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ABSTRACT

This paper presents a parallel optimization method to solve
large-scale optimization problems and apply the method to the
simultaneous vehicle design and flight trajectory optimization
problems of a spaceplane. Generally, to obtain an accurate
optimal solution, a large-scale problem has to be solved, and it
takes much computing load and time. Therefore, the new method
divides the problem into several sub-problems which can be
solved in parallel. In the first half of the paper, we describe the
way to decompose the problem and the fundamental algorithm to
solve it. We introduce the conjunctive constraints among the
sub-problems and define Lagrange multipliers for each
conjunctive constrain. Each sub-problem can be solved in a
parallel manner by updating both the Lagrange multipliers and
design variables. In the latter half of the paper, the parallel
optimization method is applied to obtain the optimal shape and
optimal flight trajectory of a spaceplane.

INTRODUCTION

This paper considers an optimization design
problem of a spaceplane in which design parameters of
a vehicle and its assent trajectory are optimized
simultaneously. A new parallel optimization technique
is introduced to solve the large-scale simultaneous
design. The method decomposes an original problem
into multiple sub-problems by using the Lagrange
variables which can be solve in parallel, and this
process is iterated by updating Lagrange variables until
converged solutions are obtained.

This method is applied to the design problem of a
spaceplane which takes off horizontally, climbs up to a
spacestation and returns to the earth airport with
horizontal landing. The vehicle is intended to be fully
reusable by installing the different type of propulsion
system, e.g., air-breathing engines and a rocket engine.
Since the mission requirements of this vehicle is highly
severe for the present technological level,
optimization design techniques must be introduced to
obtain the most efficient design. It must be noted that
the vehicle shape and its flight trajectory must be
optimized simultaneously since these two designs have
strong coupling.

The main emphasis of this paper is to develop the
parallel multi-disciplinary optimization techniques, thus
simplified models are used to estimate the aerodynamic
and engine characteristics, and structural design is
represented as structural weight estimation from
statistical data. Flight trajectories are calculated by a
point mass model where the angle of attack is selected
as a control variable and the engine keeps the maximum

thrust. In a total design problem, the design variables to
be optimized are the design parameters in the vehicle
design and the control parameters in the trajectory
design. The former variables are the body length, the
wing area, the size of engine, the body diameter and so
on. The later variables are the time history of the angle
of attack, the burn out time and the altitude, and the
timing of engine selection.

As a numerical optimization method, we are using
the Sequential Quadratic Programming which
approximates a nonlinear optimization problem as a
quadratic problem using derivative information of a
Lagrange function. Whereas the optimal trajectory
problem is a dynamic problem where the time history of
control variable is a design variables and the time
differential equations are the state equations to be
satisfied as constrains in the optimization process, the
direct collocation method can convert the dynamic
optimization problem to a static optimization problems.
Therefore, we can formulate this design problem as a
conventional optimization problem. However, it should
be noted that this problem has a large number of design
variables in different disciplines. This is a main reason
why we try to introduce a parallel optimization
technique.

PARALLEL OPTIMIZATION METHOD

The parallel optimization method usually
decomposes the original problem into sub-problems,
and solves each sub-problem in a parallel manner. The
program manager must be introduced to iterate this
sequence and to update information in each
sub-problem so as to obtain the total optimization
solutions.

Dantzig-Wolfe originally presented
decomposition algorithm" for linear programming
problem. For nonlinear programming problem, two
methods called model coordination method and gaal
coordination method which are reviewed by Karc;ch“
has been well accepted. In addition, a hybrid method”’
combining these two methods has been studied in recent
years. However, these decomposition algorithms have
not been wildly applied. Recently Braun et al. have
proposed numerical methods called Collaborative

Opnmlzatlon4) for more practical multidisciplinary
optimization problems. Whereas those practical
methods have robustness for practical design

environment, they do not have strict mathematical
background.

