JAXA 風洞技術開発センター傾斜計校正装置と内装式傾斜計の応用

青木 良尚、細江 信幸、星野 秀雄、伊藤 健 (JAXA)

The Introduction to the JAXA Wind Tunnel Technology Center Inclinometer Calibration Facility and Application of the Servo Inclinometer to Wind Tunnel Testing

Aoki yoshihisa, Hosoe nobuyuki, Hoshino hideo, Ito takeshi (JAXA)

Abstract

The Sensorex and Q-Flex type inclinometer calibration facility in JAXA Wintec was developed in August, 2003. The Inclinometer Calibration Facility is introduced and 2-axis servo inclinometer calibration formula based on servo inclinometer model is derived in this paper. With an example for a wind tunnel testing using the Sensorex41400 servo inclinometer conducted in JAXA 6.5- by 5.5- m Low Speed Wind Tunnel, we show the application of the inclinometer to the wind tunnel testing.

1. はじめに

風洞試験における重要な計測項目の一つに,模型の姿 勢角がある.模型の姿勢角は一般的に重力を基準とした 角度と一様流の偏流角から求められる.サーボ内装式傾 斜計は,重力を利用して傾斜角を計測するセンサであり 多くの産業分野で使用されているが,風洞試験における 重力を基準としたピッチ角とロール角の計測にも使用さ れているセンサである[1].JAXA6.5m×5.5m低速風洞 でもサーボ内装式傾斜計 Sensorex41400を購入し,風洞 試験に使用してきた.2003年8月に完成したJAXA風 洞技術開発センター傾斜計校正装置の概要と共に,課題 であったサーボ内装式傾斜計のロール角を含めた2軸校 正法とサーボ内装式傾斜計の設置誤差の補正法につい て,標準模型試験におけるサーボ内装式傾斜計の応用例 と合わせて報告する.

2. JAXA 風洞技術開発センター傾斜計校正装置[2]

JAXA 風洞技術開発センター傾斜計校正装置は,風洞 試験における模型姿勢角計測精度向上を目的として導入 されたサーボ内装式傾斜計を正確に校正するために製作 が進められ,2003年8月に完成した.装置の概観を図1 に,主な仕様を表1に示す.この装置はピッチ角とロー ル角の2自由度変角機能を備え,装置の角度検出器と被 校正傾斜計の出力を比較する事による静止状態における 角度校正を行うことが可能である.恒温槽も備えており, 温度ドリフト確認機能を持つと共に,データの取得は全 自動で行うことが可能である.被校正傾斜計は Sensorex タイプと Q-Flex タイプを想定しているが,傾斜計取り 付け台座を介して取り付ける為,この台座を製作すれば どのタイプの傾斜計でも校正することが出来る.また, ISO に対応するために,全ての計測機器のトレーサビリ ティは確保されている.

実際の校正手順は以下の通りとなる.

- 1. 準備操作
- 校正装置と傾斜計設置面を水平に調整
- ・ 傾斜計を設置し、計測系の配線を接続
- 2. 信号設定
- 取得するデータの収集条件を設定
- 3. 試験条件設定
- ・ 校正を行うピッチ角, ロール角を設定
- 4. 試験
- 設定した条件で校正試験を実行
- 5. 校正記録
- ・ 取得したデータを保存

取得したデータをオフラインで処理して傾斜計校正係 数を算出することにより,傾斜計の校正が完了する.

測定項目	項目	精度
ピッチ角	測定範囲	\pm 40 $^{\circ}$
	設定精度	0.005°以下
	検出精度	0.002°以下
ロール角	測定範囲	\pm 180 $^{\circ}$
	設定精度	0.005 °以下
	検出精度	0.002 °以下
高温槽	温度設定範囲	$5\sim 85~{\rm C}$
	温度制御精度	± 0.3℃以内
校正条件	自動校正点数	最大 500 点

