宇宙航空研究開発機構特別資料 JAXA Special Publication

「境界層遷移の解明と制御」研究会講演論文集

（第37回•第38回）

「境界層遷移の解明と制御」研究会

宇宙航空研究開発機構

Japan Aerospace Exploration Agency

「境界層遷移の解明と制御」研究会

幹事

$\left.\begin{array}{llllll}\text { 空気力学研究グループ } & \text { 高 } & \text { 木 } & \text { 正 } & \text { 平 } \\ \text { 空気力学研究グループ } \\ \text { 空気力学研究グルーブ }\end{array}\right)$

編集委員

大阪府立大学助手豊橋技術科学大学助手東北大学工学部助手
宇宙航空研究開発機構研究員

坂 上 昇 史
関下信 正
伊 澤 精一郎
西 沢 啓

 JAXA Special Publication

「境界層遷移の解明と制御」 研究会講演論文集

（第37回 • 第38回）

Proceedings of the 37th and 38th JAXA Workshops on ＂Investigation and Control of Boundary－Layer Transition＂

「境界層遷移の解明と制御」 研究会
Steering Committee of JAXA Workshop on
＂Investigation and Control of Boundary－Layer Transition＂

目次

第37回研究会（2005年9月26日～9月27日）

平行平板間乱流における圧力変動のレイノルズ数依存性に関するDNSによる研究	
J A X A	阿部浩幸，松尾裕一
東京理科大学	河村洋

名古屋大学 石井克哉，二瓶友典
理化学研究所 安達静子
触媒反応を利用した水素一空気超音速混合の評価
大阪府立大学 新井隆景
カルマン渦列の周波数選択性

$$
\begin{aligned}
\text { JAXA } & \text { 高木正平, 跡部隆 } \\
\text { 帝京大学 } & \text { 伊藤信毅 } \\
\text { 学習院大学大学院 } & \text { 鴨野毅, 力武達 }
\end{aligned}
$$

2 次元後流の中の乱雑化の実験
ながれ研究集団 佐藤浩，斎藤博之助，中村宏
「交差独立性仮説」の検討

> 電気通信大学名誉教授 細川嚴

ストリーク不安定の実験

$$
\begin{array}{rr}
\text { 首都大学東京 } & \text { 浅井雅人 } \\
\text { 都立科学技術大学 } & \text { 小西康郁 }
\end{array}
$$

周囲流体より軽い渦輪の鉛直挙動
慶應大学 益田重明，有薗智之
超音速境界層の乱流遷移について
大阪府立大学 坂上昇史，西岡通男
相関に基づく遷移モデルの適用
東北大学 三坂孝志，大林茂
Phased－Array による NACA0012 翼型のTE ノイズに関する研究
J A X A 浦弘樹，伊藤健，横川譲

第38回研究会（2006年3月30日～31日）

小型超音速実験機の遷移計測（速報）

J A X A 徳川直子．吉田憲司，上田良稲
遺伝的アルゴリズムを用いた滑空機設計の最適化
工学院大学 飯田明由，岩崎正志，水野明哲
圧縮性平面チャネル流の乱流遷移構造 47

広島大学 上原敦，前川博
非一様乱流の交差独立性完結仮説による統計理論
京都大学 巽友正
2 次元後流乱雑化の微細構造 53
ながれ研究集団 佐藤浩，斎藤博之助，中村宏
渦度モデルにおける渦度の変遷

$$
\begin{aligned}
\text { 北海道工業大学 } & \text { 小橋安次郎 } \\
\text { 北海道大学 } & \text { 早川道雄 }
\end{aligned}
$$

等加速度運動する円柱からの渦放出

$$
\begin{align*}
\text { 都立科学技術大学 } & \text { 戸田健二 } \tag{61}\\
\text { 首都大学東京 } & \text { 稲澤歩, 浅井雅人 }
\end{align*}
$$

2 円柱を横切る流れの不安定性と遷移

> 同志社大学 稲生洋一, 水島二郎

亜音速非定常流体現象に対する高精度数値解析法について
J A X A 黒滝卓司，住隆博
境界層における層流と乱流の流れ方向界面に関する研究

> 東北大学 寺島修, 三木佑介, 伊澤精一郎熊勂魁, 福西祐

地面効果のメカニズム
東北大学 石塚智之，小濱泰昭
$J A X A$ 高揚力装置模型低速風洞試験について
J A X A 横川譲，村山光宏，山本一臣伊藤健，藤井啓介

CONTENTS

The 37th Workshop (September 26-27, 2005)
A DNS study of Reynolds-number dependence on pressure fluctuations in a turbulent channel flow 1JAXA H. Abe and Y. Matsuo
Tokyo University of Science H. Kawamura
Streamlines in 3D lid-driven cavity flows with large spanwise aspect ratios 5
Nagoya University K. Ishii and T. Nihei
RIKEN S. Adachi
Evaluation of hydrogen-air supersonic mixing condition using catalytic reaction
Osaka Prefecture University T. Arai9
On selectivity of Kármán-vortex shedding frequency 13
JAXA S. Takagi and T. Atobe
Teikyo University N. Itoh
Gakushuin University T. Kamono and S. Rikitake
Experiments on the randomization in a two-dimensional wake 15
Institute of Flow Research H. Sato, H. Saito, and H. Nakamura
Consideration for the "cross-independence hypothesis" 19Univeisity of Electro-Communications I. Hosokawa
Experimental investigation of the streak instability 21
Tokyo Metropolitan University M. Asai
Tokyo Metropolitan Institute of Technology Y. Konishi
Vertical movement of vortex ring with smaller density than ambient 25
Keio University S. Masuda and T. Arizono
On the supersonic boundary layer transition27
Osaka Prefecture University S. Sakaue and M. Nishioka
Investigation of local correlation based transition model 31
Tohoku University T. Misaka and S. Obayashi
An investigation of TE noise on a NACA0012 airfoil by phased-array measurement 35JAXA H. Ura, T. Ito, and Y. Yokokawa

The 38th Workshop (March 30-31, 2006)

Prompt report of transition detection of experimental supersonic transport "NEXST-1" 39JAXA N.Tokugawa, K.Yoshida, and Y. UedaDesign optimization of gliders for Birdman Rally contest by using a genetic algorithm43
Kogakuin University A. Iida, M. Iwasaki, and A. Mizuno
Transition to turbulence of compressible plane channel flow 47
Hiroshima University A. Uehara and H. Maekawa
Statistical theory of inhomogeneous turbulence under the cross-independence closure hypothesis 49
Kyoto University T. Tatsumi
Detailed structure of randomizing process in a two-dimensional wake 53
Institute of Flow Research H. Sato, H. Saito, and H. Nakamura
Vorticity and history of its family57
Hokkaido Institute of Technology Y. Kobashi Hokkaido University M. Hayakawa
Vortex shedding from a circular cylinder moving at a constant acceleration61
Tokyo Metropolitan Institute of Technology K. Toda
Tokyo Metropolitan University A. Inasawa and M. Asai
Transition and instability of flow past a pair of circular cylinders 65
Doshisha University Y. Ino and J. Mizushima
Numerical simulation of unsteady subsonic flow with high accuracy and resolution 69
JAXA T. Kurotaki and T. Sumi
Study of laminar/turbulent streamwise interfaces in a boundary layer flow 73
Tohoku Univiersity O. Terashima, Y. Miki, S. Izawa,A.K. Xiong, and Y. Fukunishi
Ground effect mechanism
Tohoku University T. Ishiduka and Y. Kohama
Low-speed wind-tunnel test of the high-lift configuration aircraft model 77JAXA Y.Yokokawa, M.Murayama,K.Yamamoto, T.Ito, and K.Fujii

No． 1 平行平板間乱流における圧力変動のレイノルズ数依存性 に関するDNS による研究

阿部浩幸，松尾裕一（JAXA），河村洋（東理大）

A DNS study of Reynolds－number dependence on pressure fluctuations in a turbulent channel flow

H．Abe＊，Y．Matsuo＊，and H．Kawamura＊＊
＊Japan Aerospace Exploration Agency
＊＊Dept．of Mech．Eng．，Tokyo University of Science

Abstract

Direct numerical simulation of a turbulent channel flow has been carried out at four Reynolds numbers， $180,395,640$ and 1020 ，based on the friction velocity and the channel half width in order to investigate the Reynolds－number dependence on the pressure fluctuations．In the present study，root－ mean square values and power spectra of the pressure fluctuations are presented and their Reynolds－ number effects are discussed．

Keywords ：Direct numerical simulation，pressure fluctuations，large－scale structures

1．はじめに

壁乱流における圧力変動の挙動を把握することは，乱流騒音，振動の予測やより高い精度の乱流モデルの構築 に非常に重要である。一方，圧力変動は，速度変動や渦度変動のようではなく，領域全体で値が決定されるグロ ーバルな物理量であることから，その性質を調べること は非常に難しい。そのため，過去何十年にわたり，数多 くの実験的•理論的研究が行われてきた（例えば， Willmarth ${ }^{1)}$ ；Eckelmann ${ }^{2)}$ ；Bull ${ }^{3)}$ ）．

このような状況のもと，近年の数値計算技術，計算機能力の向上とともに，直接数値シミュレーション（Direct Numerical Simulation；DNS）による圧力の 3 次元的な挙動の解析が可能となった 4－6），例えば，Kim ${ }^{4}$ ）は，壁面摩擦速度 \mathbf{u}_{τ} とチャネル半幅 δ に基づくレイノルズ数 $\operatorname{Re}_{\tau}=\mathrm{u}_{\mathrm{T}} \delta / v=180$ の DNS を実行し，平行平板乱流における圧力変動の特徴を調べている。特に，彼は，ポアソン方程式のソース項における線形項，非線形項の挙動を調べ るとともに，それぞれの項についてポアソン方程式を計算し，圧力変動を線形項（Rapid 項），非線形項（Slow 項） に分離して調べている。その結果，壁面近傍では，Rapid項とSlow 項が同程度の寄与をし，それ以外の領域では， Slow 項がRapid 項よりも大きな寄与をすることを指摘し ている。 Choi \＆Moin ${ }^{5}$ ）は， $\mathrm{Re}_{\mathrm{r}}=180$ の平行平板間乱流 のDNS を実行し，壁面圧力変動の時空間の挙動を，特に， スケーリング則について，既存の実験結果と比較するこ とにより議論している。彼らによれば，壁面圧力変動の周波数スペクトルは，内層の物理量で無次元化した場合 は高周波数域がスケーリングされ，外層の物理量で無次

元化した場合は低周波数域がスケーリングされると報告 している。Johansson ら6）は， $\mathrm{Re}_{\tau}=180$ の平行平板間乱流のDNS データベースを用い，壁面近傍の乱流構造の条件付き抽出を行った。彼らは，強い局所的な高圧領域は， せん断層の構造に関係していることを指摘している。し かし，今までの圧力変動のDNS による解析はRe $\tau 400$ で行われており， $\mathrm{Re}_{\tau}=180$ のDNS には低レイノルズ数効果が存在するため，このレイノルズ数の範囲でレイノル ズ数依存性を検討することは難しい。

そこで，本研究では，Abe ら7）の $\operatorname{Re}_{\mathrm{r}}=180 ~ 1020$ の平行平板間乱流のDNSデータベースを用い，圧力変動の RMS 値，パワースペクトルに対し，レイノルズ数依存性 を検討することを目的とする。

2．計算手法及び計算パラメータ

流れは十分発達した平行平板間乱流を用い，平均圧力勾配で駆動されるものとした。レイノルズ数は， $\mathrm{Re}_{\mathrm{T}}=180$ ，395，640，1020の4種類に設定した。計算領域，所用格子数，空間解像度などのパラメータはAbeら 7）と同様である。なお，計算精度の妥当性や基本的な乱流統計量，乱流構造に対する結果は，Abe ら 7－9）により既 に報告している。また，計算手法の詳細はAbeら8）で既 に報告している。

3．結果及び考察

圧力変動のRMS 値 ${ }^{\prime}$＇ rms を壁面せん断応力 τ_{w} で無次元化し，図1に示す。 $\mathrm{p}_{\mathrm{mm}}^{\prime} / \tau_{\mathrm{w}}$ は， y^{+}で見ると，レイノル ズ数の増加とともにチャネル全域で値が顕著に増加して

Fig． 1 Root－mean－square values of the pressure fluctuations．$-\cdots-\cdots$ ，Moser et al．${ }^{10)}$ at $\mathrm{Re}_{\tau}=590$ ．

Fig． 2 Root－mean－square values of the pressure derivatives normalized by $\tau_{\mathrm{w}} \mathrm{u}_{\tau} / \mathrm{v}$ ．

