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There is a biplane concept for an efficient supersonic flight. Busemann biplane is a 
representative airfoil which has possibility of realizing low-boom and low wave drag. 
Aerodynamic designs based on the Busemann biplane are demanded for future supersonic 
transports. In this paper, possibilities of designing supersonic biplanes by utilizing an inverse 
problem method are discussed based on Computational Fluid Dynamics (CFD). The inverse 
problem method which has been used in this paper is based on the theory of oblique shock 
wave. Therefore, it is necessary to examine its usefulness of designing airfoils which causes 
complicated phenomena such as biplanes where two airfoil elements interfere with each 
other and 3-dimensional wings. We attempted 2-dimensional cases in our current studies. It 
was confirmed that a certain biplane which differed from the Busemann biplane converged 
to the known Busemann biplane in 14 times iterations of design procedure. This knowledge 
is stated in the previous paper of this one. Then a practical biplane configuration was 
designed by utilizing the inverse problem method. After 14 times iterations, biplane 
configuration which has lower wave drag than a zero-thickness single flat plate airfoil at 
sufficient lift conditions has been successfully designed. Finally, applications to designing 3-
dimensional biplane wings are attempted. Target and initial geometries are set to the same 
ones as the case of 2-dimensional. The above-mentioned inverse problem method was 
applied to total 10 sections. In 3-dimensional cases which have more complicated phenomena 
than 2-dimensional cases such as disparity in flow of span direction, convergence after 14 
times iterations was confirmed. 

Nomenclature 
Cd = wave drag coefficient 
Cl = lift coefficient 
Cp = pressure coefficient 
c = chord 
M  = free-stream Mach number 
t = airfoil thickness 
D = drag 
L = lift 
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Re = Reynolds number 
 = angle of attack 
 = wedge angle

1.  Introduction 
The objectives of low noise and high fuel efficiency are critical for the next generation supersonic transport.  In a 

word, it is necessary to develop an airplane that has low boom and low drag. Busemann proposed a biplane 
configuration in a form with the possibility to satisfy these two conditions, which utilizes a favorable interaction 
between two wing elements1,2. The wave drag due to airfoil thickness can be nearly eliminated using a biplane 
configuration that promotes favorable wave interactions between the two neighboring airfoil elements (here, wave 
drag being defined as a resistant force on the airfoil due to the generation of shock-waves.). Licher extended the idea 
to reduce the wave drag due to lift3. Recently, a project of a supersonic biplane has been started around Dr. 
Kusunose for the purpose of a significant reduction in wave drag and sonic boom4,5. It is a goal of our study to 
develop the idea of the supersonic biplane by utilizing modern techniques, including CFD tools, advanced in the last 
30 years, and also to propose a practicable biplane wing for low wave drag (therefore, for low boom) in supersonic 
flight. 

We currently focus on designing two-dimensional (2-D) biplane configurations for low drag supersonic flight. 
For a design method, an inverse problem method6,7,8 which is based on the theory of oblique shock waves and the 
concept of small perturbation method is used. Its usefulness of designing airfoils which has complicated phenomena 
such as biplanes where two airfoil elements interfere with each other was confirmed in our current studies. In this 
paper, distinguished results of designs for a 2-dimensional biplane airfoil utilizing the inverse problem approach are 
shown. Finally, we demonstrate its design capability for 3-dimensional biplane wings for the purpose of next future 
supersonic transport.   

2.  Biplane Concept for Low Wave Drag Supersonic flight 
In our study, low wave drag biplane configurations are studied under the condition that the total maximum 

thickness ratio (thickness-chord ratios, t/c) is more than 0.10. In supersonic flight of M∞=1.7, we consider the range 
of lift coefficient Cl from 0.10 to 0.20. In Fig. 1 wave drag components due to lift and due to thickness are estimated 
using the supersonic thin airfoil theory for a lifted diamond airfoil of t/c=0.10 at Cl =0.10, with flow condition 
M∞=1.7. Here, t/c represents airfoil thickness chord ratio. 