表1 JAXA 風洞技術開発センター傾斜計校正装置の主な仕様

図1 JAXA 風洞技術開発センター傾斜計校正装置概観

3. サーボ傾斜計の2軸較正

3.1 多項式フィッティングによる校正式と課題

ピッチ角のみを計測可能な1軸サーボ内装式傾斜計の 校正式は、ピッチ角を θ 、ピッチ角出力電圧を S_{θ} 、校正 係数をA、Bとすると、

$$S_{\theta} = A\sin\theta + B \qquad \cdots (1)$$

となる.この式から2軸サーボ内装式傾斜計の出力もピッチ角とロール角の三角関数の線形和と仮定し、それぞれの角度の範囲を±90°と仮定して3次多項式近似を行うと、2軸校正式は、ロール角を ϕ 、ロール角電圧出力を S_{ϕ} 、校正係数を a_i 、 b_i とすると、

$$\begin{cases} S_{\theta} = \sum_{m=0}^{3} \sum_{n=0}^{3} a_{4m+n} \theta^{m} \phi^{n} \\ S_{\phi} = \sum_{m=0}^{3} \sum_{n=0}^{3} b_{4m+n} \theta^{m} \phi^{n} \end{cases} \qquad \cdots (2)$$

となる.

この校正式を検証する為に, JAXA 風洞技術開発セン ター傾斜計校正装置でサーボ傾斜計 Sensorex41400の校 正データを取得した.校正データは図2に示すような2 種類を取得して結果を比較した.校正データ1は図2の 黒丸で示されるピッチ角0°上の点とロール角0°上の 点,ピッチ角とロール角の絶対値が等しくなる点から 25 点抜粋した点であり,校正データ2は図2の×で示 されるピッチ角・ロール角共に5°間隔で取得した225 点である.それぞれの校正データから校正係数を算出し, 他の校正データを使用して角度を算出することによる検 証結果を表2に示す.

表2より,校正点が細かく校正範囲全体に分布してい る場合には,校正点以外の角度計測精度は十分確保され るが,校正点が荒い場合には校正点以外の計測精度が落 ちることが判る.また,式(2)で示される校正式の校正 項はピッチ角・ロール角合わせて32項あり,複雑であ る.したがって,式(2)の校正式には,計測精度を高め る為には多数の校正点が必要,校正項の数が32項とな り,1軸校正式と比較して非常に複雑であるという課題 があることが判明した.

表2 多項式フィッティング2軸校正式検証結果

校正データ	確認データ	<i>θ</i> [d	leg]	¢[deg]		
		誤差平均	誤差標準偏差	誤差平均	誤差標準偏差	
1	2	-0.0008	0.3717	0.0038	0.1031	
2	1	0.0000	0.0019	0.0009	0.0103	

図2 多項式フィッティング2軸校正式検証データ

3.2 サーボ傾斜計のモデル化と校正式の導出

前節の多項式フィッティングによる校正式の課題を解 決する為に,サーボ傾斜計のモデルに基づいて校正式を 導出する.

図3に示す1軸サーボ傾斜計モデルでは,傾斜計が傾 いても傾斜計に固定された座標系における重りの位置が 変わらないように重りに力を加える動作を行い,この重 りに加える力に比例した信号が出力される.従って,サ ーボ傾斜計モデルに基づく2軸校正式を導出するために は,2軸を変角した時に重力に反して傾斜計内部の一定 の位置に重りを固定する為に必要な力を求めればよい.

まず、図4に示すように傾斜計に固定された座標系を 取る.ここで、x軸はロール回転軸、y軸はピッチ回転 軸と一致する方向とする.また、z軸正方向を重力加速 度方向と一致する位置をピッチ角・ロール角0°とし、 これらの角度に関する回転行列 R_{θ} , R_{ϕ} を、重りの固定 位置のピッチ角・ロール角オフセット値をそれぞれ a_i , β_i ($i = \theta, \phi$) として下記の通りに定義する.

