れいめい衛星搭載のラングミュアプローブ特性に関する

PIC シミュレーション - 進捗報告-

臼井 英之、今里 康二郎(京都大学 生存圈研究所)、上田 裕子(宇宙航空研究開発機構)、岡田 雅樹(国立極地研究所)、

1. まえがき

平成 17 年度にオーロラ撮像を主目的とした 小型科学衛星「れいめい」が打ち上げられた。 れいめいには、オーロラ電流などの高エネルギ 一粒子計測の他に、極域における背景プラズマ パラメータ計測のために2種類のパッチ型ラン グミュアプローブ(CRM)が搭載されている。ひ とつは衛星筐体を基準電位としたシングルプロ ーブであり、もうひとつは、筐体電位から絶縁 されたダブルプローブである。ラングミュアプ ローブによるプラズマパラメータ推定(参考文 献1)は非常に古典的であり、すでにその手法は 確立している。しかし、衛星表面に搭載された パッチ型プローブの場合、衛星本体やその環境 によってプラズマパラメータ推定がどの程度影 響を受けるかについては自明ではない。この影 響の定量理解には、事前に地上実験による検証 が必要であるが、極域プラズマ環境をチェンバ 一内で実現することは困難である。このような 状況の元、本研究では、数値シミュレーション を用いて衛星環境における CRM 特性を把握し、 衛星観測データの較正時の基礎データとして役 立てる。

図1 小型科学衛星れいめい(概念図)

ダブルプローブ(概念図)

2. シングルプローブ特性

図2に示すように、シングルプローブは衛星 筐体を基準電位とする。そのため、オーロラ電 流による急激な衛星の負帯電がある場合、その 負電位を基準電位としてプローブ電流が測定さ れるため、それから推定される背景電子の温度、 密度は正確とはいえない。一方、ダブルプロー ブの場合、基本的にはプローブは衛星筐体から 電気的に絶縁されており、また筐体に対して面 積が小さいため、たとえ急激なオーロラ電流に より筐体が負に帯電しても、その影響を受けに くい。

そこで本研究では、まず、れいめい衛星表面 に接地されたシングルプローブモデルを用いて、 オーロラ電流がある場合とない場合でプローブ 特性の違いを PIC モデルシミュレーションに より検証し、シングルプローブ特性による背景 プラズマパラメータ推定の誤差について調べた。 背景プラズマパラメータとしては、プラズマ数 密度は 1.00×10¹⁰ m⁻³、電子の熱速度 0.5 eV (2.97×10⁵ m/s)、酸素イオンの熱速度 0.5 eV (1.73×10³ m/s)、衛星に対するドリフト速度 8.65×10³ m/s とした。簡単のために、プローブ

図3 レイメイとシングルプローブモデル

面積、電子ビームパラメータは任意に設定した。 図4に、シングルプローブの電位挿印により得 られるプローブ電流の時間変化を示す。プロー ブ電位は衛星筐体を基準にして、-5Vから5V まで挿印させた。

図4左図にオーロラ電流成分がない場合につ いての衛星筐体電位とプローブ電位の時間変化 を示す。極域プラズマ環境では、赤線で示した ように、衛星が背景電子の流入によりプラズマ 電位に対して負に帯電する。これに対してプロ ーブ電位挿印を緑色の線で示したように行った。 この場合、赤線の衛星筐体電位の変動が若干見 られるが初期の浮遊電位からの変動はあまり大 きくない。しかし、図 4 右図に示したように、 オーロラ電流成分がある場合、衛星の負帯電が 顕著となり筐体浮遊電位が初期に大きく下がる。 本モデルでは、時間=0.8×10⁻⁴tまでは衛星電位 を基準にしてプローブは-5V 低い電位を設定し ており、この時点で衛星システムとしてはほぼ 浮遊電位となっている。その後、衛星電位を基 準に生電位方向に挿印するが、プローブ電位が 浮遊電位より正になっていくため、その分オー ロラ電子がプローブのみならず、衛星筐体全体 でも多く取り込まれるため、筐体電位は逆に大 きく下がっていくのが見える。

これらの状況において得られたプローブ電流、 特に電子電流から背景電子の温度、密度の推定 が可能である。図5にプローブの電流-電圧特 性を示す。青船の電子電流に関する近似曲線を 用いて以下の式から電子温度が算出できる。