Employing the 2-D supersonic thin airfoil theory2, the lift and wave drag coefficients of a flat plate airfoil at a 
small angle of attack α are expressed as 
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where, Cl and Cd are defined by L/qc and D/qc, L and D being the airfoil’s lift and wave drag, respectively. 
Symbol M∞, q, and c represent the free-stream Mach number, dynamic pressure (0.5ρ∞U∞

2) and airfoil chord length. 
Here, U∞ represents free stream velocity. 

Wave drag of a diamond airfoil is calculated using the thin airfoil theory2 as 
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Using biplane configurations both wave drag components due to lift and due to thickness can be reduced. 
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Figure 1.  Wave drag components for a diamond airfoil. 

2.1  Elimination of Wave Drag due to Airfoil Thickness 
As shown in Fig. 1, the majority of the total wave drag of a diamond airfoil is due to its thickness. The biplane 

configuration can also significantly reduce wave drag due to its airfoil thickness (or volume). Favorable wave 
interactions between the two airfoil elements can be promoted by choosing their geometries and relative locations 
carefully. Busemann showed that the wave drag of a zero-lifted diamond airfoil can be completely eliminated by 
simply splitting the diamond airfoil into two elements and locating them in a way such that the waves generated by 
those elements cancel each other out1,2 (see Fig. 2, where ε is wedge angle of a Busemann biplane). Generally, in 
supersonic flight, wave drag due to an airplane’s volume (wing thickness, fuselage, etc.) is large relative to that due 
to its lift (As shown in Fig. 1). Supersonic aircraft are therefore severely limited in their wing thickness. If the wave 
cancellation effect can be used effectively, the strong restriction currently imposed on the wing thickness of 
supersonic aircraft may be relaxed considerably. 

Figure 2.  Wave cancellation effect of Busemann biplane. 

2.2  Reduction of Wave Drag due to Lift 
To achieve minimum wave drag under a given lift condition, we chose the biplane configuration discussed by R. 

Licher in 19553 (see Fig.3, where α is the angle of attack for the lower surface of the lower element) as one of the 
baseline configurations. This particular biplane configuration exhibits two desirable characteristics: the wave 
reduction effect due to airfoil lift and the wave cancellation effect due to airfoil thickness. By promoting favorable 
wave interactions between the upper and lower elements, the wave drag due to lift can be reduced to 2/3 of that of a 
single flat plate under the same lift condition. Additionally, Busemann’s wave-cancellation concept can be applied 
to the system to reduce wave drag due to airfoil thickness. 
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Figure 3.  Licher type Biplane including Busemann Biplane. 

3. Aerodynamic Design of Practical Biplane Airfoils by Using an Inverse Problem Method 
Using the inverse problem method, a 2-dimensional biplane airfoil design has been performed. In this research, a 

flow solver named TAS code (Tohoku University Aerodynamic Simulation) using a three-dimensional unstructured 
grid9,10, was used to evaluate aerodynamic performance. In simulation, the Euler/Navier-Stokes equations are solved 
by a finite-volume cell-vertex scheme. The lower/upper symmetric Gauss-Seidel (LU-SGS) implicit method for an 
unstructured grid11 is used for the time integration. The theory and method and its usefulness for biplane 
configurations are shown in the previous paper8. The design procedure of the inverse deign cycle for biplane airfoils 
is shown in Fig. 4. 