いる（図1（a））．ここで，ピーク位置は，各レイノルズ数 で $\mathrm{y}^{+} \approx 30$ に現れ，この位置は，ポアソン方程式におい てソース項が最大値を示す位置に一致している（Kim4））。一方， $\mathrm{p}_{\mathrm{rm}}^{\prime} / \tau_{\mathrm{w}}$ は， y / δ で見ると，今回のレイノルズ数の範囲では， $\mathrm{y} / \delta>0.2$ でスケーリングされる傾向が見受けら れた（図1（b））．
圧力変動の 1 階微分項の RMS 値 ${ }^{\prime}$ ， $\mathrm{i}_{\mathrm{ims}}$ を $\tau_{\mathrm{w}} \mathrm{u}_{\mathrm{t}} / v$ で無次元化し，図 2 に示す。 $\mathrm{p}^{\prime}, \mathrm{i}_{\mathrm{i} m s} /\left(\tau_{\mathrm{w}} \mathrm{u}_{\tau} / v\right)$ は，各レイノ ルズ数で， $\mathrm{y}^{+}<80$ では非等方的な挙動を， $\mathrm{y}^{+}>80$ では等方的な挙動を示している。レイノルズ数依存性は， y^{+}で見ると，粘性底層，バッファー層で顕著であるが，外層 では， $\mathrm{p}^{\prime}{ }_{\mathrm{rms}} / \tau_{\mathrm{w}}$ の場合と違い，小さくなる傾向が見受けら れる。
図1，2では，壁面近傍で，圧力変動，一回微分の圧力変動のRMS 値が顕著に増加している。ここで，この増加 の割合が何らかの関数系で表されるか否かは興味梁い。 この点を調べるために，圧力変動，一回微分の圧力変動 の二乗平均値における壁面漸近値を，横軸にレイノルズ数をとり，図3に示す。図3では， $\mathrm{p}_{\mathrm{rms}}{ }^{2} / \tau_{\mathrm{w}^{2}}{ }^{2}$ は， $\mathrm{Re}_{\mathrm{\tau}}=1020$ に達しても依然として顕著に増加するのに対し， $\mathrm{p}^{\prime}, \mathrm{i}_{\mathrm{i} m \mathrm{rm}^{2} /}$ $\left(\tau_{\mathrm{w}} \mathrm{u}_{\mathrm{T}} / V\right)^{2}$ は， $\mathrm{Re}_{\mathrm{\tau}}=1020$ に達すると増加の割合が飽和状態 になりつつある。ここで， $\mathrm{p}^{\prime} \mathrm{ms}^{2} / \tau_{\mathrm{w}}{ }^{2}$ の増加の割合は，

$$
\begin{equation*}
p_{r m s}^{\prime}{ }^{2} / \tau_{w}^{2}=a \log \left(u_{t} \delta / v\right)+b(a=5.0, b=-9.0) \tag{1}
\end{equation*}
$$

の関数に従っている。この結果は，Bradshaw ${ }^{11)}$ ，Town－

Fig． 3 Near－wall limiting values of $\mathrm{p}^{\prime}{ }_{\mathrm{rms}}{ }^{2} / \tau_{\mathrm{w}}{ }^{2}$ and p^{\prime} ， ${ }_{\mathrm{mms}}{ }^{2} /\left(\tau_{\mathrm{w}} \mathrm{u}_{\tau} / v\right)^{2}$ as a function of the Reynolds number： （a） $\mathrm{p}^{\prime}{ }_{\mathrm{ms}}{ }^{2} / \tau_{\mathrm{w}}{ }^{2}$ ；（b） $\mathrm{p},{ }_{i}{ }_{\mathrm{mss}}{ }^{2} /\left(\tau_{\mathrm{w}} \mathrm{u}_{\tau} / v\right)^{2} . \bigcirc, \diamond, \triangle, \nabla$ ， Present；\times ，DNS by Spalart ${ }^{13)}$ ；\square ，Experiment by Bull \＆Langeheineken ${ }^{14)}$ ．

Fig． 4 One－dimensional wavenumber power spectra of the wall pressure fluctuations for $\mathrm{Re}_{\tau}=180,395$ ， 640 and 1020 with inner scaling：（a）streamwise；（b） spanwise．$-\cdots-\cdots$ ，Tsuji et al．${ }^{15)}$ at $\mathrm{Re}_{\tau}=1092$ ．
send ${ }^{12)}$ の解析結果に一致している。また，本計算結果と Spalart ${ }^{13)}$ の乱流境界層のDNS の結果を比較すると，乱流境界層の圧力変動が平行平板間乱流よりも大きな値を示している。さらに，図3（a）では，興味深いことに，乱流境界層の場合でさえも，切片は違うが傾きは式（1）に従 って増加している。一方，本計算結果をBull \＆Lange－ heineken ${ }^{14)}$ の円管内乱流の実験の結果と比較すると，両者は非常に良く一致している。この結果は，内部流であ る平行平板間乱流，円管内乱流は概ね同じ壁面の圧力変動を持つが，外部流である乱流境界層は，外層が内部流 とは大きく異なり，粘性領域と非粘性領域がはっきりと現れることから，内部流の圧力変動値よりあ大きな値を示すものと考えられる。

圧力変動のパワースペクトルは，次式のように定義さ れる。

$$
\begin{equation*}
\int_{0}^{\infty} \phi\left(k_{x}\right) d k_{x}=\int_{0}^{\infty} \phi\left(k_{z}\right) d k_{z}=p_{r m s}^{\prime 2} \tag{2}
\end{equation*}
$$

ここで， k_{x} ， k_{z} はそれぞれ流れ方向，スパン方向の波数 である。壁面圧力変動のパワースペクトルを，内層のス ケーリングをし，図4に示す。図4には，Tsuji ら15）の

Fig． 5 One－dimensional streamwise wavenumber power spectra of the wall pressure fluctuations for $\operatorname{Re}_{\tau}=180,395,640$ and 1020 normalized by $\tau_{\mathrm{w}}{ }^{2} \delta$ at $\mathrm{k}_{\mathrm{x}} \delta<50$ ．

Fig． 6 Streamwise wavenumber power spectra of the pressure fluctuations for $\mathrm{Re}_{\tau}=1020$ normalized by $p_{\text {rms }}{ }^{2} \delta$ ．

乱流境界層の実験結果を，位相速度を $13 \mathrm{u}_{\mathrm{r}}{ }^{4}$ ）とし，Taylor仮説を用いてプロットしている。結果として，内層のス ケーリングでは，流れ方向，スパン方向のスペクトルに おいて，レイノルズ数が増加するにつれ低波数域のパワ一が増加し，それに対し，高波数域のパワーは概ね良く スケーリングされている，このスケーリング則の結果は， Choi \＆Moin ${ }^{5)}$ ，Farabee \＆Casarella ${ }^{16)}$ の結果に良く一致 している。また， $\mathrm{Re}_{\tau}=1020$ の結果に対し，Tsuji ら15）の実験結果と比較すると，低波数域では若干差異が生じて いるが，概ね全波数域でよく一致している。この低波数域の差異は，Tsuji ら15）の周波数スペクトルを波数スペ クトルへ変換する際に用いた位相速度が低波数に対して は適していなかったこと，実験におらるバックグラウン ドノイズが低周波数域に含まれていたこと，チャネルと境界層の流れの形態の違いなどが原因と考えられる。また，図4においては，今回のレイノルズ数の範囲では， k^{-1} の慣性領域は現れていない。それにもかかわらず，図3（a） では，圧力変動の二乗平均値が $\log \left(\mathrm{Re}_{\tau}\right)$ の関数に従い増加している。元来，式（1）は，パワースペクトルにおいて， k^{-1} が存在することを仮定して導出されていることから，図3（a）に見た圧力変動の二乗平均値の増加が式（1）に従ら理由は別にあるものと考えられる。

また，図4（a）では，流れ方向のパワースペクトルの低波数域に，ピークが現れている。このピークは，圧力の

Fig． 7 Frequency spectrum of the wall pressure fluctuations normalized by $u / \tau_{\mathrm{w}}{ }^{2} \delta$ at $\mathrm{Re}_{\tau}=1020$ as compared with the experimental data ${ }^{(5), 16)}$ ．

グローバルな性質に基づいているものと考えられる。こ の点を調べるために，図4（a）に示したスペクトルを，$\tau_{\mathrm{w}}{ }^{2} \delta$ で無次元化し，linear スケールで図5に示す。図5には，各レイノルズ数で $\mathrm{k}_{x} \delta=2.5 \sim 3.4$ に大きなピークが現れて いる。この波長は， $1.8 \delta \sim 2.5 \delta$ に相当し，外層の物理量 δ でスケーリングされていることから，ピークの起源 は外層にあるものと考えられる。

図5に示したスペクトルのピークの起源を調べるため に， $\mathrm{Re}_{\tau}=1020$ の各壁からの高さ位置における流れ方向の スペクトルを $\mathrm{p}^{\prime} \mathrm{ms}{ }^{2} \delta$ で無次元化し，図6に示す。なお，図6に示したスペクトルは，全波数間の値を積分すると 1 になるよらに無次元化を施している。図6では， $\mathrm{y}^{+}=30$ の位置のスペクトルと壁面圧力変動のスペクトルが概ね同じ分布を示している。この結果は，Kim ${ }^{4}$ ，Johansson ら6）が指摘しているように，壁面圧力変動への主要な寄与はバッファー層からであることを示唆している。一方，壁面から離れるにつれ，高波数域（小さなスケール）の寄与が減少し，低波数域（大きなスケール）の寄与が卓越している。ここで，低波数域を見ると，図4（a）の壁面圧力変動のスペクトルと同様に $\mathrm{k}_{\mathrm{x}} \delta=2.5 \sim 3.4$ の波数域に ピークが見受けられ，壁面からチャネル中央まで常に存在している。この結果は，内層の低波数域におけるスペ クトルのピークの起源は，本質的に外層の大規模構造に関係していることを示唆している。

他方，実験においても，壁面圧力変動のスペクトルに おける低波数の挙動が，乱流境界層，円管内乱流などに おいて，周波数スペクトルを計測することにより議論さ れている。この代表的な研究としては，Farabee \＆Casa－ rella ${ }^{16)}$ が，乱流境界層において，バックグラウンドノイ ズが極力入らないよら実験を行い， $50 \omega \delta / u_{\tau}$ の周波数にス ペクトルが最大値を示すことを指摘している。

ここで，本研究（平行平板間乱流）における波数スペ クトルの低波数の挙動を，乱流境界層の実験における周波数スペクトルの低周波数の挙動と比較する。まず，図 5 の波数スペクトルのピーク波数を，Choi \＆Moin 5）が報告している低波数域の位相速度 $0.8 \mathrm{U}_{0}\left(\mathrm{U}_{0}\right.$ ：チャネル中心速度）を用いてTaylor 仮説により周波数へ変換すると，約 $37 \sim 63 \omega \delta / \mathrm{u}_{\tau}$ となる。このピーク周波数は，Farabee \＆ Casarella ${ }^{16)}$ の乱流境界層の実験のピーク周波数と良く一致している。次に，Taylor 仮説の際に用いた位相速度の

妥当性を調べるために， $\mathrm{Re}_{\tau}=1020$ において，Choi \＆ Moin ${ }^{5)}$ の方法を用い実際に周波数スペクトルを求め，同 レイノルズ数の波数スペクトルに対し位相速度 $0.8 \mathrm{U}_{0}$ を用いて変換した周波数スペクトルと比較をして，図7に示す。図7では，両者のスペクトルは，低周波数域にお いて良く一致している。この結果は，上記のTaylor 仮説 を用いたピーク周波数の見積りが適切であったことを意味している。さらに，図7では，Tsuji ら 15），Farabee \＆ Casarella ${ }^{16) \text { の乱流境界層の実験において本計算結果に比 }}$較的近いレイノルズ数の周波数スペクトルを示し比較を行っているが，本計算結果，Tsuji ら 15），Farabee \＆ Casarella ${ }^{16)}$ の実験結果は，三者ともに概ね良く一致して いる。特に，ピーク周波数は，三者ともに非常に良く一致している。従って，これらの結果より，本研究で議論 した波数スペクトルの低波数の挙動は，乱流境界層の実験 15$)$ ，10）における周波数スペクトルの低周波数の挙動と本質的に関係しているもとのと考えられる。

なお，図7において，外層の流れの性質が異なる内部流の平行平板間乱流（本研究）と外部流の乱流境界層15）， 16）のスペクトルが，低周波数において，パワーは若干異 なるものの，概ね同じ周波数にピーク値をとることは興味深い。この結果は，図6に見たよらに，低波数の挙動 は外蘭の大規模構造に関連していることから，平行平板間乱流と乱流境界層における外層の圧力変動の大規模構造は，強度は平行平板間乱流と乱流境界層で若干違らも のの，平均的な長さスケールは両流れともに概ね同じで あることを示唆しているものと考えられる。

4．結論

平行平板間乱流において， $\mathrm{Re}_{\mathrm{t}}=180$ ， 395 ， 640 ， 1020 の 4 つのレイノルズ数のDNS を実行し，圧力変動のRMS値，パワースペクトルに対し，レイノルズ数依存性を調 べ，下記の結論を得た。

1）圧力変動，1回微分の圧力変動のRMS 値のレイノ ルズ数依存性は壁面近傍で顕著である。特に，壁面近傍 における圧力変動のRMS 値のレイノルズ数依存性は顕著 であり，壁面圧力変動の二乗平均値 $\mathrm{p}^{\prime} \mathrm{rms}^{2} / \tau_{\mathrm{w}}{ }^{2}$ は，今回 のレイノルズ数の範囲では，レイノルズ数の増加ととも に $\log \left(\mathrm{Re}_{\tau}\right)$ に比例して増加した。
2）壁面圧力変動の流れ方向のスペクトルにおいては，今回のレイノルズ数の範囲では， $\mathrm{k}_{\mathrm{x}} \delta=2.5 \sim 3.4$ の波数域

に大きなピークが現れ，また，このピークの起源は，本質的に外層にあける圧力変動の大規模構造にあることを示した。さらに，この波数スペクトルの低波数の挙動は，乱流境界層の実験における周波数スペクトルの低周波数 の挙動と本質的に関係していることを示した。
本研究の計算は，宇宙航空研究開発機構の数値シミュ レータIIをを用いて行った。

参考文献

1）Willmarth，W．W．：Ann．Rev．Fluid．Mech．， 7 （1975），pp． 13－88．
2）Eckelmann，H．：In：Near－Wall Turbulence，Kline，S．J． and Afgan，N．H．，eds．，Hemisphere，New York，（1989），pp． 328－347．
3）Bull，M．K．：J．Sound and Vibration， 190 （1996），pp．299－ 315.