In our study, we try to develop mathematically well
defined formulation which can be applied to practical
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Fig.2  Three technical fields

design problems with a large number of design
variables. We consider the total model divided into
three sub-system as shown in Fig.1. The total problem
can be written as

minimize: f(x,,x,,x,) (1a)
8y (x)

subject to: g, (x) = |g,,(x,)| =0 (1b)
8e(x5)

&n(x)
&(x)=|g,,(x,)| =0 (1c)
815(x5)
[75(%,,%,)]
by (x,x;)
h(x,,x;)
e by, (x,,%5) ~e )
hy(xy,x5)
_kn{xzaxs)J

where an equality constraint h; and h; = 0 is
respectively called a conjunctive function which
connects two subsystems i and j.

In order to solve the sub-problem independently,
conjunctive functions in connecting sub-problem and its
Lagrange variables are incorporated in an objective
function. This process can define the following
sub-optimization problem.

variable : x, (2a)

minimize f(x, x,,x,)+ 21,,.,%‘,. (xx,) (2b)
j=lti=f)

subjecttog, (x,)=0 (2c)

8,(x)=0 (2d)

hi(x,x)=0 (j=123 and i=j) (2e)

Note that the optimized variables in the
sub-problem i are x; and vj;, and the others are dealt
with as constants those are updated in each iteration
process.

A Fundamental

algorithm to solve the
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sub-problems is summarized as follows:

(1) Determine proper initial solutions of all the
variables x; and Lagrange multipliers v;

(2) Solve all sub-problems in parallel with optimization
methods by which not only the variables but also
the Lagrange multipliers can be computed, e.g. a
sequential quadratic programming (SQP) method )

(3) Exchange the obtained variables and multipliers
among the sub-problems as shown in Fig. 2, and
return to (2).

SPACEPLANE DESIGN STUDY

In this section, a shape design and an ascent
trajectory design a spaceplane is formulated. Figure 1
indicates three technical fields, body design field,
aerodynamic analysis field and trajectory planning field.
These three fields are not independent but have the
interactions of design variables and design
specifications, i.e., some variables of body shape, wing
shape, performance and aerodynamic coefficients are
used in each design field. Conjunctive conditions
represent the equality constrains of the design variables
and design specifications commonly used in each
subsystem.

Takeoff Weight: 300 [ton] |

Tangent ogive

Fig.1  Spaceplane model

(1) Body Design

The spaceplane shape model adopted in this paper
is illustrated in Fig. 2. Takeoff Weight is assumed to be
300 ton and the body is composed of an elliptical
cylinder body, a tangent ogive nose and a delta wing.
The design variables in this fields are the geometrical
data and design specifications, e.g., maximum dynamic
pressure gmax (< 100 kPa), and maximum load factor
Nmx (4 G). Note that the tank volume of fuel
compounded from liquid hydrogen (LH,) and liquid
oxygen (LOX) must be less than 70 % of the total body
volume.

The vehicle weight is estimated by using
WAATS® program in which some parameters are
modified for a spaceplane, structural weight Wsrr can
be estimated from the body and wing size. Considering
the fuel weight Wy, obtained in the trajectory planning
fields together, payload weight Wyayiead is defined as
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payioad = 300 = Werg =Wpy [ton] 3)
(2) Aerodynamic Analysis

The aerodynamic characteristics of the model are
analytically computed by CRSFLW method in Ref. 7
and 8. Five sampling points are selected from low speed
to hypersonic speed, where aerodynamic parameters
related to lift coefficient and drag coefficient are
calculated. Three wvariables, L, Iz and s (> b),
representing the wing size are decided in this field. The
aerodynamic coefficients are used to compute
trajectories in the following field and the wing size is
needed to estimate the structural weight in the body
design field.

(3) Trajectory Planning

The spaceplane takes off, rises and is accelerated
by ATR (up to Mach 6), SCR (switched from ATR and
useable to Mach 12) and ROC (useable with ATR and
SCR at the same time). Then, after the engine is cut-off
above 90 km, it zooms up to 400 km with no thrust in
an elliptical orbit. Finally, it is put into a 400 km
circular orbit at the apogee in the elliptical orbit (Fig. 3).

In the flight trajectory design, state variables are
altitude A, velocity v, flight-path angle y and weight m.
A control variable is defined as the angle of attack c.
Motion equationss) of the spaceplane are expressed as
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and the apogee altitude computed by the terminal states,
h(ts), ¥(ts) and v(t;), needs to be 400 km.

