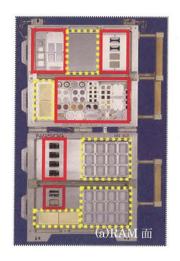
国際宇宙ステーションロシアサービスモジュール利用 微小粒子捕獲実験及び材料曝露実験(SM/MPAC&SEED)の実験概要

宇宙航空研究開発機構 総合技術研究本部

木本雄吾、鈴木峰男、山県一郎、宮崎英治、石澤淳一郎、馬場尚子、森一之、島村宏之

1. はじめに

国際宇宙ステーションロシアサービスモジュール利用微小粒子捕獲実験及び材料曝露実験装置(Service Module/Micro-Particles Capturer and Space Environment Exposure Device: SM/MPAC&SEED)の実験概要、目的等について述べる。


2. SM/MPAC&SEED 実験の目的

宇宙環境下に曝露された部品・材料は宇宙放射線、原子状酸素、紫外線等の影響を受け、劣化する。宇宙機の 長寿命化、高信頼性化のためには、これら実影響を把握する必要がある。また地上で試験評価する手法、各種パ ラメータの把握等については、徐々に確立されつつある技術ではあるが、まだ完全には確立されていない。宇宙 材料曝露実験は、宇宙空間に部品・材料を一定期間曝露する実験であるが、宇宙空間に曝露された材料を地上で 解析することで、宇宙での実証することだけではなく、宇宙環境の影響の把握、地上評価手法の確立等、今後の 宇宙用機器の開発に資する実験である。SM/MPAC&SEED は微小粒子捕獲実験装置 (MPAC) と材料曝露実験装置 (SEED) から構成される。MPAC はスペースデブリ、マイクロメテオロイド等の宇宙空間に存在する微小粒子を捕獲し、そ の起源や存在・分布量を把握する実験であり、微小粒子に関する宇宙環境モデルの構築にもデータは生かされる。 SEED は宇宙用部品・材料を直接宇宙環境に曝露し、その耐性、劣化挙動及び劣化メカニズムを評価・解明するた めの実験である。SM/MPAC&SEED は同じ試料を搭載したコンポーネントが3式あり、打上げから約1年、約2年、 そして3年後にそれぞれ地上へ回収されるシステムである。同じ試料を約1、2、3年毎に回収し評価を行うこと で材料の経時変化評価を行うことができる。JAXA (旧 NASDA) は 1992 年の EOIM-III (Evaluation of Oxygen Interaction with Materials-Ⅲ)ミッションへの参加、1997 年 STS-85 フライトの MFD (Manipulator Flight Demonstration)の一部としての ESEM (Evaluation of Space Environment and effects on Materials:材料曝露 実験)、SFU (Space Flyer Unit: 1995年3月打上げ、1996年1月回収) の EFFU (Exposed Facility Flyer Unit: SFU 搭載実験機器部) を通じ、材料曝露実験を行ってきた。

3. SM/MPAC&SEED の構成と搭載試料

SM/MPAC&SEED は同じ試料を搭載したコンポーネントが3式あるが、それぞれのコンポーネントは4つのサンプルホルダーとそのケースから構成される。サンプルホルダーのNo.3と4はRAM面とWAKE面に試料を搭載している。サンプルホルダーを図3-1に、搭載材料について表3-1に示す。

SM/MPAC&SEED は同じく NASDA (当時)の実験装置である高精細度テレビジョン(HDTV)カメラシステムと共に、日本時間 2001 年 8 月 21 日午後 6 時 23 分バイコヌール宇宙基地(カザフスタン共和国)からソユーズロケットにより打ち上げられた。その後、同年 10 月 15 日の船外活動(EVA)にて国際宇宙ステーションロシアサービスモジュール船壁 SM/MPAC&SEED は設置され、曝露実験が開始された。図 3-2 に EVA による取り付け作業の様子と軌道上の運用状態(第一回回収前)を示す。

実線:SEED部分(環境モニタ材含)