4）Kim，J．：J．Fluid．Mech．， 205 （1989），pp．421－451
5）Choi，H．\＆Moin，P．：Phys．Fluids，A 2 （1990），pp．1450－ 1460
6）Johansson，A．V．，Alfredsson，P．H．\＆Kim，J．：J．Fluid Mech．， 224 （1991），pp．579－599．
7）Abe，H．，Kawamura，H．\＆Matsuo，Y．：Int．J．Heat and Fluid Flow 25 （2004），pp．404－419．
8）Abe，H．，Kawamura，H．\＆Matsuo，Y．：Trans．ASME J． Fluids Eng． 123 （2001），pp．382－393．
9）Abe，H．，Kawamura，H．\＆Choi，H．：Trans．ASME J．Flu－ ids Eng． 126 （2004），pp．835－843．
10）Moser，R．D．，Kim，J．\＆Mansour，N．N．：Phys．Fluids， 11 （1999），pp．943－945
11）Bradshaw，P．：J．Fluid．Mech．， 30 （1967），pp．241－258．
12）Townsend，A．A．：The structure of turbulent shear flows， 2nd edition，Cambridge University Press，（1976）．
13）Spalart，P．R．：J．Fluid．Mech．， 187 （1988），pp．61－98．
14）Bull，M．K．\＆Langeheineken，Th．；Max Planck Inst． fur Stromungsforschung Mitt．，73，（1981）．
15）Tsuji．T．，Fransson，J．H．M．，Alfredsson，P．H．\＆ Johansson，A．V．：Proc．of the 4th Turbulence and Shear Flow Phenomena， 1 （2005），pp．27－32．
16）Farabee，T．M．\＆Casarella，M．J．：Phys．Fluids，A3 （1991），pp．2410－2420．

No． 2 長いスパンをもつ三次元キャビティ内流れの流線パターン

石井克哉，二瓶友典（名古屋大），安達静子（理研）

Streamlines in 3D lid－driven cavity flows with large spanwise aspect ratios

Katsuya Ishii＊，Tomonori Nihei＊and Shizuko Adachi＊＊
＊ITC，Nagoya Univ．
＊＊Riken

Abstract

Streamlines in the incompressible vortical flows in three－dimensional lid－driven cavities at the Reynolds number $\mathrm{Re}=850$ are numerically studied using a combined compact finite difference（CCD） scheme with high accuracy and high resolution．The results show that the bifurcation of the stream－ line pattern occurs at the spanwise aspect ratio between 4 and 5 ．The chaotic streamlines are generally observed at $\mathrm{Re}=850$ ．However，the tori of streamlines localized near the symmetric plane are observed for the cavity flows with longer spans，

Keywords ：Incompressible flow，Lid－driven cavity，Spanwise aspect ration，Torus of streamline， Combined compact difference

1．はじめに

非无縮流体の定常流での流線の振る舞いは体積保存の性質のため，ハミトニアンカ学系での軌跡と同じよらな振る舞いをする。流体を満たした3次元の箱の一つの面 をある辺の方向に一定速度でずらすことで発生する立方体キャビティ流れの中で，面の速度を変化させることに より，流線の島構造やカオス的な流れが発生することは，過去に著者らによって調べられている。 1,2 一方，キャビ ティィ流れの研究は，ギアなどの研究をもととした数值ス キームのテスト問題の位置づけや，コーティング機械の中の流れのように現実の機械内の流れの一部との位置つ けも考えることができ，様々な研究が行われている。3）こ の中で， 3 次元キャビティ内での 2 次元流れの安定性の研究が行われ，スパン方向の長いキャビティでの実験も行われている。4）Albensoeder らはスパンアスペクト比 6.55 の実験を行い，中心分にセル構造を権測したことを報告し大きなスパンアスペクト比では側壁の影響は無く なると報告している。しかし実験の可視化では，流体内部の流れ構造を権察するのは困難である。このため，新 しく開発した高精度高解像度のスキームを使って，大き なスパンアスペクト比をもつキャビテイ流れを調バる。

2．計算方法（結合コンパクト差分法）

差分法による関数 $\mathrm{f}(\mathrm{x})$ の一階微分を考える。格子間隔 h で x を離散化し， $\mathrm{x}_{\mathrm{i}}=\mathrm{i}_{\mathrm{h}}(\mathrm{i}=1,2,3 \cdots)$ と書き，関数とその微分を $f\left(x_{i}\right)=f_{i}, f^{\prime}\left(x_{i}\right)=f_{i}^{\prime}$ とする。このとき， 7 点を使用

する通常の中心差分は

$$
f_{i}^{\prime}=a \frac{f_{i+1}-f_{i-1}}{2 h}+b \frac{f_{i+2}-f_{i-2}}{4 h}+c \frac{f_{i+3}-f_{i-3}}{6 h}
$$

と書け，最大 6 次精度を表現できる。一方，コンパクト差分は，f_{i} の関係式も使い，たとえば， 5 点の微分値を使らと
$\beta f_{t-2}^{\prime}+\alpha f_{t-1}^{\prime}+f_{l}^{\prime}+\alpha f_{t+1}^{\prime}+\beta f_{t+2}^{\prime}=c \frac{f_{t-3}-f_{t-3}}{6 h}+b \frac{f_{t-2}-f_{t-2}}{4 h}+a \frac{f_{t+1}-f_{t-1}}{2 h}$
と表すことができ，最大 10 次までの精度を得ることが できる。ただし，f_{i} を求めるには， 5 重対角行列の反転 を行ら必要がある。結合コンパクト差分法は以下のよう
に，三点の $f_{i}, f_{i} i, f^{\prime \prime}{ }_{i}, f^{\prime \prime \prime}{ }^{\prime}$ などの 2 関係式

$$
\begin{aligned}
& f_{t}^{\prime}=a_{1}\left(f_{t-1}-f_{t-1}\right)+a_{2}\left(f_{t+1}^{\prime}-f_{t-1}^{\prime}\right)+a_{3}\left(f_{t+1}^{\prime \prime}-f_{t-1}^{\prime \prime}\right)+a_{4}\left(f_{t+1}^{\prime \prime}-f_{t-1}^{\prime \prime}\right) \\
& f_{1}^{*}=b_{1}\left(f_{i+1}+f_{t-1}-2 f_{i}\right)+b_{2}\left(f_{t+1}^{\prime}+f_{t-1}^{\prime}\right)+b_{3}\left(f_{t+1}^{\prime \prime}+f_{t-1}^{\prime \prime}\right)+b_{4}\left(f_{t-1}^{\prime \prime \prime}+f_{t-1}^{\prime \prime}\right) \\
& f_{1}^{\prime \prime \prime}=c_{1}\left(f_{t+1}-f_{i-1}\right)+c_{2}\left(f_{t+1}^{\prime}-f_{t-1}^{\prime}\right)+c_{3}\left(f_{t+1}^{\prime \prime}-f_{t-1}^{\prime \prime}\right)+c_{4}\left(f_{t+1}^{\prime \prime \prime}-f_{t-1}^{\prime \prime}\right)
\end{aligned}
$$

を使って計算するもので，最大で一階微分 8 次精度，二階微分 8 次精度，三階微分 6 次精度の精度を得ることが できる。ここで記述した差分法の精度は，ある点での差分近似を Taylor 展開した場合，誤差がhのどのオーダー で現れるかを示したものである。しかし，差分法の評価 として解像度（resolution）とよぶ概念も重要であること をLele（1992）［2］が指摘している。解像度とは，差分近似 によりFourier展開のどの波数まで微分が正確に表現でき るかを表す概念であり，具体的には

$$
u(x)=e^{-i k x}, u^{\prime}(x)=-i k e^{-i k x}
$$

として，差分式に代入する。コンパクト差分の場合，陽 パートの差分演算子を M_{R} ，陰部の差分演算子を M_{L} とす ると，u＇の係数として正しい－ikの代わりに，差分近似の波数

$$
\mathrm{k}^{\prime}(k)=i \frac{\left(M_{R} \mathbf{u}\right)_{k}}{\left(M_{L} \mathbf{u}\right)_{k}}\left(=\frac{\sum A_{m} \sin m k h}{\sum B_{n} \cos n k h}\right)
$$

を使った－ikが得られる。括弧の中は陽部，陰部とも中心差分で近似した場合の形であり，通常の中心差分では，分母は1となる。図1にいろいろな差分スキームのkh－k＇ hの関係式を示す。

図1．中心差分，コンパクト差分，結合コンパクト差分 の解像度

格子間隔により，解像できる波数は定まり π / h 以上の波数u（格子点 2 点以下の波長）の波は解像できない。図 1 の a，b，cが中心差分であり，kh＜1．2くらいの範囲の波，格子点が一波長に 5 点以上入る波しか解像できない。し かし，コンパクト差分，結合コンパクト差分のグループ はさらに高波数までを解像でき，kh <2 程度の波（ 3 点程度）の波まで解像できることを図 1 は示している。

非圧縮計算を行ら場合，非圧縮条件を満たさなければ ならない。疑似圧縮を使ら方法，速度場の補正にポアソ ン方程式を使ら方法などが知られているが，ここでは補正を使ら方法の一つとして，広く使われている圧力に関 するポアソン方程式を解くMAC方法を採用する。結合コ ンパクト差分法を用いて，ポアソン方程式を解く場合， ADI法として方向ごとに，方程式と，微分に関する関係式を組み合わせて解くことが考えられる。二次元の場合， この単純な方法は安定な解法となるが，三次元の場合，安定にはならない。このため，擬似的な時間ステップ Δ τ を導入し，また，デルタフォームで圧力を書き表し，
I．$\left(1-\Delta \tau \delta_{x}^{2}\right) \Delta p^{* *}=\Delta \tau\left(\left(\delta_{x}^{2}+\delta_{y}^{2}+\delta_{z}^{2}\right) p^{n}-q\right)$
II．$\left(1-\Delta \tau \delta_{y}^{2}\right) \Delta p^{*}=\Delta p^{* *}$
III．$\left(1-\Delta \tau \delta_{z}^{2}\right) \Delta p=\Delta p^{*}$

$$
p^{n+1}=p^{n}+\Delta p
$$

として，I，II，III の式を繰り返して解き，最終的にIの右辺 $=0$ を満たす圧力 p を求める。ここで δ は添字方向の微分 を表す。たとえば，I式は $\Delta \mathrm{p}$ の x －方向の一階，二階，三階微分の結合コンパクト差分での関係式との連立方程式 と見なし， 4×4 行列をもつブロック三重対角行列を解く

ことで，非常に高精度でポアソン方程式の解が得られる。 また，境界がある場合の関係式は，結合コンパクト差分 がエルミート関数展開と深く関わっていることを考慮し て求めることができる。
図 2 にレイノルズ数 100 の立方体キャビティの向かい合った面中心を結ぶ線上での速度分布を示す。 $\mathrm{y}=1$ の面 がx方向に1の速度で動いている。丸がBabuand Korpela の $63 \times 63 \times 63$ の壁に格子点を集中させた結果であり，実線 が $33 \times 33 \times 33$ 等間隔格子による結合コンパクト差分の結果 である。
点数が少ないにもかかわらず，結果はほぼ同じ結果を える。

図2．立方キヤビティの速度分布（実線：結合コンパク ト法，○：従来の差分法の結果）

3．計算結果

図 3 に 3 次元キャビティの概略図と解析に用いた座標系を示す。

図3 三次元キャビティの概略図

3 次元キャビティは $0 \leq x \leq 1,0 y \leq 1.0 \leq z \leq \Lambda$ とし，ス パンアスペクト比 Λ を $1,3,4,5,6.55$ と変化させ，内部の流 れ場を観察した。面 $\mathrm{y}=1$ は速度 1 で x の正方向に移動し

ているとし，レイノルズ数は 850 に固定した。静止した状態から急に上面を速度 1 に動かし，内部の流体がほぼ定常な状態になるまで，非定常な Navier－Stokes 方程式 を解くことによって定常解を得ている。結合コンパクト差分を使って得た，格子上の速度および速度の空間一階微分値のデータをもとに，キャビティ内のある点での速度を 2 次精度で補間した。この速度場を用いて，ある点 から出発して適当な時間での流体粒子の軌跡を描くこと で，流線の可視化を行った。図4に $4=1$ の 3 つの流線を示す。初期値は右半分の中で異なる 3 点を選んである。図中で，上面が速度 1 で手前に運動している。面 $\mathrm{z}=0.5$ で，速度ベクトルの z 成分は反対称となるため，流線は面 $\mathrm{z}=0.5$ を貫くことはない。

図4 $\Lambda=1$ の 3 つの流線
3 つの流線はいずれも右半分全体を覆い，chaotic な様相を示していることがわかる。これらの流れ場の様子は $\operatorname{Re} \sim 350$ 以上で観察でき，参考資料 1,2 の中での報告と一致する。

図5－1～3に $\Lambda=6.55$ の， 3 つの流線図を示す。

図 5－1 $\quad \Lambda=6.55$ の流線図（1）

図5－2 $\quad \Lambda=6.55$ の流線図（2）

図 5－3 $\Lambda=6.55$ の流線図（3）

面 $\mathrm{z}=3.275$ に対し，流線は対称になっているため，い ずれも領域の右半分だけを示している。また，図 4 と同様に，上面は手前に速度 1 で運動している。図 5－1 の流線は右端の原点近くから始まって，一度，キャビティ流 れの中心軸付近を半径の小さい螺旋を描きながら対称面近くまできてxy面での回転運動の半径を大きくしなが ら，負の z 方向の運動をおこない，二次元キャビティ流 で二次渦が見られるような下面の辺付近で，対称面にほ ぼ平行な面での回転運動を行っているところまでを図示 している。流線は閉じてはいない。ここで示したのは一部であり，流線は流れ場全体を動き回ると考えられる。図－5－2 には面 $\mathrm{z}=0$ 付近より出発して，流れの中心軸付近 を通過して対称面に近づき，壁付近を伝わって側面 $\mathrm{z}=0$付近に戻り，再度，キャビティ流れの中心軸付近を対称面近くに戻っている流線を示す。さらに時間を続けると， これらの流線は，キャビティの右の広い領域をらめ，カ オス的になる。しかし，対称面近くにはこらした流線が入り込まない領域がある。その領域の一点を初期値とし て流線を描いたのが，図5－3 である。流線は閉じた筒状 の閉曲面（トーラス）上に束縛されている。さらに，初期値を少し変化させると，前のトーラスの中に含まれる，異なるトーラスを描くことができる。これらの様子をよ り詳しく調べるため， $\mathrm{x}=0.5$ の面で Poincare map，つま り，ある流線がx の負方向の速度成分を持って面 $\mathrm{x}=0.5$ を貫く点を描いた図を 6 に示す。ただし，図は左半面を描 き原点が左下になるようにしている。左が側壁，右は対称面である。図には 12 流線の Poincare map を同時に描 いている。

