimen-

and

sional computation.

The result is shown in the following table.

Eigenvalue
. Occurence
Density | . (absolute
¢ Ratio |~ © value of
. carbuncle
maximum)
—1.0| 0.5037 37 0.9708 No
—1.1| 0.4733 35 0.9779 No
—1.2| 0.4455 34 0.9849 No
—1.3| 0.4201 32 0.9917 No
—1.4| 0.3969 31 0.9982 No
—1.5| 0.3758 30 1.0044 Yes
—1.6| 0.3566 29 1.0104 Yes
—1.7| 0.3390 29 1.0162 Yes
—1.8| 0.3231 28 1.0217 Yes
—1.9| 0.3085 28 1.0269 Yes
—2.0| 0.2953 27 1.0319 Yes

The table shows a good coincidence between the
linear stability based on our linearization and
the usual numerical computation for compress-
ible Euler equations.

4.5. Remarks

Although the insist is not mathematically
proved, it seems that numerical validation of our
insist is possible. Therefore we may conclude
that the carbuncle instability is caused by some
kind of linear instability included in the scheme

of numerical computation.

We mention that in the numerical computa-
tion of nonlinear problem the instability of com-
putation does not always coincide with linear in-
stability included in the nonlinear system. For
example, also in the case of one dimensional com-
putation of progressing shock wave it is possible
to consider the linear system to see the amplifi-
cation of small perturbation in discrete tempo-
ral evolution, but the original numerical compu-
tation is still stable even if the linear system is
not stable. It is understood that the nonlinearity
works to suppress the growth of instability.

Our computational validation implies that
the instability caused by linear machinery grows
without being suppressed by the nonlinearity.
It supports the understanding that the carbun-
cle phenomenon is caused by some machinery
existing only in multidimensional cases. There
have been a dispute whether the carbuncle phe-

nomenon is linear instability or nonlinear insta-
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bility. It would be very difficult to give an cor-
rect answer to the dispute, but our numerical
study gives some suggestion “the carbuncle phe-
nomenon is basically linear instability but the in-
stability of linear system (or the values of entries
of matrix representing linear system that result
instability) is from the strong nonlinearity that
comes with the shock”.

5. Numerical singularity in the forma-
tion of waves.

Another kind of inconvenience may be ob-
served when waves are formed from a gap in the
initial value. A similar behavior may be observed
when a collision of discontinuities makes a gap

from which multiple waves evolve.

We are concerned with the numerical com-
putation by Godunov method for the Riemann
problem of one dimensional compressible Euler
equations (1) with the initial value

Ho_,p_u_,e_ ),z <0,

27
Yot pruy,eq),z > 0. 27)

U(z,0)=Uy(x)= {
As an example of the numerical singularity,
we observe the following numerical computation.
The initial value of Riemann problem is the fol-
lowing.
p— = py+ = 17.411708063,

u_ = —4.560084435, u = 4.560084435,
p_ = p, = 54.59815003.

(28)

2
where pr = (v — 1) (ei — %) Let the adi-
abatic constant v = 1.4. The exact solution has
three constant states, which are

(S—) p=p-u=uUu_,p=p-,
(S0) p=1,u=0,p=1,
(8+) p=p1,u=1uy,p=py.

The neighboring states (S_) and (Sp) are con-
nected by the l-rarefaction wave and (Sp) and
(S+) by the 3-rarefaction wave. Then the numer-
ical computation is made with Godunov method.
The number of finite volumes are 1200, and the
CFL-number is 0.9. The picture shows the nu-
merical solution when the number of time steps
reaches 600.

.- p = 17.411708063
\ - p = 54.598150033

p=0,p=0

Roughly speaking the computational result
has a good coincidence with the exact solution.
But rather singular values are easily observed
around the center. The singularity does not oc-
cur in the pressure but it clearly occurs in the
density. The singularity is formed just a few
steps after the start of computation. While it
gets smaller until a few hundreds time steps, the
singularity is completely stable at the time of pic-
ture and it never disappears nor declines.

If the convergence of scheme is discussed in
the sense of LP, the singularity does not harm
with the discussion, because the nubmer of sin-
gularly valued points is uniformly finite regard-
less with the number of total points assumed in
the discrete model. But the singularity really ex-
ists as far as we stay in the discrete model only
where numerical calculation is conducted. The
numerical calculation can proceed the limiting
procedure only half the way but can not reach
the final convergence target that is a solution of
continuous model. The singular values, which are
of course not physically relevant, may deteriorate
the numerical result in the case of more compli-
cated problems including reaction terms because
the singular values would make the numerical
In other

words, the existence of a numerical singularity

estimate of reaction terms incorrect.

consisting of uniformly finite points could be ne-
glected in the convergence discussion but the ex-
istence of singular value itself might do harm with
the reliability of numerical computation.

Similar phenomena is observed in the case of

more simple equations. We show a numerical ex-
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ample for the p-system;

ut + p(v)z = 0,vs —uy =0,—00 < & < 00,t > 0.
(29

With p(v) = k-v77, 1 < 4 <3, the p-system
is a modeling of the motion of compressible gas
using Lagrange coordinate. In this case, u and
v mean the velocity and specific volume, respec-
tively. Here let k = 1,7 = 1.4. We consider a
Riemann problem of the following initial value.

Left state (z < 0):
Right state (z > 0):

v=1,
v=1.

u=-3,
u=3,

The following picture shows the both exact and
numerical solutions of v at t=114.0958 (the num-
ber of time steps is 150). Godunov method is
used to obtain the numerical solution.

v = 50.301(exact)

.

v = 34.37(numerical)

o | of

The computational region is —40 < z < 40,
Az = 1. The CFL-number is 0.9. In this case
the analysis of discrete model is easier and it is
possible to give a rough estimate of the behavior
of singularity.

The both example seem alike, but there is a
clear difference. This singularity disappears fi-
nally in the latter case. It seems that the main
reason of this difference is that the p-system has
two genuinely nonlinear characteristic fields but
no linearly degenerate one. We note that three
characteristic fields © — ¢, u, u + ¢ exist in the
compressible Euler equations, and two (u + ¢) of
them are genuinely nonlinear and another (u) is
linearly degenerate. On the other hand, it is eas-
ily analyzed that in the case of linear hyperbolic
conservation law such a kind of singularity does
not occur in the numerical calculation by Go-

dunov method even though some smearing would
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be observed in a numerical result. Therefore we
may conclude the following as for the numerical
singularity discussed in this section.

(1) The nonlinearity of problem in-
cludes some machinery to cause nu-
merical singularity and that it also
has the machinery to erase it as
the discrete temporal evolution is
repeated.

The coexistence of genuinely non-
linear fields and degenerated lin-
ear field in the compressible Euler
equations causes some difficulty in
constructing discrete models. (The
nonlinearity initiates the singularity
and the linearity reserves it.)

6. Conclusion

We discuss a few examples of consistency
problems that lies between the continuous and
discrete models. To improve the reliability of nu-
merical simulation it is necessary to have more
precise discussion on the consistency between the
both models. We also need some different view-
points of consistency other than conventional way
of discussion like convergence, the order of accu-
racy so on.

From the viewpoint of mathematics, the coex-
istence of nonlinear and linear fields in the com-
pressible Euler equations seems to give interest-
ing problems to the numerical calculation as well
as to theoretical analysis of exact solution.
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