In addition, the following path constraints are
defined.

h=0[km] (7a)
4= (7b)

a =20 [deg) (7¢)
nsn_,. (7d)

where ¢ is dynamic pressure and # is load factor.

It should be noted that the motion equations
change discontinuously since the operating engines are
switched according to the flight conditions. Therefor the
trajectory planning field is subdivided into four stages,
that is, ATR, SCR SCR+ROC and ROC stage, which
provide four sub-problems.

(4) Optimization Process

The flight trajectory can be optimized by solving
the conventional optimal control problem in which an
objective function is minimization of required fuels. In
this study, the state variables and constraints are
discretized to 200 elements, and the state equations (Egs.
4) are approximated as equality constrains by using the
collocation method®. These procedures transform an
optimal control problem into nonlinear programming

dh . 4 problem with static variables.

e (42) The trajectory optimization problem cane be
dv (T sTow +T —p usin integrated with vehicle C!emgn problems in wh_u:h the
d_: -l * mm)cosa - 2 ! (4b) accent trajectory, the vehicle shape and the engine size

dy = (Tyrn + Tycn + Troc)sina + L + (1 _Lz)casy (4c)
dr mv ¥ vr

are optimized simultaneously. The objective function in
the integrated problem is maximization of the payload
in Eq. (3). The parallel optimization method

e T T T 1 manages each sub-problem, i.e., the body design, the
el —(}& F e +‘,—‘“’5—]— (4d) aerodynamic analysis and the trajectory planning which
: san Lsesen Isenoc / 80 is divided into four problems according the engine type.

where p is the gravity constant, go is the gravity
acceleration at the ground level, and D and L are the lift
and drag respectively, which are computed by the
aerodynamic coefficients obtained in the above field.
Tatr, Tscr and Troc are the thrust of air-turboramjet
(ATR) engine, scramjet (SCR) engine and rocket
(ROC) engine, ISPATR: fspsc]{ and Isproc are Sp&CifiC
impulse of each engine, which are represented in Ref. 8.
Initial conditions at time =0 are specified as

ROC cut-off

h(0) =0 [km]
7(0) = 0 [deg]
m(0) =300x10° [kg)
Leosa +(T - D)sina =m(0)g,
v(0) =150 [m/sec]

(5a)
(5b)

(5¢) - ROC ignition

(5d)

(5e)
Fig.3 Flight Trajectory

Terminal conditions at the engine cut-off time #=t; is

expressed as

h(t;) =90 [km]
y(t) =0 [deg]

NUMERICAL RESULTS

(62) The numerical solutions are shown in Fig. 4-6 and

(6b)
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Table 1. The maximized payload weight is negative
value, -13.75 ton, and the spaceplane cannot reach the



2nd SST-CFD Workshop 352

orbit even without the payload. This indicates that the
present technological level cannot launch the
spaceplane to the spacestation and that the weight
reduction more than 5 % is required to realize it.

Figure 4 and table 1 show the optimized wing area
and the intake area of ATR are very small, and the
intake area of SCR is 0 mz, which means that SCR is
unnecessary in this study. It can be considered that the
wing area and ATR are respectively the limit size in
order to take off and fly the vehicle against the

Fig.3 Optimal shape

aerodynamic drag, and that the volume of LH, is Table 1 Characteristics of optimal spaceplane
reduced because SCR isn’t used. Characteristics Optimal
values
CONCLUSIONS Body length l4 [m] 63.48
Body height a [m] 6.00
The new parallel optimization method for a Body width b [m] 6.36
large-scale system design with a huge number of Wing span s [m] 10.02
variables and constraint conditions is proposed in this Intake area of ATR  Satr [sz 12.59
paper. This method divides the problem into some small Intake area of SCR  Sscr [mz] 0.00
optimization sub-problems based on subsystems Thrust of ROC Troc [ton] 226.6
constituting the system, which are solved in parallel. Max. thrust Tmax [ton] 226.6
This method is successfully applied to a shape and Max. dynamic gy [kPa] 100.0
ascent trajectory optimization for a spaceplane. While pressure
the obtained payload is minus, the effectiveness and the Max. load factor Momax| G] 3.82
need of  multidisciplinary = optimization  are Payload weight W payload -13.75
demonstrated. [ton]
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Fig.3  Time history of angle of attack
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