図6 面 $\mathrm{x}=0.5$ での 12 流線の Poincaré 断面図 $(\Lambda=6.55)$
右端に二つのゆがんだ円を描くPoincare mapが見える。特に，右側のものが図5－3 の流線に対応する。図5－1，2に対応する流線がその他の領域の広がった点を示し，特に，左側の側面付近ではその位置が入り乱れ，chaotic になっ ている。

図7に対応するAlbensoeder ら4）の実験の可視化写真 を示す。図6と同様に，左端が側壁，右側が対称面であ る。

図7の実験をAlbensoeder らは中央付近に二次元流の不安定性に対応するセル構造ができていると説明してい る。しかし，図 6 と図 7 を比較したとき，実験と数値計算で得た流れ場は，ほぼ一致しているといえる。また，図 7 でセル的に見えたものは，図6のトーラス的な流線（図

図7 面 $\mathrm{x}=0$ 付近での流れの可視化 $\left(\mathrm{Re}=\mathrm{Albensoeder} \mathrm{ら}^{4)}\right)$
5－3）に対応する領域と隣接するトーラス的な流線を分離 するカオス的な流線（図5－1，2）の組合わさった構造を横 から観察したものだと，結論できる。図6で，対称面近 くでも，カオス的なグローバルな流線が存在することは重要であり，大きなスパンアスペクト比になっても，側壁の影響が無視できないことを示している。

一方，トーラス的な流線（図5－3）はスパンアスペクト比が小さくなると観察されない。図8－1，2に $\Lambda=4,5$ の面 $\mathrm{x}=0.5$ での 12 流線の Poincare map をそれぞれ示す。

図8－1 面 $x=0.5$ での 12 流線の Poincar 断面図 $(\Lambda=4)$

図 8－2 面x＝0．5 での 12 流線の Poincar 断面図 $(\Lambda=5)$
いずれも，図 6 と同様左半面だけを示している。また， これら図では，トーラス的な流線は観察できないが，図 $8-1$ の $\Lambda=4$ ではすべての下半分の領域がカオス的な流線 で埋められるのに対して，図8－2の $\Lambda=5$ では右下部にカ オス的な流線が入り込まない領域が見える。また，図6中 で， $\mathrm{z}<2$ の領域ではトーラス的な流線が観察されないを考慮すると $\Lambda=4$ と 5 の間で，トーラス的な流線が発生す ると考えられる。

4．まとめ

1．spectral－like CCD schemeは流れ場の高精度，高解像度の計算に利用できる。数値計算で，divUの誤差を小 さくするのに有効である。
2． $\mathrm{Re}=850$ で 3 次元キャビティのスパン長を変化させる と，キャビティ中央部分にトーラス状の流線が現れる。 その出現はスパンアスペクト比 4 と 5 の間であり，ス パンアスペクト比が増加すると数が増加する。
3．対称性が保たれる場合，片側では各トーラスのヘリカ ルの向きは同じで，カオス的なグローバルの流れで分離されている。

参考文献

1）Ishii K，Iwatsu R．Numerical Simulation of the Lagrangean flow structure in a driven－cavity．＂Topological Fluid Mechanics＂，Eds Moffatt et．al．Cambridge Univ．Press， （1990）54－63．
2）Ishii，K．，Iwatsu，R．，Kambe，T．，Matsumoto，N，Chaotic streamlines in viscous incompressssible flows，＂Nonlinear worlds＂，World Scientific Publishing Co．（1989），490－503
3）Shankar PN，Deshpande MD．Fluid mechanics in the Driven Cavity．Annu．Rev．Fluid Mech．2000；32：93－136．
4）Albensoeder S，Kuhlmann HC，Rath HJ．Three－dimen－ sional Centrifugal－flow instabilities in the Lid－driven－cav－ ity Problem．Phys．Fluids 2001；13（1）：121－135．
5）Nihei T，Ishii K．A Fast Solver of the Shallow Water Equa－ tions on a Sphere using a Combined Compact Difference Scheme．J．Comput．Phys．2003；187：639－659．

Evaluation of Hydrogen－Air Supersonic Mixing Condition
 using Catalytic Reaction

T．Arai
Department of Aerospace Engineering，Osaka Prefecture University，Sakai，Osaka，Japan

Abstract

An experiment was carried out to confirm the validity of time series evaluation of supersonic mixing condition by using catalytic reaction on a platinum wire．Gaseous hydrogen was injected into super－ sonic free－stream（ $\mathrm{M} 1=1.81$ ）from injector．Time series condition of supersonic mixing was evaluated by using W－type probe which has a platinum wire and reference wire（nickel wire）．The evaluation was done by simultaneously measuring each electric power supplied by each electric circuit which kept the temperature of wire constant．Specifically supplied electric power to Pt wire depended on catalytic heat release rate（giving hydrogen concentration）and flow convection．Meanwhile that to Ni wire depended on flow convection．The result showed that correlation coefficient between these electric powers increased when mixing developed．Investigations were also conducted for helium， air and no secondary injectant cases to compare with the hydrogen injectant case．The results indi－ cated that it was possible to measure the time－series behavior of air－hydrogen supersonic mixing layer or coherent motion of turbulence by using this evaluation．．

Key Words ：Supersonic Mixing，Mixing Enhancement，Measurement，Mixing Condition，Scramjet

1．緒言

次世代宇宙往還機としてスペースプレーンが提案され ておち，スペースプレーン用空気吸い込み式エンジンと して，スクラムジェットエンジンがある（1）。スクラムジ エットエンジン内の流れは超音速となるため，1ms オー ダーで燃焼器を通過する超音速空気流れへの燃料混合の促進とその評価は重要な課題の一つである ${ }^{(2)}$ 。

本研究では，空気一水素超音速混合層の混合状態の瞬間的な評価を行ら方法を提案し，種々の噴射形状から得 られる混合層に対して適用し，その有効性を示す。

2．触媒反応を用いた混合状態の測定原理

2．1触媒反応による発熱量 W 型プローブ（平行プロ ーブ）に張られた白金線及びニッケル線に加えられるエ ネルギーは，触媒反応による発熱量及び供給される電力 である。それらの和が放射，熱伝導および流れ場への熱伝達により失われるエネルギーとバランスしていると仮定すると，エネルギーバランス式は次のよらに表すこと ができる。

$$
\begin{equation*}
P+Q=\left\{\beta\left(T^{4}-T_{w}{ }^{4}\right)+\alpha_{g}\left(T-T_{g}\right)\right\} \pi D L+Q_{t c} \tag{1}
\end{equation*}
$$

ここで，P は細線への供給電力，Q は触媒反応による発熱量，β はふく射率，T は細線の平均温度，T_{W} は流路壁

面の平均温度，α_{g} は熱伝達率，T_{g} は流体の温度，D は細線の直径，$Q_{t c}$ はプローブ支柱からの熱伝導により失も れる熱量である。また左辺第1項が細線への供給電力量，左辺策 2 項が触媒反応による発熱量，右辺第 1 項が輻射熱伝導による放熱量，右辺第 2 項が細線表面から流れ場 への熱伝達による放熱量，右辺第3項が細線支持部への放熱量である。ここで，式（1）のエネルギーバランス式 を，白金線及びニッケル線の場合に分けて考えると，白金線では水素との触媒反応を生ずるため，白金線への供給電力は次式となる。
$P_{P_{t}}+Q_{\text {comb }}=\left\{\beta\left(T_{P t}{ }^{4}-T_{w}{ }^{4}\right)+\alpha_{g . P t}\left(T_{P_{t}}-T_{g . P t}\right)\right\} \pi D L+Q_{t c, P t}(2)$
また，ニッケル線の場合，水素と触媒反応を生じないた め，供給電力は次式さなる。

$$
\begin{equation*}
P_{M i}=\left\{\beta\left(T_{v i}^{4}-T_{w}^{4}\right)+\alpha_{g, v i}\left(T_{v i}-T_{g, v i}\right)\right\} \pi D L+Q_{t c, v i} \tag{3}
\end{equation*}
$$

このことから，白金線の触媒反応による発熱量は，ニッ ケル線への供給電力から白金線への供給電力を差し引い たものとなる（3）。
2.2 発熱量（電力量）の相関 白金線とニッケル線への供給電力量の時間的変動を同時測定し，その相関を調心゙ た。白金線への供給電力量とニッケル線への供給電力の時間変動の相関係数は以下の式で与えられる。

$$
\begin{align*}
r= & \frac{1}{(N-1) s_{P_{t}} s_{N i}} \sum_{j=1}^{N}\left(P_{\mathrm{Pr}, j^{j}}-\overline{P_{P_{t}}}\right)\left(P_{N i, j}-\overline{P_{N i}}\right) \tag{4}\\
& P_{P_{t}}: \text { 白金線への供給電力量 } \\
& \bar{P}_{P_{t}}: \text { 白金線への平均供給電力量 } \\
& P_{N i}: \text { ニッケルル線への供給電力量 } \\
& \bar{P}_{N i}: \text { ニッケルル線への平均供給電力量 }
\end{align*}
$$

白金線への供給電力量及びニッケル線への供給電力量の時間変動の相関係数が 1 に近づくほど，両者の供給電力量の時間変動が同じ挙動を示すことを意味する。このこ とは触媒反応による発熱量が変動しない，すなわち，水素濃度が時間的に変動しないことを示す。言い換えれば，一様に水素と空気が混合していることに対応する（4）。

3．実験結果および考察

3.1 スリット噴射 Fig． 1 はスリット噴射による超音速混合層をシュリーレン法により可視化した結果である。 スリットは後ろ向きステップに設けられ，流れに平行に水素を噴射している。Fig． 2 は白金線とニッケル線に供給 される電力量の相関をしらべ，その係数が流れ方向にい かに変化するかを示したものである。測定位置は混合そ の中心である。下流の位置ほど，相関係数が高く，空気 と水素はより均一に混合していることがわかる。これは，混合層が発達するので，当然のことである。すなわち，こ こで提案する手法で，混合状態の瞬間の状態が定性的に評価できる。Fig． 3 は気体種による違いを示したものであ る。気体種が水素の場合，気体種がヘリウム，空気の場合に比べて相関が弱いことが分かる。これより，白金線表面で触媒反応が生じないへリウム，空気の場合の方が，触媒反応が生じている場合に比べて強いので，本手法に より，混合状態の時系列測定が可能であるといえる（4）。噴射なしの場合，相関が低く測定されたが，これは，流れ の乱れスケールがプローブのスケールに比べて小さいた めであろう。

Fig． 1 スリット噴射による超音速混合層 （シュリーレン写真）

Fig． 2 相関係数の流れ方向変化

Fig． 3 相関係数に及ぽす気体種の影響

3．2 AIP 噴射 Fig． 4 はAIP 噴射装置を示してしる。こ れは混合促進を目的として次の構想により考案したもの である。まず，スリット噴射より，空気との接触面積を増加されるために，スリットを複数の噴射孔に分割する （ 0 度噴射）。この場合の噴射方向は流れに平行である。 この流れに，空気力学的に縦渦を導入するために，噴射孔を30度傾ける。すなわち，Fig． 4 に示されるように， 0度噴射と 30 度噴射が交互にくるようにする。これをAl－ ternating Inclined and Parallel injector（AIP injector）と呼 ぶことにする。Fig． 5 は AIP 噴射器によって作られる混合層を可視化した結果を示している。図には参考のため， 0 度噴射とすべての噴射孔が 30 度傾いた場合（30 度噴射）も示した。この 3 つの条件では，混合層の高さには大きな差は見られないことが分かる。すなわち，平均的 な混合層の発達の様相には大きな違いは見られらいよう に見受けられる。ただし，AIP 噴射の場合には混合層の

内部にかなりはっきりと組織構造がみられる。AIP 噴射 では縦渦をながれに導入したが，その縦渦が速やかに不安定になり，流れに直角な構造が誘起されたものと思わ れる。Fig． 6 は AIP 噴射， 0 度噴射， 30 度噴射の場合の白金線とニッケル線に供給される電力の相関係数を示し ている。測定は噴射位置から下流へ 49 mm の位置で，混合層のほぼ中心で行った。図から分かるように，AIP 噴射の場合がもっとも相関係数が高く，水素と空気が他に比べてより均一に混合していると考えることができる。 すなわち，縦渦の導入は混合促進に有利に作用するとい える。

Fig． 4 AIP 噴射器

（a）AIP injector

（b） 0 deg．injector

（c） 30 deg．injector
Fig． 5 AIP 噴射， 0 度噴射， 30 度噴射によって作られる流れ場の可視化

Fig． 6 噴射形状が相関係数に及ぼす影響
3.3 ポートホール噴射 Fig．7に，ポートホール噴射孔 の概略を示す。ポートホール噴射孔は直径が L ，深さが Dのキャビティーに直径 3 mm の噴射孔を組み合わせたも のである。また，ポートホール噴射孔と比較のため，の ど部直径 3 mm の円孔噴射孔も用いられた。気体水素がこ れらの噴射孔より，流れに垂直に主流との運動量流束比約 1.0 で噴射された。Fig． 8 に瞬間光源を用いたシュリー レン法による流れ場の可視化写真の一例を示す。図より，噴射孔前方の境界層の剥離による剥離衝撃波の発生位置 は円孔噴射の場合が最も上流であることがわかる。流れ の可視化写真より，キャビティーと噴流とが干渉して噴流に不安定変動が生じ，混合層内部に比較的はっきりと した組織構造が存在することが分かる。この組織構造の大きさは，L／Dによって整理でき，キャビティーから励起される振動に支配される ${ }^{(5)}$（6）。