点線: MPAC部分

図 3-1 サンプルホルダー

SEED

SEED			
	搭載実験試料名	実験試料提案機関	主な用途
1	CF/Polycyanate	富士重工業 (株)	再利用型往還機用構造材料
2	CF/PIXA		
3	PEEK(張力負荷)	北海道大学 大学院	宇宙用膜構造物用構造材料
4	A1N	東京工業大学 大学院	宇宙用構造材料・機能材料
5	SiC (反応焼結)		
6	SiC (HP)		
7	TiN coated Al		
8	TiN coated $\mathrm{Al}_2\mathrm{O}_3$		
9	Ball Bearing -1		宇宙用機構部品
10	Ball Bearing -2	東北大学 大学院	
11	Ball Bearing -3	à a	
12	SUS304		宇宙用固体潤滑膜
13	Cu coated SUS304		
14	CuBN coated SUS304	(独)物質・材料研究機構	
15	TiN coated SUS304		
16	MoS2 coated SUS304		
17	MoS2 coated Ti alloy	(株) アイ・エイチ・アイ エアロスペース	宇宙用固体潤滑剤
18	張力負荷 ポリイミドフィルム (UPILEX-S)		宇宙用膜構造物用構造材料
19	耐原子状酸素性向上型ポリイミドフィルム		宇宙用熱制御材料(フイルム)
20	フレキシブル 太陽光反射素子	(独)宇宙航空研究開発機構	
21	白色塗料		宇宙用熱制御材料(塗料)
22	シリコーン系 接着剤		宇宙用接着剤
23	シリコーン系 ポッティング剤		宇宙用ポッティング材
MPAC			
1	シリカエアロジェル	(独)宇宙航空研究開発機構	微小粒子捕獲
2	ポリイミドフォーム		
3	アルミニウムプレート		衝突痕計測

1	シリカエアロジェル	(独)宇宙航空研究開発機構	微小粒子捕獲
2	ポリイミドフォーム		
3	アルミニウムプレート		衝突痕計測

MPAC&SEED 取付船外活動 (2001年10月) 図 3-2

図 3-2 SM/MPAC&SEED の軌道上運用状態

第1式目の SM/MPAC&SEED は 2002 年8月26日に、2式目の実験装置は2004年2月27日にそれぞれ ISS 内に回収 された。第1式目の曝露期間は約10ヶ月間 (315日間)、第2式目は約28ヶ月間 (865日間) であった。 曝露期 間等スケジュールについて表 3-2 に示す。第3式目の ISS 内への回収は 2005 年8月19日に行われ、無事地上へ 回収された。

表 3-2 スケジュール 07 2001 02 03 04 05 06 SM1 ■ 曝露期間 10ヶ月 ■ 期間 28ヶ月 SM2 SM3 期間 46 ヶ月 船外活動 曝露開始 船外活動 船外活動 SM1 改収 SM2 改収 SM3 改収 10/15 8/19 8/26 2/27 打上げ 地上 11/10 地上 地上 8/21 4/30 10/11

5. 研究発表リスト

- 1) I. Yamagata, et al., "OVERVIEW OF THE MICRO-PARTICLES CAPTURER AND SPACE ENVIRONMENT EXPOSURE DEVICE (MPAC&SEED) EXPERIMENT", The 10th International Symposium on "Materials in a Space Environment", ISMSE 2006, Collioure (France), June 2004 (to be published).
- 2) T. Inoue, et al., "Evaluation and Analysis of the First-Retrieved Specimens of the Space Environment Exposure Device (SM/MPAC&SEED)", 24th ISTS, June 2004.
- 3) 井上利彦ら、 "国際宇宙ステーション ロシアサービスモジュール利用材料曝露実験 (SM/SEED 実験) 第1回回 収試料の評価解析", 日本マイクログラビティ応用学会 第20回学術講演会(JASMAC-20), 福井, 2004年.
- 4) F. Imai and K. Imagawa, "NASDA'S Space Environment Exposure Experiment on ISS First Retrieval of SM/MPAC&SEED", 9th International Symposium on Materials in a Space Environment, ESA SP-540, pp. 589-594, European Space Agency, Noordwijk, The Netherlands, 2003.
- 5) 今川吉郎ら、"NASDA における宇宙用材料に関する研究概要",日本金属学会 2003 年春期 (第 132 回)大会,千 葉, 2003年.