$$R_{\theta} = \begin{pmatrix} \cos(\theta + \alpha_i) & 0 & -\sin(\theta + \alpha_i) \\ 0 & 1 & 0 \\ \sin(\theta + \alpha_i) & 0 & \cos(\theta + \alpha_i) \end{pmatrix} \qquad \cdots (3)$$

$$R_{\phi} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos(\phi + \beta_i) & \sin(\phi + \beta_i) \\ 0 & -\sin(\phi + \beta_i) & \cos(\phi + \beta_i) \end{pmatrix} \qquad \cdots (4)$$

ピッチ角・ロール角方向のサーボ入力軸を ($\varepsilon_{\theta_x}, \varepsilon_{\theta_y}, \varepsilon_{\theta_z}$), ($\varepsilon_{\phi_x}, \varepsilon_{\phi_y}, \varepsilon_{\phi_z}$), 重力によって重りに 加わる荷重を f_g , オフセット電圧を Δ_{θ} , Δ_{ϕ} , サーボ入 力を電圧に変換する比例定数を k_{θ} , k_{ϕ} とすると, 2軸変 角による2軸信号出力 S_{θ} , S_{ϕ} は下式となる.

$$\begin{cases} S_{\theta} = k_{\theta} \Big(\varepsilon_{\theta x} & \varepsilon_{\theta y} & \varepsilon_{\theta z} \Big) R_{\theta} R_{\phi} \begin{pmatrix} 0 \\ 0 \\ f_{g} \end{pmatrix} + \Delta_{\theta} \\ S_{\phi} = k_{\phi} \Big(\varepsilon_{\phi x} & \varepsilon_{\phi y} & \varepsilon_{\phi z} \Big) R_{\theta} R_{\phi} \begin{pmatrix} 0 \\ 0 \\ f_{g} \end{pmatrix} + \Delta_{\phi} \\ f_{g} \end{pmatrix} + \Delta_{\phi} \end{cases}$$
(5)

式(5)は,

 $(1, \sin\theta, \cos\theta, \sin\theta\sin\phi, \sin\theta\cos\phi, \cos\phi, \cos\theta\sin\phi, \cos\theta\cos\phi)$

という一次独立な7個の基底関数の線形結合である為, サーボ傾斜計モデルに基づく2軸校正式はこれらの基底 関数から下式となる.

$$S_{\theta} = a_0 + a_1 \sin \theta + a_2 \cos \theta + a_3 \sin \theta \sin \phi$$

+ $a_4 \sin \theta \cos \phi + a_5 \cos \theta \sin \phi + a_6 \cos \theta \cos \phi$
$$S_{\phi} = b_0 + b_1 \sin \theta + b_2 \cos \theta + b_3 \sin \theta \sin \phi$$

+ $b_4 \sin \theta \cos \phi + b_5 \cos \theta \sin \phi + b_6 \cos \theta \cos \phi$
...(6)

以上より,サーボ傾斜計モデルに基づく2軸校正式(式 (6))が導かれた.傾斜計校正データから最小二乗法に よって式(6)の14項の校正係数を求める事が出来る.ピ ッチ角・ロール角は,求めた校正係数と信号出力から, Newton-Raphson法のような一般的な非線形方程式解法 を用いて式(6)を解く事で計測することが可能となる.

図4 傾斜計内部に固定された座標系の定義

3.3 サーボ傾斜計 Sensorex41400 によるサーボ傾斜 計モデルに基づく校正式の検証

前節で求めたサーボ傾斜計の2軸校正式の妥当性を検 証する為に、多項式フィッティング校正式の検証に使用 した校正データに加えて、傾斜計を再設置して計測した 校正データ1と同様の25点校正データ3、校正データ1 ~校正データ3の1年前に計測したピッチ角が-10°,0°, 10°におけるロール角-35°~35°まで5°間隔、ロール 角が-10°,0°,10°におけるピッチ角-35°~35°まで 5°間隔の175点の校正データ4を追加した.校正式の 検証は25点の校正データ1から計算した校正係数を使 用して、校正データ1~校正データ4の計測値から角度 を計算して角度設定値と計測値の差分を評価して行っ た.表3にサーボ傾斜計モデルに基づく2軸校正式の検 証結果を、図5にピッチ角計測誤差のヒストグラムを、 図6にロール角計測誤算のヒストグラムを示す.