Fig． 7 ポートホール噴射器

Fig． 9 は白金線およびニッケル線の供給電力量を測定 し，それぞれの時間変動がどのくらい互いに依存関係が あるかを相関係数を測定結果から算出して示している。以前の研究によれば，相関係数が高い場合は混合が進ん でおり，より均一な混合場が得られていると考えられる （4）。図は $\mathrm{x}=64 \mathrm{~mm}$ の位置で，ほぼ混合層の中心の z 方向 の位置における測定結果を示している。ここで縦軸は相関係数，横軸はL／D である。図より，円孔噴射に比べて

ポートホール噴射の場合の方がは相関係数が大きいこと がわかる。すなわち，キャビティーが存在する場合はキ ヤビティーが存在しない場合に比べて混合が進んでいる と考えられる。また，L／D が 2 の場合が最も混合状態が良いと考えられる。このことは L／D＝2 のときに誘起され る乱れの周期と噴流の不安定周期がほぼ一致しているこ とによると考えられる。

（a）Circle

（b）porthole（ $\mathrm{L}=6, \mathrm{D}=3$ ）

（c）porthole $(\mathrm{L}=9, \mathrm{D}=3)$

（f）porthole（ $\mathrm{L}=9, \mathrm{D}=4.5$ ）
Fig． 8 ポートホール噴射器によって作られる流れ場の可視化

Fig． 9 ポートホール噴射器の形状が相関係数に及ぼす影響

4．結論

空気—水素超音速混合層の混合状態の瞬間的な評価を行ら方法を提案し，種々の噴射形状から得られる混合層 に対して適用し，その有効性を示した。得られた結果を要約すると以下のとおりである。
（1）触媒反応を用いた本混合評価方法は水素一空気超音速混合層の混合評価に有効であり，本手法により空間的均一度（一様に混合しているかどうか）を評価 できる。
（2）混合促進法として，縦渦を導入する AIP 噴射器は有効である。
（3）混合促進法として，キャビティー内から噴射するポ ートホール噴射器は有効である。ただし，キャビテ ィーの形状（直径と深さの比）により，その効果が異なる。

謝辞

本研究の一部は科学研究費補助金（基盤研究（C） 17560694）による。実験には元室蘭工業大学大学院生森優子君，室蘭工業大学大学院生工藤丈学君，シェリー・ロ ーズ・エドワード君の強力をいただいた。付記して感謝 する。

参考文献

（1）Scuderi，L．F．，Orton，G．F．and Hunt，J．L．：Mach 10 Cruise／Space Access Vehicle Definition，AIAA Paper 98－ 1584，In AIAA Space Planes and Hypersonic Systems and Technologies Conference（1998）．
（2）Barber，M．J．，Schetz，J．A．and Roe，L．A．：Normal， Sonic Helium Injection Through a Wedge－Shaped Orifice into Supersonic Flow，Journal of Propulsion and Power， Vol．13，No．2，（1997），pp．257－263．
（3）新井ら：空気一水素2次元超音速混合層の白金触媒反応を用いた水素濃度分布測定，日本機械学会論文集（B編）67巻656号（2001－4）934－939
（4）F．Sakima，et al．，Correlation Mass Flux Fluctuation and of Hydrogen Concentration in 2－D Air－Hydrogen Su－ personic Mixing Layer，Transaction of JSASS，Vol．47， No．158，pp．262－267， 2005.
（5）浅井智広，西岡通男：超音速キャビティ流の振動機構に関する理論的研究，ながれ22（2003）147－156．
（6）浅井智広，西岡通男：超音速キャビティ流の振動機構に関する実験的研究，ながれ22（2003）131－145．

On Selectivity of Karman－vortex shedding Frequency

S．Takagi＊，T．Atobe ${ }^{\star}$ ，N．Itoh ${ }^{* *}$ ，S．Kamono＊＊＊and S．Rikitake＊＊＊
＊Institute of Aerospace Technology，Japan Aerospace Exploration Agency， ＊＊Teikyo University，and＊＊＊Gakushuin University

Abstract

Wake structure behind an NACA0012 with no incidence was examined to scrutinize the frequency selection mechanism of growing disturbances at $\mathrm{Re}=7200$ based on the wing chord and the free－stream velocity．Two different kinds of unstable disturbances，which exponentially grow in space，were ob－ served．The minor disturbance is due to convective instability，while the origin of the major one may be attributed to absolute instability．Theoretical comparison is necessary to identify these disturbances．

Keywords ：absolute instability，convective instability，frequency selection mechanism，airfoil wake

1．はじめに

二次元円柱の背後には規則的なカルマン渦列が形成さ れ，この渦放出に同期してエオリア音と呼ばれる音波す なわち空力音が放射される。カルマン渦列の周波数ある いは空力音の周波数は極めて卓越的であり，この周波数決定に流れの絶対不安定が絡んでいると言われている。 しかし，円柱背後のどの位置でその周波数が決定される かについては未だに不明な点が多い。

このような空力音は，円柱や鈍頭柱体に限らず流線型 の二次元翼後縁からも放射され，Trailing－edge（TE）音と呼ばれている。しかし，二次元柱体の場合と異なり，翼面に沿って発達する境界層の不安定と後縁からの渦放出 が連成した自励的フィードバック機構が知られており， このために放射音の周波数は離散的に卓越していると解釈されている $(1,2)$ 。しかっしながら，この周波数卓越性につ いて自励的フィードバック機構のみで説明することには無理があり，この機構に加えた新しい原因を追求する必要があると理解している。

本研究では，TE音周波数の選択性に流れの絶対不安定性が深く絡んでいる可能性に着目し，この可能性を明解 に実証するためにはどのよらな進め方が合理的か既報を精査しながら考察している段階である。また同時に進め ている実験について，まだ初期段階であるが第一報を紹介したい。

2．絶対不安定が関与する流れ場

絶対不安定性に関しては，HuerreとMonkewitz（3）の優れた研究と総説があり，また，この現象に関連する様々な流れ場のリストが示されているので，ここでは上記 リストに載っていない事例と現在進めている安定解析と実験の取り組みについて述べる。

2.1 安定解析の取り組み：振動平板境界層

一様な流れの中に平行に置かれた平板を流れの方向に前後に振動させた振動平板上の非定常境界層の安定問題 は古く加ら調べられている（4－6）。小橋と早川は振動平板実験で境界層の遷移領域には二次元的な性質をもった乱流塊（乱流パッチ）が流れの振動周期の限られた位相範囲に周期的に発生することを観察し，筆者らはこの乱流発生 と絶対不安定の関係に着目した。振動の振幅が小さい場合，非定常境界層の速度分布は，振動しない平板上に発達するBlasius解に，振動平板の相似解を重ね合わせるこ とができる。この振動解の安定解析を行った結果，速度分布に変曲点が形成される位相で群速度が 0 に近付く傾向を示すものの，絶対不安定の起こる解はこれまでのと ころ得られていない。引き続き解析を繙続する。

2.2 実験の取り組み：TE 音の周波数選択性

TE音と絶対不安定が絡むと推論する根拠は中島（2）ある

いは Nash ら（1）による二次元翼後縁近傍の流れの可視化実験である。さらには線形安定解析も行っており，実験 との整合性も確認されている。二つの実験いずれも後縁近傍を可視化したところ，負圧面でなく圧力面側の後縁近傍でTE音に同期した剥離を観察しており，この領域で T－S 波が急成長した後，強い渦放出が起こり，空力音が放射される。この空力音は上流のT－S波を音響励起して，自励的なフィードバックが形成されとものと解釈している。 しかし，安定解析によれば剥離領域で成長する T－S 波は広帯域であり，実験で観察される極めて選択的な周波数成分はこのような自励的機構のみで説明するには無理あ ることは明らかである。

中島やNash らが得た結果からでは，TE 音の周波数選択性は十分に説明できないことから，その選択性の機構解明に当たっては，次のように単純化して考える。極め て低いレイノルズ数でも，TE 音は発生する（2）ことから， まず流れの条件として，T－S波が成長しない場合，結果と してフィードバック機構を除去することが可能となり，残りは翼後縁の剥離領域の有無だけとなる。もし，剥離領域の存在が重要でない場合は，そこにはこれまで考え られていなかった機構が存在している可能性があること が考えられる。以上のことを踏まえ，実験では翼型とし てNACA0012，その翼幅と翼弦はそれぞれ 200 mm と $\mathrm{C}=20 \mathrm{~mm}$ とし，翼弦と主流速度に基づくレイノルズ数は $R e=7200$ 前後として，T－S 波の成長しない流れの条件を選んだ。また，迎角を調整することで，翼後縁領域にお ける剥離領域の存在の重要性も調べることとした。以下 にその詳細を述べる。

3 ．実験結果および考察

図 1 は迎角 0 度，主流速度 $6 \mathrm{~m} / \mathrm{s}$ における模型周りの流 れの可視化と模型下流における変動の熱線信号及びそれ らを周波数分析した結果を示している。翼後縁のほぼ一翼弦長（C）から渦形成が始まっている。熱線は 0.5 C で二種類の擋乱を検出し，その一つは，広帯域の撹乱で，も ら一つは広帯域の擋乱領域から増幅している狭帯域擋乱 である。狭帯域擋乱は 0.5 C から C の区間で急激に成長す るが，広帯域擋乱の成長率は小さく，可視化で観察され た渦構造は，狭帯域撹乱の成長と対応していると思われ る。狭帯域並びに広帯域擋乱はいずれも下流方向に指数的に成長しているが，飽和した振幅比はおよそ100：1であ ることが分かった。二種類の擋乱の外乱に対する特性を調べるために，スピーカーを用いて音響励起を行った。

広帯域擋乱のピーク周波数（ 866 Hz ）の音響擋乱は，極め受容性が大きいが，これに比べて狭帯域撹乱のピーク周波数（ 741 Hz ）の受容性は低いことが分かった。このこと から狭帯域撹乱は絶対不安定から成長し，一方，広帯域擋乱の成長は対流型の不安定によるのでないかと推察さ れる。

図1．迎角 0 度NACA0012回りの流れの可視化と下流に おける擋乱の成長

4．まとめ

二次元翼の後縁から放射されるTE音の周波数選択性は自励的なフィードバック機構ではなく，翼後縁近傍の絶対不安定に帰される可能性が示された。

今後の計画として，詳細に計測した翼下流における速度分布を安定解析する予定である。また，Mattingly ら（7） がすでに安定解析を行っているNACA0006のような薄翼 の後流では本実験と同様に 2 種類の擋乱が成長するのか どうか実験を行ら予定である。

参考文献

1）E．Nash et al．：J．Fluid Mech．382，（1999），pp．27－61．
2）中島伸治：騒音研究 27，（2003），pp．331－336．
3）P．Huerre \＆P．Monkewitz：Annu．Rev．Fluid Mech （1990），pp．473－537．
4）H．Obremski \＆A．A．Fejer：J．F．M．29，（1967），pp．93－111．
5）小橋，中川：第6回乱流シンポ講演論文集，（1974）， pp．85－89．
6）小橋，早川：第 10 回乱流シンポ講演論文集，（1978）， pp．77－88

7）G．E．Mattingly and W．O．Criminale：J．Fluid Mech． 51（1972）pp．233－272

2 次元後流の中の乱雑化の実験

佐藤 浩，斎藤博之助，中村 䆖（ながれ研究集団）

Experiments on the randomization in a two－dimensional wake

H．Sato，H．Saito and H．Nakamura

Institute of Flow Research

Abstract

A two－dimensional wake was formed behind a fine－mesh screens placed perpendicular to the uniform flow，The transition process in the wake was observed by a hot－wire anemometer．The starting period of the process is the linear growth of small－amplitude velocity fluctuations．The period is followed by the nonlinear interraction between various spectral components．The last and the most important stage is the randomization of periodical fluctuation．The quantitative description of the ranndomness was tried by the use of amplitude and wave length of randomized velocity fluctuations．

Key Words：wake transition，randomization

0．はしがき

層流から乱流八の遷移についての研究は数え切れなし程の数ですが，乱流が作られる最も基本的な，乱雑化については殆ど分かっていませ ル。我々は2次元後流の中で色々な波形を持つ，规則正しい速度変動が乱雑になつていく過程を観察しました。そして乱権化の過程を定量的に記述する方法を探しました。

1．実験技術

実験は測定部の断面が25cmx25cm，長さが50cmほどの吹き出し型風洞の中で行 われました。一様流の風速はすべて $4 \mathrm{~m} / \mathrm{s}$ で す。流れに直角に40メッシュで，ゆ 4 mm m疑冊形の金網を張り，その下流に作られた後流 の中で実験し末した。外部に置かれたスビーカ一から色々な音を測定部に送り，それたよって誘起さ礼る速度変動を熱線風速計で測定し，適当なデイ夕処理を行いました。

乱雑化を定量的に扱らために，熱線からの出力波形を統計的に処理する方法を探しました。 2．白然遷移
積極的に外から音を送らなくても，網で作ら れる駒い速度変動と，そこらにある音で作られ る弱い速度変動が線型領域で成長し，下流にな ると乱れらしくなります。これを自然遷移と呼 びます。線型成長域は周波数を選びますから， スペクトルを測ると山と谷が現れます。

第1図
第1図はスベクトルで，300H7付近め基本波と，その高摆波がはつきりと分かります。そ れらは乱雑で，線スペクトルではありません。夢スパクトルとでも呼ばれるものでしょう。 X が大きくなると第2図に示したように，スペタ トルには山と谷が無くなつて，なだらかな連続 スペクトルになります。音はこのような流れ場 に重畳されるので，外部から導入された音だけ の影響を分離することは出来ません。

2．単音実験

第1図で分かるように，線型領域で最大の成長率を持つのは，ほぼ270Hzです。そこで その周波数の音を外部から送り込むことにしま した。これを単音実験と称します。音の強さは スピーカー人力を1Vにとり末した。この強さ を少し変えても結果に影響はありません。速度変動の強さの分布の例を第3図に示しました。