For designing biplane airfoils, a Licher type biplane (see Fig.3) was selected as the initial configuration. As a 
design condition, free stream Mach number M∞=1.7, and angle of attack α=1deg. were selected (here, α representing 
the angle of the lower surface of the lower element against the free stream direction). Here, the total thickness-chord 
ratio (t/c) is 0.106. Both the target and initial pressure distributions for both the upper and lower elements used for 
the biplane design were shown in Fig. 5. Our design concept is to meet a demand of Cp distributions, having more 
lift on the upper surface of the upper element and also generating additional lift, but having lower drag on the lower 
surface of the upper element, especially near the trailing edge. The obtained Cp distributions (after 14 times 
iterations) of the upper and lower element, using plots and lines, respectively are shown in Fig. 6. The initial and 
designed geometry are compared in Fig. 7. The gain of the angle of attack of the lower surface on the lower element 
against the flow direction is 0.19deg. compared to the initial Licher type biplane. The total maximum thickness ratio 
(t/c) is 0.102. Cl =0.115, Cd =0.00531 (L/D=21.72). A Cp visualization map at this design point is shown in Fig. 8. 
Wave drag polar diagrams are shown in Fig. 9. When Cl =0.14, total wave drag is lower than that of the zero-
thickness single flat plate airfoil. Thus, by the use of the inverse problem design method, a biplane configuration 
having a distinguished aerodynamic performance was successfully designed. It may seem surprising to find a 
biplane configuration that has a lower wave drag than that of a flat plate airfoil, however, this was already predicted 
by Moeckel more than 50 years ago12.

Observing the designed shape in detail, the trailing edge of the upper element of the designed biplane 
configuration was modified to align the concave curve and the shape parallel to the free stream, creating more lift.  It 
should also be noted that the compression waves generated at the leading edge of the elements and the expansion 
waves generated at the throats of the elements nearly cancelled each other out, thus eliminating the initial pressure 
peaks at the throat. 
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Figure 4.  Design cycle. 
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Figure 5.  Target Cp distributions. 
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Figure 7.  Section airfoil geometries of designed biplane configuration (t/c=0.102). 

Figure 8.  Cp visualization of designed biplane at M∞=1.7 (α=1.19deg). 
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4. Application to 3-dimensional supersonic biplane 
A successful design of 2-dimensional supersonic biplane was shown in the previous paper8. Then we are going 

to challenge to design practical 3-dimensional biplane wings. As a first step of designing practical 3-dimensional 
biplane wings, we attempted to redesign a known 3-dimensional biplane wing by utilizing the above-mentioned 
inverse problem method. The residual – correction design strategy utilizing small perturbation form6,7,8 of the basic 
equation makes 3-dimensional design possible enables to take the 3-dimensional effects into account, even though 
the basic equation is for 2-dimensional (a wing of infinit span length). The 3-dimensional effects and interacting 
effect between the upper and lower wing can be counted by iterations of 3-dimensional flow simulations and the 
inverse problem solver. 

As a design object, the known Busemann biplane whose half-span length is 1 (There is no influence of Mach 
cones emanuated from wing tips and 2-dimensionality is maintained at the symmetry section) was used as an 
existing wing shape for target pressure distributions (Fig. 10). The biplane where the upper wing in the Busemann 
biplane was replaced by a flat plate was used as an initial shape wing (Fig. 11). As the sections for the inverse 
design, the sections at 10 span stations are located from the symmetry section to the wing tip every 10% span length 
intervals. The airfoil tip was excluded from designing, and shape on the wing tip is assumed to be the same shape as 
the shape at 90% span section. The pressure distributions of the Busemann biplane, namely, target pressure 
distributions appear in Fig. 10. It can be seen that Mach cones influence the Cp distributions at sections from the 
30% span station to the wing tip. Detailed pressure visualization of Mach cones and the mesh for CFD analysis are 
shown in Fig. 12. 

Figure. 13 shows obtained geometries and Cp distributions at some sections of the currently designed biplane 
after 1, 2, 5, 7 times iterations. Equations of the inverse problem method are based on the condition that a flow 
deflection angle is less than 0.2 radian in supersonic flow. The condition includes the case of thin airfoils. As seen in 
Fig. 13(a), the obtained geometries agree well with the target ones in the region where there are no influences except 
for shock waves from the leading edges, that is, in the region from the leading edges to the mid chords at sections 
within 60 % span (see Fig. 10). According to Fig. 13(b), the obtained geometries after 2 times iterations agree well 
with the target ones in the region from the leading edges to mid chord sharp apexes at all sections. However, the 
geometries from the mid chords to the trailing edges are greatly different from target ones and the values of 
modifications of the geometries among iterations are also very large. 