校正データ1,校正データ2の誤差は全て±0.1°以内 となり,多項式フィッティングによる2軸校正式と比較 して,少ない校正点数で校正点以外の計測点でも良い計 測結果が得られた.再設置時データでは,ピッチ角・ロ ール角共に角度のオフセットが発生しているが,大きな 計測誤差は発生していない.再設置時データのロール角 誤差標準偏差は0.02°程度と他の誤差標準偏差と比較し て大きくなる.この原因は不明であるが,センサの特性 である可能性が考えられる.以上より,サーボ傾斜計モ デルに基づく校正式(式(6))は妥当である事が確認で きた.

	<i>θ</i> [c	leg]	¢[deg]		
	誤差平均	誤差標準偏差	誤差平均	誤差標準偏差	
校正データ1	0.0000	0.0014	0.0000	0.0019	
校正データ2	0.0004	0.0022	- 0.0005	0.0024	
校正データ3	0.0134	0.0044	0.0347	0.0234	
校正データ4	0.0174	0.0030	- 0.0038	0.0192	

表3 サーボ傾斜計モデルに基づく2軸校正式検証結果

図 5 ピッチ角校正誤差ヒストグラム

図6 ロール角校正誤差ヒストグラム

4. 設置誤差補正法の検討

4.1 傾斜計設置誤差

先に導出したサーボ傾斜計モデルに基づく傾斜計の2 軸校正式は妥当である事を確認したが、表3より、傾斜 計再設置後には校正データ3でピッチ角0.013°,ロー ル角で0.035°,校正データ4でピッチ角0.017°の微小 な計測誤差平均値のずれが発生している.これらの計測 誤差平均値のずれは傾斜計の誤差範囲の可能性もある が、傾斜計は傾斜計校正装置で校正された後に一旦取り 外して模型内部に再設置されるので、微小な設置誤差が 発生した場合に、設置誤差が傾斜計のピッチ角・ロール 角計測値に与える影響を補正する必要がある.次節で、 微小な設置誤差が傾斜計の計測値に与える影響の補正法 を検討する.

4.2 微小な傾斜計設置誤差補正法の検討

微小な設置角度のオフセットをオイラー角で定義し, 微小な傾斜計設置誤差を持つ傾斜計が計測するピッチ角 とロール角から,実際の設定ピッチ角とロール角を求め る補正式を算出する.

微小な設置角度のオフセットのピッチ角 θ_e ・ロール角 ϕ_e ・ヨー角 ψ_e を定義する回転行列をそれぞれ R_{θ_e} , R_{ϕ_e} , R_{μ_e} , R_{μ_e} , R_{μ_e})

$$R_{\theta e} = \begin{pmatrix} \cos \theta_e & 0 & -\sin \theta_e \\ 0 & 1 & 0 \\ \sin \theta_e & 0 & \cos \theta_e \end{pmatrix} \qquad \cdots (7)$$
$$R_{\phi e} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \phi_e & \sin \phi_e \\ 0 & -\sin \phi_e & \cos \phi_e \end{pmatrix} \qquad \cdots (8)$$

$$R_{\psi e} = \begin{pmatrix} \cos \psi_e & \sin \psi_e & 0 \\ -\sin \psi_e & \cos \psi_e & 0 \\ 0 & 0 & 1 \end{pmatrix} \qquad \cdots (9)$$

となる.また,実際の設定ピッチ角 θ と設定ロール角 ϕ を表現する回転行列 R'_{θ} , R'_{ϕ} は,式(3)と式(4)におけるピッチ角・ロール角オフセットを0°とすると,

$$R'_{\theta} = \begin{pmatrix} \cos\theta & 0 & -\sin\theta \\ 0 & 1 & 0 \\ \sin\theta & 0 & \cos\theta \end{pmatrix} \qquad \cdots (10)$$