$\frac{d\ln I_e(V)}{dV} = -\frac{e}{kT_e}$

0

オーロラ電子がない場合(左図)の場合、上式 から推定できる電子温度は約0.65eVであり、 シミュレーションのパラメータ設定地である 0.5eVに対して1.3倍大きい。一方、オーロラ 電子がある場合(右図)では、推定背景電子温 度は3.8eVであり、パラメータ設定値とは大き くかけ離れている。この原因は、プローブ電位

プラズマ電位まで 達していない Δ V=0V

Potential history

図4:オーロラ電流がない場合(左図)とある場合(右図)の衛星筐体およびプローブ電位の時間変化

図5:オーロラ電流がない場合(左図)とある場合(右図)の電子電流-電圧特性曲線。

挿印における基準電位、すなわち衛星筐体電位 が時間的に大きく変動(図4右の赤線)してい るために正しい電流電圧特性が得られなかった ためと考えられる。すなわち、オーロラ電流な ど、電子ビームが存在するプラズマ環境ではシ ングルプローブによる背景プラズマパラメータ 推定は困難であることが本粒子シミュレーショ ンでも示すことができた。

3. ダブルプローブの基本シミュレーション

本来なら、れいめい搭載モデルのダブルプロ ーブ特性を数値シミュレーションで行うべきで あるが、本研究では、これに先立ち、ダブルプ ローブ単体での特性を定量把握する目的で、ダ ブルプローブそのものの基本特性シミュレーシ ョンを行った。

図6:ダブルプローブの電位変化

ダブルプローブでは、一方のプローブ電圧を 基準として他方の電位を挿引する。プローブ同 士は接続されているため、各プローブに入る正 味の電流値は等しく、それをプローブ電流とす る。図6にプローブ電位の時間変化を示す。浮 遊電位に達した後、-5Vから5Vまでの電位挿 引を行った。緑色の線で示されたプローブには 主にイオン電流、赤線で示されたプローブには 電子電流が主に流れる。

図7に電流電圧特性曲線を示す。ダブルプロ ーブ法の電子温度を求める式は経験的に以下の ように与えられる。無衝突プラズマでは、A1=4, A2=3.28 である。

図中の青の破線の傾き(青色、緑色)、イオン電

流値から電子温度 Te を求めることができる。 シミュレーションで設定した電子の熱速度は 0.5eV であるが、電流電圧特性を下式にいれて 得られる電子温度推定値は 0.512eV であり、設 定値の約 1.02 倍となった。この結果から明らか なように、ダブルプローブによる背景プラズマ パラメータ推定は誤差が少ない。

衛星電位は I/C(流入電流と静電容量の比)が 大きい場合急激な時間変化を示す。ダブルプロ ーブの場合、衛星本体とは絶縁されており衛星 本体に比べて I/C(流入電流と静電容量の比)が 小さいため、電位の時間変化は衛星筐体に比べ て緩やかといえる。このため、ダブルプローブ はオーロラ電流などの突発的環境変化の影響を 受けにくい。(一方、第2章で示したように、 シングルプローブは筐体に接地されているため その電位変動の影響を大きく受ける。)

4. まとめ

プラズマシミュレーションによる本研究では、 まず、宇宙環境中でのシングルプローブ特性の 取得とそれによるプラズマパラメータ推定につ いて、オーロラ電流依存性について調べた。オ ーロラ電流により、衛星筐体が大きく負に帯電 する場合は、シングルプローブでは背景プラズ マパラメータの推定は困難であることを示した。 また、続いて、ダブルプローブの基本特性の取 得とプラズマパラメータ評価について検討し、 オーロラ環境において衛星本体の浮遊電位変動 に影響されにくいダブルプローブ計測の有効性 を示した。

本研究は進行中であり、れいめい衛星観測デ ータとプラズマシミュレーションデータの直接 比較・検討までには至っていない。ただ、本報 告にあるように、少なくとも、プラズマシミュ レーションを応用することにより、衛星環境下 での測器特性取得の有効性を示すことができた。 今後、より詳細な「れいめい衛星環境」を元に したプラズマシミュレーションを行い、実際の 観測データ(背景プラズマパラメータ)の較正 に役立てることを目指す。

参考文献

堤井信力、プラズマ基礎工学、内田老鶴圃、1995.