As seen in the obtained shapes after 5 and 7 times iterations (Fig. 13(c) and (d)), the geometries from the leading 
edges to the mid chords agree well with the target geometries at all sections. Let us see the geometries after 5 times 
iterations (Fig. 13(c)), the geometry at the 90% span section realizes almost the same shape as the target geometry. 
This is because influences of Mach cones are primary there and there is little physical interference from the lower 
wing. Next, let us take a look at the geometries after 7 times iterations (Fig. 13(d)), the geometries at the almost all 
sections except for the symmetry section are very close to the target geometries. To compare the results after 7 
iteration with the geometries after 5 times iterations which have large changes to the span direction, it is confirmed 
that many iterations are not needed to settle down to the target geometries at many sections. However, the 
convergence of the obtained geometry at the symmetry section is slow because it is indirectly influenced by other 
span stations including tip section geometry changes. 

The geometries and Cp distributions after 14 times iterations are shown in Figs. 13 and 14. We can observe 
convergence to the target geometries and Cp distributions at all sections. Table 1 summarizes the absolute RMS 
(Root Mean Square) errors between the realized Cp distributions and the target ones at all sections. It has been 
confirmed that the simple inverse problem method is capable of performing the aerodynamic design of 3-
dimensional biplane wing shapes where airfoil geometries are changed into a span direction and two airfoil elements 
interfere with each other. Furthermore, it has been also confirmed that almost the same iteration times are needed to 
design 3-dimensional wings as the iteration times to 2-mensional airfoil geometry. 
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Figure 13.  Cp distributions and geometries of the modified airfoils after certain iterations. 
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method. 

Table 1.  The absolute RMS errors between the realized and initial Cp distrivutions at each section. 

(y/c) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 
RMS

(*10E-4) 1.99 1.42 2.35 1.53 2.27 1.58 1.74 0.958 1.18 1.09 

5.  Conclusion 
For the purpose of designing a better aerodynamic biplane airfoil than a Busemann biplane and Licher type 

biplane, an inverse problem method in the previous paper was uded. Concretely, a lower wave drag biplane airfoil 
than the Licher-type biplane at sufficient lift conditions (Cl>0.1) was aimed under the conditions of a cruise Mach 
number 1.7 and total thickness-chord ratio about 0.1. Designs are conducted by applying the inverse problem 
method to the upper element and lower one of the biplane airfoil alternately. Target pressure distributions for the 
inverse problem method were set to have more lift than the initial airfoil (the Licher-type biplane) with restraining 
increment of wave drag at chiefly the upper element. We successfully designed a biplane airfoils which achieved 
lower wave drag compared to both the Busemann biplane and Licher type biplane at Cl>0.07, having a total 
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maximum thickness ratio 0.102. Especially at Cl >0.14 wave drag was lower than that of a (zero-thickness) single 
flat plate airfoil which had the lowest wave drag in monoplanes in supersonic flight (for instance, M∞=1.7).  

The inverse problem method was applied to designs of 3-dimesional biplane wing. There are some problems in 
designs of 3-dimensional biplane such as interference of the upper and lower element, and diversity of span 
direction flow, and both of them. We set the Cp distributions of the Busemann biplane wing as target ones at 10 
sections and a biplane wing whose upper wing is flat plate as an initial geometry. The same design cycle of the 2-
dimensinal cases at 10 sections are conducted. It was seen that section geometries which were becoming the target 
one were becoming away by the influences of changes of span direction flow. After 14 times iteration, all sections 
converged to the target geometry within around 0.0001 or 0.0002 of the absolute RMS errors between realized Cp
distributions and target ones. It can be said that the small perturbation form in the inverse problem method makes 
possible to design biplane airfoils or wing which has strong interference among other elements. In the future, 
practical designs of 3-deimensional biplane wings are considered by utilizing this method. 
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