第3図
変動のrms は最大で 8% を超えており，音 の無いときに比ごると1．5倍ほどです。山が 2 つ有るのは，2次元後流の特徴です。

変動強さは流れ方向に線型域で $\mathrm{X}=80 \mathrm{~mm}$ あたりまで成長し，あとは非線型干渉で，段々 に弱くなり，乱雑化します。

第4図
Xの小さいところでのスペクトルが第4図で す。音の 270 Hzz と，その高調波が断然強い のが分かります。下流に行くにつれてこの針の ような線スペクトルは小さくなり，やがて第2図のようになります。
$\mathrm{X}=400 \mathrm{~mm}$ での速度変動野波形は第5図 のようです。これで1分に発達した乱流後流で す。

第5 図

3．複音実験

音を2つにしてみました。音は270Hzを挟んで，247 H 七と293H7に選びました。非線型干渉で盖の 46 Hz z 発生が期待されま

す。
速度変動の強さの流れ方向の変化を示したの が第 6 図です。 $\mathrm{X}=80 \mathrm{~mm}$ あたりで最大値に なり，100つmあたりから再び増加して次の最大値に張るといら，やや異常な分布になって

第6図
います。この第2の山は2つの音の差成分46 Hz，の発生，成長によることが分かりました。

Xが小さいところの速度変動の波形を第7図 に示しました。これは晗りを持つ音の波形を正碓に再現しています。いわば完璧な秩序です。

音 $247+293 \mathrm{~Hz} \mathrm{U}=4 \mathrm{~m} / \mathrm{s} \quad \mathrm{x}=50 \mathrm{~mm} \mathrm{y}=0$
第7図
スペクトルもそれに相当したものになっていま す。しかしド流に行くにつれで波形もスペクト ルも変わってきます。

第8図は $\mathrm{X}=100 \mathrm{~mm}$ でのスペクトルで，沢山の線スペクトルが現れています。それらは基儊になる 2 つの成分の組み合わせとして同定出来ます。その一部分を図の上の庁に入れてお きました。Xがもつと大きくなると，線スペク トルの数はどんどんと増えて，殆ど埋め尽くす ほどになります。

第8図
ここで一つ深刻な疑問が現れます。それは，線スペクトルの数が十分に多くなればぞれが流 が発達した乱流になったと言えるのか，という ものです。もしそうなら，連続スペクトルの持 つ意味が無くなります。実験ではその違いを明 らかにすることは出来ません。この問題は将来 の考察にゆだねます。

ド流の方の変動波形を第9図に示しました。 この $\mathrm{X}=400 \mathrm{~mm}$ の場所では乱れは十分に発達しているように見えます

音 $247+293 \mathrm{~Hz} \quad \mathrm{x}=400 \mathrm{~mm} \mathrm{y}=4 \mathrm{~mm}$第 9 図

4．乱雑化の定量表現

速度変動が規則正しい正弦波から始まって下流に行くに従って，乱雑化する過程を何とか数量的に表現することは出来ないでしょうか。そ れが出来なければ，乱稚という概念は美しさと か，好ましさというような，自然科学にはなじ

まないものになってししまいます。第9図の波形 が第7図に比心て乱雑だということに異を晿え る人はありません。 しかしそれではどれほど乱雑なのかという問いに答えられる人はありま せん。

そこで我々は波形を分析して＂乱雑度＂とぁ言える量を取り开す試みをしました。

波形を特徴づける物は波の波辰と振幅です。 ぞこでそれらを波形から取り出してみることに しました。
波長も振幅も色々な値を取ります。それらを それらの平均で割って波長一振幅座標の巾にプ ェットします。そして，それらと平均値との距離の平旳で乱雑度を表現するのです。一例を示 しましょう。

第10図は単音で， $\mathrm{X}=150 \mathrm{~mm}, \mathrm{Y}=1$ mm mときの例です。横軸が波長で，縦軸が振幅です。1と10）交点の黒い は平均値を表し number of waves $=26$

第10図
ます。周囲に散らばっている○は各個の波長と振幅を表しています・この例では波の数は28個です。○を心として，○まで0距離を測り， それらの値の半均を取った物が乱㞺度です。

第11図
第11図は単音で，Xの小さいときのもっので，波形は殆ど綺䳸な正弦波ですから，○はすべて

が の上に重なってしまい，距離はゼロになっ ています。この状態は乱雑度が殆どゼロです。

このような試みをすべての波形について試み，乱雑度の流れ方向への変化を見たのが第12図 です。 $\mathrm{y}=0$ の点ばかりを集めました。 Xが

第12図
小さい所から乱権度が段々大きくなつていくの がはつきりと表されています。 $\mathrm{X}=300 \mathrm{~mm}$ あたりから乱雑度は飽和して，ぞれ以上の値は取らないことも示されました。

同じことを複音の場合にも試みました。それ が第13図です。点が散らばっていますが，第 12 図と似た様な傾向を示しています。

第 13 図
この2つの図とも，縦軸は任意日盛りです。

5．まとめ
一般的な乱雑化について次のような考え方を得ました。
1．乱雑化の＂種＂はそこら中に漂つている。
2．好ましい環境が与えられると，種は芽とな る。
3．快適な環境と，十分な栄養が与えられると，芽は成長する。
4．非線形干渉で乱雑度はさらに成長する。
5．成長は飽和して，乱雑化は終わる。

Consideration for＂Cross－Independence Hypothesis＂

Iwao Hosokawa（Prof．Emeritus，Univ．Electro－Comm．）

Abstract

Qualities of similarity solution based on＂the cross－Independence hypothesis＂in decaying homoge－ neous isotropic turbulence recently proposed by Tatsumi and Yoshimura are discussed．

Keywords ：Turbulence，Cross－independence hypothesis

1．はじめに

等方性乱流の中の多点速度分布の方程式系は1967年に MoninとLundgrenによって無限につながる連立方程式系として確立されているが，これを 1 点または 2 点速度分布までで切り上げる，いわゆる完結モデルで成功 したものは今まではなかった。

これに対する果敢で周到な研究が，新しい「交差独立性」といら独創的な仮説に基づいて，Tatsumi \＆ Yoshimura（2004）によって行われていることは周知のと おりである。

ここでは，Fluid Dyn．Res．に発表された2004年の論文 ${ }^{1)}$ に基づいて，私が見た困難な点を指摘したい。この論文で解決できなかった，いわゆる局所領域の解の研究 は現在著者たちによって継続中のようで，部分的には議論されているが，数学的に完結した形を想像することは難しいので，ここでは立ち入らないことにする。

もし相似解があるとすれば。どんな特性をもつものか， またあり得る非相似解にも言及する。

2．交差独立性

一様等方性乱流では， 1 点分布函数を $\mathrm{f}(\mathrm{v}, \mathrm{t}), 2$ 点分布函数を $\mathrm{f}^{(2)}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{r}, \mathrm{t}\right)$ とする。ここで \mathbf{v} は速度ベクトルを示 し， \mathbf{r} は 2 点間の距離ベクトル， t は時間変数である。交差独立性といらのは，2点における速度（ $\mathbf{v}_{1}, \mathbf{v}_{2}$ ）の積空間 を $\mathbf{v}_{+}=\left(\mathbf{v}_{1}+\mathbf{v}_{2}\right) / 2$ と $\mathrm{v}_{-}=\left(\mathbf{v}_{1}-\mathbf{v}_{2}\right) / 2$ の積空間に変換し，

$$
\begin{equation*}
\mathrm{f}^{(2)}\left(\mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{r}, \mathrm{t}\right)=2^{-3} \mathrm{~g}^{(2)}\left(\mathbf{v}_{+}, \mathbf{v}_{-}, \mathbf{r}, \mathrm{t}\right) \tag{1}
\end{equation*}
$$ そして

$$
\begin{equation*}
\mathrm{g}^{(2)}\left(\mathbf{v}_{+}, \mathbf{v}_{-}, \mathbf{r}, \mathrm{t}\right)=\mathrm{g}_{+}\left(\mathbf{v}_{+}, \mathbf{r}, \mathrm{t}\right) \mathrm{g}_{-}\left(\mathbf{v}_{-}, \mathbf{r}, \mathrm{t}\right) \tag{2}
\end{equation*}
$$

と仮定することである。

Tatsumi \＆Yoshimura の減裏一様等方性乱流の完結モ デルはこれを利用して，Monin－Lundgrenの連立方程式系 を以下の 4 個の方程式系にまとめたあのである。

$$
\begin{align*}
& \left(\frac{\partial}{\partial t}+\alpha(t)\left|\frac{\partial}{\partial v}\right|^{2}\right) f(v, t)=0 \tag{3}\\
& \left(\frac{\partial}{\partial t}+\frac{1}{2} \alpha(t)\left|\frac{\partial}{\partial v_{+}}\right|^{2}\right) g_{+}\left(v_{+}, r, t\right)=0 \tag{4}\\
& \left(\frac{\partial}{\partial t}+\frac{1}{2} \alpha(t)\left|\frac{\partial}{\partial v_{-}}\right|^{2}\right) g_{-}\left(v_{-}, r, t\right)=0 \tag{5}\\
& \alpha(\mathrm{t})=\left.\frac{2}{3} v \lim _{| | \rightarrow 0}\left|\frac{\partial}{\partial r}\right|^{2}| | v_{-}\right|^{2} g_{-}\left(v_{-}, r, t\right) d v_{-} \tag{6}
\end{align*}
$$

式（6）は，右辺が存在すれば，平均散逸率 $\varepsilon(t)$ の $1 / 3$ に等 しい。 v は運動粘性係数である。この方程式系は著者の名前を借りて，T－Y Closureと呼んでもよい。

しかし，最近はこの系の枠を超えてかなり大きい変更 を加えたもので，局所領域の研究を進めておられるよう なので，それについての議論はここではできない。その ような変更が，単に物理的アナロジーではなく，元の Monin－Lundgrenの連立方程式系から数学的に導かれるの かどらか定かでないからである。

3．相似変数の方法
T－Y Closure（3－6）は簡単に見えるが，実はそうではな い。 4 個の函数の非線形微積分連立方程式である。著者 たちは相似変数

$$
\begin{equation*}
w_{ \pm}=v_{ \pm} t^{1 / 2}, s=r t^{-1 / 2}, g_{ \pm}\left(v_{ \pm}, r, t\right)=t^{3 / 2} G_{ \pm}\left(w_{ \pm}, s\right) \tag{7}
\end{equation*}
$$

を導入し，

$$
\begin{equation*}
\alpha(t)=\alpha_{0} t^{-2} \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\alpha_{0}=\frac{2}{3} v \lim _{\beta \rightarrow 0}\left|\frac{\partial}{\partial S}\right| \int\left|W_{-}\right|^{2} G_{-}\left(W_{-}, s\right) d W_{-} \tag{9}
\end{equation*}
$$

と置き，α_{0} の存在を仮定した。そして鮮やかに（3）を解 き， 1 点分布函数

$$
\begin{equation*}
\mathrm{f}(v, t)=\left(\frac{t}{4 \pi \alpha_{0}}\right)^{3 / 2} \exp \left[-\frac{|\nu|^{2} t}{4 \alpha_{0}}\right] \tag{10}
\end{equation*}
$$

を得た。ここまでは見事である。

$$
\begin{align*}
& \text { さて次に } G_{ \pm}(w, s) \text { をどら解くか。これは方程式 }(4,5) \\
& \text { によって, } \\
& 3 / 2 G_{ \pm}-s / 2 \partial G_{ \pm} / \partial s+w_{ \pm} / 2 \cdot \partial G_{ \pm} / \partial w_{ \pm} \\
& \quad+\alpha_{0} / 2 \partial /\left.\partial w_{ \pm}\right|^{2} G_{ \pm}=0 \tag{11}
\end{align*}
$$

に支配され。明らかに $g \pm$ のr依存を示す。しかし，2004年の論文1）ではこの式は扱われていない。その代わり に，ストレートに方程式（3）との類似性に着目してrに依存しない解

$$
\begin{equation*}
g_{-}\left(v_{-}, t\right)=\left(\frac{t}{2 \pi \alpha_{0}}\right)^{3 / 2} \exp \left[-\frac{\left|v_{-}\right|^{2} t}{2 \alpha_{0}}\right] \tag{12}
\end{equation*}
$$

が $\mathrm{r}>0$ の条件で出された。 $g_{+}(\nu+, t)$ も同じである。そし て $\mathrm{r}=0$ の場合は $(4,5)$ に達する前の方程式に遡って考察 され，前者はデルタ函数に，後者は（10）の解に一致する ことが結論された。

4．問題点

上に述べられた 4 個の函数の解は，連立方程式（3－6）を充たすだろらか。問題は式（6）である。上に述べた $g_{-}\left(v_{-}, t\right)$ のいずれの形を入れても式（6）では $\alpha(\mathrm{t})=0\left(\therefore \alpha_{0}=0\right)$ と なり，式（9）の有限値の存在は否定される。ここに矛盾が あるのなら，導かれたすべての解も危らい。
折角のT－Y Closureが生きるためには，式（6）が有限値 で成り立つよらな $g_{-}\left(v_{-}, r, t\right)$ または $G_{-}(W, S)$ が見つけられ なければならない。式（5）の解としてこれを達成できるか は自明ではない。近似的に無視されていた別の項を入れ たもので式（5）を改変し，そこでrに依存する解を探すの は一案かも知れない。勿論それは式（6）の右辺が計算でき て，自己無撞着な $\alpha(\mathrm{t})$ を与える必要がある。

5．相似解の一般的特性

もし自己無撞着なT－Y Closure の相似解が得られると すれば，それはどのような特性をもつか。

まず式（6）の所で述べたよらに，式 $(8,9)$ から，平均散逸率

$$
\begin{equation*}
\varepsilon(t)=3 \alpha_{0} t^{-2} \tag{13}
\end{equation*}
$$

の減衰則が得られ，これによりエネルギーの減衰䙲指数 は -1 となる。

次に，この理論には二つの有限の大小長さスケールが あり，相似解に対しては。

$$
\begin{align*}
& L(t)=\left\langle v_{1}^{2}\right\rangle^{3 / 2} / \varepsilon=\frac{2^{2 / 3}}{3}\left(\alpha_{0} t\right)^{1 / 2} \tag{14}\\
& \eta(t)=\left(v^{3} / \varepsilon\right)^{1 / 4}=\left(v^{3} / 3 \alpha_{0}\right)^{1 / 4} t^{1 / 2} \tag{15}
\end{align*}
$$

が得られる。慣性領域は（もし存在すれば）これらのス ケールの間に存在する管である。両スケールが $t^{1 / 2}$ に比例して伸びて行くので，慣性領域は永久になくなること はない。

$$
\begin{align*}
& \text { スケール比によってレイノルズ数 } \operatorname{Re}(\mathrm{t}) \text { を定義しよう。 } \\
& \frac{L(t)}{\eta(t)}=\left(\frac{4}{3}\right)^{3 / 4}\left(\frac{\alpha_{0}}{v}\right)^{3 / 4} \equiv \mathrm{Re}^{3 / 4}, \tag{16}
\end{align*}
$$

Reは時間不変となり，もし長さのスケールをどちらかの スケールで無次元にしてあれば，エネルギーは減衰する にも拘らず，同じ乱流構造がいつまでも維持されること になる。たとえば，速度の自己相関函数は時間不変とな る。

これらは相似解の顕著な特性で，必ずしも現実的では ないが，一つのモデルとしての意味はあるだろら。筆者 は慣性領域では Kolmogorov 仮説に合わせた分布函数を使い，その外側でT－Y Closure と厳密に接続するといら方法を考えたが，これは別のところで改めて発表する。2）非相似解を考慮の中に入れると，

$$
\begin{equation*}
\alpha(t)=\alpha_{0} t^{-4 a} \tag{17}
\end{equation*}
$$

$a>1 / 4$ の条件で，無数の解の可能性が出てくる。式（10） の一般化も書けるが，紙面の都合で省略する。この中か ら，上記の特性に縛られない（Re（t）の減衰する）より現実的なものが見つかる可能性があるが，今後の問題であ る。

引用文献
1）T．Tatsumi \＆T．Yoshimura（2004）Fluid Dyn．Res．35， 123.