となる.式(7)~式(9)で表される設置誤差を含む傾斜計 ピッチ角 $\hat{\theta}$ とロール角 $\hat{\phi}$ の回転行列 R''_{θ} , R''_{θ} は,

$$R_{\theta}'' = \begin{pmatrix} \cos \hat{\theta} & 0 & -\sin \hat{\theta} \\ 0 & 1 & 0 \\ \sin \hat{\theta} & 0 & \cos \hat{\theta} \end{pmatrix} \qquad \cdots (12)$$
$$R_{\phi}'' = \begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \hat{\phi} & \sin \hat{\phi} \\ 0 & -\sin \hat{\phi} & \cos \hat{\phi} \end{pmatrix} \qquad \cdots (13)$$

となる.以上の式(7)~式(13)より,傾斜計で計測される ピッチ角・ロール角と,実際に設定されたピッチ角・ロ ール角の関係は,以下の式で表される.

$$R_{\theta}'' R_{\phi}'' \begin{pmatrix} 0\\0\\1 \end{pmatrix} = R_{\phi e} R_{\theta e} R_{\theta e} R_{\phi} R_{\phi} R_{\phi}' \begin{pmatrix} 0\\0\\1 \end{pmatrix} \qquad \cdots (14)$$

傾斜計で計測されたピッチ角・ロール角から実際に設定 されたピッチ角・ロール角を算出する為に,右辺の設置 角度のオフセット回転行列の逆行列を両辺に掛けて整理 すると,ピッチ角が±90°の範囲内では,以下の関係式 が得られる.

$$\sin \theta = \cos \theta_{e} \cos \psi_{e} \sin \theta$$

$$+ \left\{ \sin(\hat{\phi} - \phi_{e}) \sin \psi_{e} - \sin \theta_{e} \cos(\hat{\phi} - \phi_{e}) \cos \psi_{e} \right\} \cos \hat{\theta}$$

$$\tan \phi = \left\{ -\cos \theta_{e} \sin \psi_{e} \sin \hat{\theta} + \left(\sin \theta_{e} \cos(\hat{\phi} - \phi_{e}) \sin \psi_{e} + \sin(\hat{\phi} - \phi_{e}) \cos \psi_{e} \right) \cos \hat{\theta} \right\} / \left\{ \sin \theta_{e} \sin \hat{\theta} + \cos \theta_{e} \cos(\hat{\phi} - \phi_{e}) \cos \hat{\theta} \right\} / \left\{ \sin \theta_{e} \sin \hat{\theta} + \cos \theta_{e} \cos(\hat{\phi} - \phi_{e}) \cos \hat{\theta} \right\}$$

$$\cdots (15)$$

式(15)を簡略化するために,設置角度のオフセット角 0°周りでテーラー展開し,傾斜計で計測されたピッチ 角・ロール角から実際に設定されたピッチ角・ロール角 の一次近似式を求めると,下式となる.

$$\begin{cases} \theta = \hat{\theta} - \theta_e \cos \hat{\phi} + \psi_e \sin \hat{\phi} \\ \phi = \hat{\phi} - \theta_e \tan \hat{\theta} \sin \hat{\phi} - \phi_e - \psi_e \tan \hat{\theta} \cos \hat{\phi} \end{cases} \cdots (16)$$

式(16)の補正式から,供試体の基準面上で計測した姿勢 角3点以上から,設置角度のオフセット角を求める事が 出来る.

式(16)の補正式を使ってオフセット補正をした補正後 のピッチ角校正誤差を表4に,補正後のロール角校正誤 差を表5に,補正後のピッチ角校正誤差ヒストグラムを 図7に,補正後のロール角校正誤差ヒストグラムを図8 に示す.

補正後のピッチ角では, 誤差の平均値は0°に近づき, 誤差の標準偏差は校正データ3では半分程度に, 校正デ ータ4では1.4倍となった. 校正データ3は校正に使用 した校正データ1を取得直後に再設置して計測したデー タなので, 傾斜計自体の特性の変化の影響が小さいため に設置角度補正の効果があったと考えられる.