2）I．Hosokawa，to be published in Fluid Dyn．Res．（Memo－ rial issue of Professor Imai．）

ストリーク不安定の実験

浅井雅人（首都大），小西康郁（都科技大院）

Experimental investigation of the streak instability

M．Asai＊and Y．Konishi＊＊
＊Dept．of Aerospace Eng．，Tokyo Metropolitan University
＊＊Dept．of Aerospace Eng．，Tokyo Metropolitan Institute of Technology

Abstract

Two kinds of experiments are carried out on the instability and breakdown of low－speed streaks．First the development of subharmonic streak instability is examined by using artificially－generated spanwise－ periodic low－speed streaks in a laminar boundary layer．Up to the nonlinear saturation stage of the streak instability，the disturbance development along each low－speed streak is similar to that observed in a single low－speed streak．Beyond the saturation stage，the neighbouring quasi－streamwise vortices developing along each low－speed streak interact with each other，causing an arch－like vortex structure to develop away from the wall．After the breakdown of the primary low－speed streaks，near－wall streaks newly develop downstream．The developed low－speed streaks have lateral spacing of 100 wall units，the same as the value in wall turbulence．Secondly two－dimensional suction is applied to a turbulent bound－ ary layer through a perforated wall strip to realize a quasi－laminar boundary layer with suction－survived high－intensity turbulence，and spanwise－periodic low－speed streaks are artificially introduced there．The results show that under such high－intensity background turbulence the streak breakdown is governed not by the linear instability process but by the transient disturbance growth．

Keywords ：Boundary layer，Transition，Low－speed streaks，Streak instability，Transient growth

1．はじめに

最近のDNS1）によると，壁近傍乱流を支配している組織構造は，低速と高速の筋状構造が交互に並んだいわ ゆるストリーク構造と，低速の箷（低速ストリーク）の蛇行と共にジグザグ状に発達する縦渦群である。これら は互いに再生成サイクルを形成して乱流構造を維持して いるといらモデルが提案されている2－5）。一方，層流から乱流への遷移過程を観察すると，弱い気流乱れの下で線形不安定波動の成長から始まる遷移にせよ，強い乱れの下で起きるバイパス遷移にせよ，乱流構造が形成される までには壁近くにやはりストリーク構造が現れ，それが崩壊して縦渦が生成される。壁近くの維渦は先頭部が上昇すればへアピン形状やアーチ状の渦を形成し，壁から離れた領域からのエネルギや運動量の輸送を担う。従っ て，壁面剪断流において乱流の発生予測や乱流制御を行 ら上では，ストリークと縦渦の生成維持機構やそれらの組織的な運動を理解することが重要となる。

本報では，壁近傍乱流の基本要素としての縦渦の生成維持に不可欠なストリーク構造の崩壊過程を 2 つの基礎

実験を通して紹介する。一つは，周期的な人工低速スト リークを用いたストリーク不安定の実験であり，これま でほとんど調べられていない分調波数モード （Subharmonic modes）に注目し，ストリーク不安定によ りジグザグ状に重なり合った縦渦が生成される段階から壁乱流の特性が現れるまでを追跡している。もら一つは，乱流境界層に壁面吸込みを適用して壁近傍ストリークを消失させ，そこに小網片を周期的に配列して人工低速ス トリークを導入し，その上を通過する強い乱流変動によ り引き起こされるストリークの崩壊を調べた実験である。

2．Subharmonic streak instabilityによる遷移本実験では，境界層平板に小さな網片を立て，その抵抗を利用して層流境界層中に人工的な低速ストリークが導入された。実験は，測定部断面 $400 \times 400 \mathrm{~mm}$ の低乱風洞で行なわれた。主流速度 $U_{\infty}=4 \mathrm{~m} / \mathrm{s}$ であり，主流乱れ は 0.1% 以下である。座標系は，前縁から流れ方向に x ，平板上面に垂直上向きにy，スパン方向に z（スパン中心を $z=0)$ をとる。周期低速ストリークを形成するために，境

図 1 網下流の平均速度場．$x-z$ 断面 $(y=3 \mathrm{~mm})$ ．等値線は 0.2 刻み。

図 2 スモークワイヤ法による可視化，スモーク ワイヤは $\left(x-x_{0}, y\right)=(160 \mathrm{~mm}, 3 \mathrm{~mm})$ に設置．

界層平板前縁から 500 mm 下流位置（ $x_{0}=500 \mathrm{~mm}$ ）に高さ 3 mm ，幅 6 mm の網片をスパン方向に 15 mm 間隔で 17 個設置してある．網片の開口比（Porosity）は 0.7 である。 $x_{0}=$ 500 mm 位置における境界層排除厚さは 2.5 mm ，排除厚さに基づくレイノルズ数は約 640 である。網の下流 $x-x_{0}=13.5 \mathrm{~mm}$ には，各網片の両端 z 位置に撹乱導入用の小孔（直径 2 mm ） が開けてある．それぞれの小孔は2つのスピーカに接続さ れており，単一周波数の正弦信号（2つのスピーカ入力信号の位相は 180° 異なる）で駆動することにより反対称モー ド（Sinuous モード）を励起することができる。
図 1 は，網片下流に実現される層流の周期低速ストリ ークを，$y=3 \mathrm{~mm}$ 高さでの $x-z$ 断面内の速度 U の等値線 で表している。この流れに人工撹乱を導入する。励起周波数は，線形安定性実験6，7）より最大増幅率を示す 60 Hz とし，擋乱振幅は $x-x_{0}=30 \mathrm{~mm}$ で 1% である。擋乱は，最初指数関数的な増幅を示し，$x-x_{0}=100 \mathrm{~mm}$ 付近で実効値は $u_{m}^{\prime} / U_{\infty}=10 \%$ を越え，さらに，$x-x_{0}=130 \mathrm{~mm}$ まで増幅を続け $u_{m} / U_{\infty}=20 \%$ 程度の非線形平衡振幅に達する。図2 は，スモークワイヤ法による可視化画像である，ストリ ーク不安定による煙の蛇行に加え，$x-x_{0}=150 \sim 200 \mathrm{~mm}$ 付近で隣同士の煙がつながりアーチ状の渦構造が形成され るように見える。図3は，そのような渦構造を同定する ために，$x-z$ 断面図およよび $y-z$ 断面の二次元PIV によっ て得られた位相平均速度場（周期サンプリングによるア ンサンブル平均）を基に速度の 3 成分の空間分布を作成 し，旋回渦の同定法8）として用いられている速度勾配テ

図3 二次元PIV画像から求めた渦構造．渦の同定は入2法による：下面の濃灰色は流れ方向速度の等値面 $(U+u) / U_{\infty}=0.5$ ．

図4 PIVによって得られた壁近傍（ $y=1 \mathrm{~mm}$ ） の瞬間流れ方向速度分布（ $x-z$ 断面）。

ンソルの対称成分 \boldsymbol{S} と反対称成分 $\boldsymbol{\Omega}$ を用いたテンソル $\boldsymbol{S}^{2}+\boldsymbol{\Omega}^{2}$ の第二固有値 $\boldsymbol{\lambda}_{2}$ が負（ $\lambda_{2}=-0.2$ ）となる領域を示 したものである。可視化から推測されたよらに，ストリ ーク不安定から生まれた縦渦が，隣りのストリークから生まれた縦渦と結合し，高速領域上方でアーチ状の渦を形成しているのがわかる。

上述のよらに，壁から離れた位置ではアーチ渦が形成 されるが，一方，壁近くではどのようなことが起きてい るかを観察する。図4は，PIVによって得られた $x-z$ 断面（ $y=1 \mathrm{~mm}$ ）における流れ方向速度の瞬間速度場である。初期に導入されたストリークの崩壊後新たに低速ストリ ークが発生し，しかもストリーク間隔は元の約半分の 7.5 mm 程度になっていることがわかる。この間隔は，乱流中で測定される，壁単位を基準とした $\lambda^{+}=100$ に相当 する値である。この段階では，平均速度分布にも対数則 が現れだす。なお，基本波数モードの発達による遷移は， Brandt \＆Henningson ${ }^{9}$ ）により DNS で追跡されている。

3．乱流変動の下での低速ストリークの崩壊
ストリーク不安定は，縦渦構造を生成する一つの重要 な機構として注目されるが，しかしながら，発達した乱流場のように，乱れが強く，かつ様々なスケールの変動成分を含んでいる場合，変動の過渡増幅（Transient Growth）がストリークの崩壊に導く可能性が指摘されて いる 10 。実際，壁乱流においてもストリーク不安定が起 きているのか，或いは一気に過渡増幅によるストリーク の崩壊に至るのか，これまでのところ明らかにされてい ない。そこで，強い乱流変動に対して低速ストリークが如何に応答するかを次のよらな実験を通して調べた。
まず，乱流境界層に局所的に壁面吸込みを行って壁近 くのストリークを一旦消滅させ，そこに小さな網片をス パン方向に周期的に並べて人工的に低速ストリークを導入する。一方，壁から離れると乱流境界層中の強い変動 がまだ存在し，人エストリークの崩壊に導く撹乱として作用する。

実験は， $200 \mathrm{~mm} \times 300 \mathrm{~mm}$ の矩形断面をもつ小型吹出 し式風洞測定部下壁の境界層を利用して行なわれた。図 5 に，実験装置の概略を示す。測定部最上流には円柱群 （直径 3 mm ，高さ 5 mm ）を壁に立て強制的に乱流に遷移 させている。実験は，すべて主流（一様流）速度 $U_{\infty}=4 \mathrm{~m} /$ s で行なわれた。境界層は，吸込み領域に達するまでに対数速度分布をもつ乱流境界層に発達しており，吸込みを行なわない場合，運動量厚さ θ に基づくレイノルズ数 R_{θ} は，吸込み領域の上流端（ $x=0$ ）で約 700 である。以下 の実験では，吸込み速度 V_{s} を主流速度 U_{∞} の 10% とした。 ただし，V_{s} は吸込み総流量 Q_{s} を吸込み領域面積 A （ $100 \mathrm{~mm} \times 160 \mathrm{~mm}$ ）で割った平均速度（ $=Q_{s} / A$ ）である。吸込み領域直後の運動量厚さに基づくレイノルズ数は約 300，u 変動の実効値 u / U_{∞} は 6% 程度である。流れの詳細については文献 ${ }^{11)}$ を参照。

吸込み領域のすぐ下流の $x=35 \mathrm{~mm}$ 位置に，前節の実験 のよらに，網片を周期的に並べ人工的に周期低速ストリ ークを導入する。網片のスパン間隔は 7.6 mm （壁単位で 100），高さと幅はそれぞれ 1.9 mm と 2.5 mm である。図 6 は，導入された人工低速ストリークの $y=1 \mathrm{~mm}$ における瞬間速度場（PIV で測定）である。 $z=-20 \sim 20 \mathrm{~mm}$ の範囲 に見られるストリーク構造が網片により導入された周期低速ストリークである。周期的な低速ストリーク構造を維持するのはせいぜい $x=60 \mathrm{~mm}$ 付近までであり，導入 されたストリークは強い残留乱流変動によりすぐに崩壊 するのがわかる。

図7（a）は，網の下流に発達する周期ストリークを $x=45 \mathrm{~mm}$ における平均速度 U の等値線で示している。各網後方に発達する低速ストリークの周期性がよくわかる。図7（b）は，同位置での u 変動の実効値 u^{\prime} の $y-z$ 断面分布 である。速度の等値線との対応を見ると，u^{\prime} は，各低速

図 5 実験装置の概略．

図 6 網の下流に発達する人工低速スト リーク．$y=1 \mathrm{~mm}$ 位置の瞬間速度場。

図7 平均速度と実効値の $y z$ 断面内分布 $(x=$ 45 mm 位置）。（a）平均速度 U / U（等値線は $0.1 \sim 0.9$ ）。（b）実効値 u^{\prime} / U（等値線は $0.015 \sim 0.135$ ）．

ストリークの左右の垂直せん断層上に 2 つのピークを持 った分布を示し，低速ストリークのスパン中心や水平剪断層上では変動は非常に弱い。これは，ストリークの蛇行に導くSinuous モードの u 変動分布の特徴 6,7$)$ である。