補正後のロール角では, 誤差の平均値は0°に近づく が, 誤差の標準偏差はほとんど変化がない. したがって, 校正データ3と校正データ4で見られるロール角の誤差 の標準偏差が他の誤差の標準偏差と比較して大きいの は, 設置角度の影響ではなく, センサの特性など他に原 因があると考えられる.

以上より,導出した設置角度補正近似式(式(16))は 誤差のオフセットを補正するのに妥当であることがわか った.

表4 補正後ピッチ角校正誤差

	補正前θ[deg]		補正後θ[deg]		オフセット角[deg]			
	誤差平均	誤差標準偏差	誤差平均	誤差標準偏差	<i>θ</i> e	ψe	φe	
校正データ1	0.0000	0.0014	0.0000	0.0014		_		
校正データ2	0.0004	0.0022	0.0001	0.0022	0.0003	-0.0016	-0.0005	
校正データ3	0.0134	0.0044	0.0001	0.0022	0.0138	-0.0125	0.0347	
校正データ4	0.0174	0.0030	0.0000	0.0044	0.0179	0.0100	-0.0038	

表5 補正後ロール角校正誤差

	補正前¢[deg]		補正後 <i>φ</i> [deg]				
	誤差平均	誤差標準偏差	誤差平均	誤差標準偏差	<i>θ</i> e	ψe	φe
校正データ1	0.0000	0.0019	0.0000	0.0019	-		
校正データ2	-0.0005	0.0024	0.0000	0.0022	0.0003	-0.0016	-0.0005
校正データ3	0.0347	0.0234	0.0000	0.0232	0.0138	-0.0125	0.0347
校正データ4	-0.0038	0.0192	0.0000	0.0186	0.0179	0.0100	-0.0038

図7 補正後ピッチ角校正誤差ヒストグラム

図8 補正後ロール角校正誤差ヒストグラム

JAXA6.5m × 5.5m 低速風洞における内装式 傾斜計の応用

5.1 内装式傾斜計の使用法

JAXA6.5m × 5.5m 低速風洞では,サーボ傾斜計 Sensorex41400を供試体の内部に設置面を製作して搭載 し,ピッチ角の計測に使用している.この風洞の支持装 置はピッチ&ヨー変角機構であるので,内装式傾斜計の 出力で使用するのはピッチ角のみとしている.供試体内 部でピッチ角を計測するので,たわみを含めたピッチ角 を計測することが出来る為,たわみ補正は行わない.

5.2 ピッチ角の傾斜計出力とエンコーダ出力の比較

JAXA6.5m × 5.5m 低速風洞で行われた ONERA M5 2.5 倍相似模型による標準模型試験で取得したデータに より, ピッチ角の傾斜計出力とエンコーダ出力を比較し た結果を図9に示す.たわみ補正を行っていないが, ピ ッチ角の傾斜計とエンコーダ出力はほぼ0.05°範囲で一 致している.傾斜計はアナログ出力である為,エンコー ダよりも高精度・高分解能でピッチ角を計測可能とな る.

6. まとめ

- ・ JAXA 風洞技術開発センター傾斜計校正装置の概要を示した.
- ・サーボ式傾斜計のモデルを作成し、校正データに よってその妥当性を示した.
- ・サーボ式傾斜計 Sensorex41400の校正を行い,導出 した校正式が妥当であることを確認した.
- 校正条件とは異なった取り付け角を持った場合の 補正方法を検討し、妥当性を確認した。
- JAXA6.5m × 5.5m 低速風洞における内装式傾斜計
 の応用を紹介した.

図 9 標準模型試験におけるピッチ角の傾斜計出力とエンコー ダ出力比較結果

7. 謝辞

標準模型試験を行う為に, JAXA6.5m × 5.5m 低速風 洞の皆様には大きな助力を頂きました.また,超音速風 洞の永井伸治セクションリーダーには,適切な助言を頂 きました.ここに感謝の意を表します.

参考文献

- [1] T. Finley and P. Tcheng, "Model Attitude Measurements at NASA Langley Research Center", AIAA 92-0763
- [2] 川崎重工業株式会社, "模型姿勢角センサ・角度較正 装置 完成図書", 2003