図 $8 u$ 変動の各周波数成分の実効値分布 $(x=$ 45 mm 断面）．（a）$u_{0-20, \mathrm{~m}}^{\prime}$ ，（b）$u_{20-40, \mathrm{~m}}^{\prime}$ ，（c）$u_{40-60, \mathrm{~m}}^{\prime}$ ， （d）$u_{60-80, \mathrm{~m}}^{\prime}$ ，（e）$u_{80-100, \mathrm{~m}}^{\prime}$ ，（f）$u_{100-120, \mathrm{~m}}^{\prime}$ ．等値線は 0．006～0．054．

図 8 は，$x=45 \mathrm{~mm}$ において，u 変動の各周波数成分の $y-z$ 断面の実効値分布を表している，例えば， 20 Hz 以下 の変動成分の実効値 $0.20 u^{\prime}$ は，パワースペクトル密度 $P(f)$ 加ら次式のよらに求められた。

$$
u_{0-20}^{\prime}=\left(\int_{0.5}^{20} P(f) d f\right)^{1 / 2}
$$

図のように，各周波数成分ともSinuous モードであり， 20 $\sim 40 \mathrm{~Hz}$ と $40 \sim 60 \mathrm{~Hz}$ 成分が垂直剪断層上で特に大きな実効値を示す。図 9 は，各周波数成分の擋乱増幅を比較 している。図（a）は実効値を，図（b）は実効値の自乗（す なわちエネルギ）の x 方向変化を示している。 100 Hz 以下の周波数成分のいずれも増幅率はそれほど違いがなく，網の x 位置からわずか 15 mm 下流の $x=50 \mathrm{~mm}$ 付近で増幅 がとまる，ストリーク間隔が 7.6 mm （壁単位で 100）で あることから，ストリーク間隔の 2 倍（壁単位で200）し か増幅域が無い。その段階で実効値 u^{\prime} / U_{∞} はすでに 14% に達している，また，図（b）からわかるように，最大振幅 に達するまでのエネルギ増幅は x に比例した代数的増幅 であり，いわゆる過度増幅過程の特徴を表している。

このように，ストリークの崩壊に導く変動の増幅は線形ストリーク不安定による指数関数増幅ではなく代数的増幅であり，ストリーク間隔の 2 倍程度の距離で最大増幅を示したのち減衰過程に入る。また，増幅率の周波数依存性も顕著でない。従って，壁乱流中のストリークの崩壊においては，線形不安定性よりも過渡増幅機構が重要であり，擋乱として作用する乱流変動の強さや特徴が ストリークの崩壊を強く支配することが示唆された。

図 9 低速ストリーク上の u 変動の発達．

$$
\begin{aligned}
& \circ u_{0-20, \mathrm{~m}}^{\prime}, \quad \bullet u_{20-40, \mathrm{~m}}^{\prime}, \quad \Delta u_{40-60, \mathrm{~m}}^{\prime}, \quad \nabla u_{60-80, \mathrm{~m}}^{\prime}, \\
& \square u_{80-100, \mathrm{~m}}^{\prime}, \quad \square u_{100-120, \mathrm{~m}}^{\prime}, \Delta u_{m} .
\end{aligned}
$$

引用文献

1）Jeong，J．，Hussain，F．，Schoppa，W．and Kim，J．Fluid Mech． 332 （1997）185－214．
2）Hamilton，J．M．，Kim，J．and Waleffe，F．J．Fluid Mech． 287 （1995）317－348．
3）Itano，T．and Toh，S．J．Phys．Soc．Japan 70，（2001）703－ 716.

4）Kawahara，G．and Kida，S．J．Fluid Mech． 449 （2001） 291－300．

5）Jimenez，J．and Pinelli，A．J．Fluid Mech． 389 （1999）335－ 359.

6）Asai，M．，Minagawa，M．and Nishioka，M．J．Fluid Mech． 455 （2002）289－314．
7）Konishi Y．and Asai M．Fluid Fyn．Res． 34 （2004）299－ 315.

8）Jeong，J．and Hussain，F．J．Fluid Mech． 285 （1995）69－ 94.

9）Brandt，L．and Henningson，D．S．J．Fluid Mech． 472 （2002）239－261．
10）Schoppa，W．and Hussain，F．J．Fluid Mech． 453 （2002） 57－108．
11）小西，浅井，大泉 日本機械学会論文集B 70－690（2004） 319－324．

益田重明（慶大理工），有薗智之（慶大院）

Vertical movement of vortex ring with smaller density than ambient

S．Masuda and T．Arizono
Dept．of Mech．Eng．，Keio University，

Abstract

The purpose of the present investigation is to reveal the effect of buoyancy on vertical movement of a laminar vortex ring whose density is smaller than ambient．Its downward motion may be obstructed by buoyancy and travel distance may be reduced．The numerical simulation based on the finite volume method is performed assuming axisymmetry and incompressibility．Vertical movement is significantly obstructed by small density difference even below 0.1% ．The ring is decelerated，its diameter is re－ duced and the circulation decreases with higher rate than uniform density．Due to the baroclinic gen－ eration of negative vorticity，the outer part of a ring is gradually peeled away and finally stops to de－ scend．The buoyancy effect decreases relatively with increasing initial circulation．

Keywords ：Vortex ring，density difference，numerical simulation

1．序論

渦輪の自己推進機能を攪拌に利用する試みがある。そ の際に問題となるのは渦輪の到達距離で，特に周囲流体 との間に密度差がある場合の挙動を知る必要がある。

そこで本研究では，周囲流体より密度が低い層流渦輪 が鉛直下方に進行する時に，浮力の影響により渦輪の進行速度や到達距離などが変化する現象について，数値解析を用いで調心゙た。

2．数值解析

図1に計算領域を示す。十分大きな円筒容器内で静止し ている密度 ρ_{2} の高密度流体の上部に，密度 ρ_{1} の低密度流体が入ったシリンダー（内径 D）が設置されていて， $0 \leq$ $t \leq t_{\text {off }}$ の期間にのみステップ状に一様速度 $U_{i n}$ を与えた。

非圧縮，物性値一定と仮定した無次元化された連続の式，運動方程式括よび物質輸送方程式は。

$$
\begin{align*}
& \nabla^{*} \mathbf{U}^{*}=0 \tag{1}\\
& \frac{d \mathbf{U}^{*}}{d t^{*}}=-\nabla^{*} P^{*}-2 \frac{A}{F r} \rho^{*} \mathbf{j}+\frac{1}{\operatorname{Re}} \nabla^{* 2} \mathbf{U}^{*} \tag{2}\\
& \frac{d X}{d t^{*}}=\frac{1}{S c \operatorname{Re}} \nabla^{* 2} X \tag{3}
\end{align*}
$$

$P^{*}=2\left(P-P_{0}\right) /\left(\rho_{1}+\rho_{2}\right) U_{i n}^{2}, \quad \rho^{*}=\left(\rho_{2}-\rho\right) /\left(\rho_{2}-\rho_{1}\right) \operatorname{Re} \equiv$ $U_{i n} D / v$（レイノルズ数），$A \equiv\left(\rho_{2}-\rho_{1}\right) /\left(\rho_{2}+\rho_{1}\right)$（アット ウッド数），$F r \equiv U_{i n}{ }^{2} / D g$（フルード数），$S c \equiv v / D_{12}$ （シュミット数）である。 $X=C_{1} /\left(C_{1}+C_{2}\right)\left(C_{1}, C_{2}\right.$ ：高•低密度流体のモル濃度）は低密度流体のモル分率，$\rho=$ $C_{1} M_{1}$（ M_{1} は分子量）である。また，動粘性係数は $v \equiv$ μ / ρ_{2} ，供試流体は水—食塩水とし $\mu=1.002 m P a \cdot s, D_{12}$ $=1.5 \times 10^{-5} \mathrm{~m}^{2} / \mathrm{s}, ~ S c=4.9 \times 10^{-3}$ で一定とし，ReとAを変化させた。

境界条件は，シリンダ内壁と円筒容器の上面 BCでは すべり無し，流出部（CDとDE）では対流境界条件を用 いた。モル濃度に関しては，OA とABでは $X=1$ ，CD と DE では $X=0$ とした。空間に関しては 1 次風上差分，時間陰解法を用い，圧力はsimple 法により求めた。 X は 1 次風上差分により離散化した。格子数は格子依存性を確認した上で 150×225 を用いることにした。

図1 流れ場の概要と計算領域

3．結果および考察

3－1 密度差による渦輪の変化

図 2 に P I Vによって測定された流速ベクトル図と数値解析の結果の一例を示す。等密度の場合と比較すると，実験，数値解析共，密度差の増加と共に渦輪の下降は妨 げられ，渦輪の直径もわずかながら減少していることが示されている。数値解析による渦輪の下降速度が実験よ り全体的に小さいのは，前者では一様な流入速度を与え

図2 流速ベクトルの例（ $t^{*}=9$ ， $\mathrm{Re}=630, \mathrm{Fr}=0.01$ ，上：P I V，下：数値解析）

ているのに対し，実験ではピストン運動により渦上： $\mathrm{A}=0$ ，下 $\mathrm{A}=0.0012$ ，Re－630 輪を発生させているという相違によるものと考えられる。

図3に渦度等値線図とモル濃度分布の一例を示す。等密度（ $A=0$ ，上段）の場合の渦度に着目すると，$t^{*}=$ 3 で既に渦輪が形成され，$t^{*}=4$ で流出が止まった後は渦輪がシリンダ開口部を離れて下降しており，渦度等値線 の輪郭はモル濃度のそれとほぼ一致している。これと密度差がある場合を比べてみると， z 方向の進行が妨げら れ，渦度のピーク値が減少し，渦度の分布域も縮小して いる。特に渦輪の外側に負の渦度が生成されていること が注目される。

3－2 渦度に対する浮力の影響

密度差のある渦輪の鉛直挙動をさらに検討するために渦度方程式，
$\frac{d \omega^{*}}{d t^{*}}=\left(\omega^{*} \cdot \nabla^{*}\right) \mathbf{U}^{*}+\left[2 A \frac{\nabla^{*} \rho^{*}}{\rho^{*}} \times \frac{d \mathbf{U}^{*}}{d t^{*}}-2 \frac{A}{F r} \frac{\nabla^{*} \rho^{*}}{\rho^{*}} \times \mathbf{j}\right]+\frac{1}{\operatorname{Re}} \nabla^{* 2} \omega^{*}$
の浮力項（［］内）について吟味した。図4はその等値線 で，渦輪の前方から外側にかけて負の渦度生成が確認で き，その絶対値は密度差が大きい方が大きい。負の生 •成により，渦輪は外側から渦度が減少している。

図3 渦度（左3列）とモル濃度（右）上： $\mathrm{A}=0$ ，下 $\mathrm{A}=0.0012, ~ \mathrm{Re}-630$

図4渦度方程式の浮力項の分布 （ $t^{*}=9$ ，左 ： $\mathrm{A}=0.0006$ ，右 ： $\mathrm{A}=0.0012$ ）

4．結論

1） 0.3% 程度の密度差でも渦輪の進行に強い障害とな る。
2）密度差が大きいほど渦度や循環の時間減少率が速ま
り，最終的には自己誘導機能は消滅し渦輪は停止する。
3 ）原因は渦輪外周部に発生する，浮力に基づく負の渦度生成にある。

坂上昇史，西岡通男（阪府大工）

On the supersonic boundary layer transition

S．Sakaue，M．Nishioka
Osaka Prefecture University

Abstract

To obtain a better understanding of the mechanism for supersonic boundary layer transition， experiments are made at Mach number 2.0 by using a small supersonic wind－tunnel，with focusing efforts on finding non－linear disturbances governing the transition．We examine a boundary layer along the nozzle wall and its transition process by means of quantitative schlieren optical system．It is found that vortical structures our schlieren system visualizes are mostly similar to each other in shape，being stick－like and inclined at about 30 to 70 degrees to the wall，and start to grow often forming a group at streamwise stations where the momentum thickness Reynolds number is around 580 and the transi－ tion proceeds as they increase in number to cover the whole boundary layer．We examine the statisti－ cal feature of such oblique vortical structures using 1800 samples and show that these structures are important non－linear disturbances as the mechanism of supersonic boundary layer transition．

Keywords ：supersonic boundary layer，transition，non－linear disturbance，oblique vortical structure

1．はじめに

境界層の遷移機構に関する知識は，遷移予測法の確立 や層流•乱流制御技術の開発において不可欠である。し かっし，超音速流の場合には僄移に導く擋乱を実験的に把握することが困難であること加ら，ほとんど解明が進ん でいない1，そこで，筆者らは超音速境界層の乱流遷移機構を実験的に明らかにすることを目指し研究を行ってい る。これまでに，小型超音速風洞ノズル壁境界層の乱流嬡移過程をシュリーレン法で定量計測し，アンサンブル平均画像の輝度分布から得られる平均密度勾配場によっ て層流•遷移•乱流状態を判別できることを示した2），本論文では，平均分布を層流から乱流へ変える働きを持ち鼡移を支配する非線形擋乱を抽出することを狙っておこ なった風洞実験について述べる。

2．実験装置と方法

実験には，吸い达み式小型超音速風洞を用い，風洞ノ ズル壁に沿ら境界層の乱流僄移をシュリーレン法で観察 した。座標系はスロート部ノズル下壁スパン中心㶤原点 をとり，流れ方向を x ，鉛直上向きを y ，スパン方向を z とする。風洞断面はスロート上流 $x=-80 \mathrm{~mm}$ の空気取入口の下流端から幅 30 mm で一定であり，高さはスロート で 10.7 mm ，測定部で 18 mm ，下壁はスロートから水平 で，ノズル側壁は可視化のためほぼ全域がラス壁である。
シュリーレン法の光源には，発光時間約 180 nsec のフ

ラッシュランプを用いた．主流速度で移動する流体粒子 がこの間に移動する距離は約 0.1 mm であり，瞬間像に近 い写真が得られる。シュリーレン画像はデジタルビデオ カメラを用いて撮影し，その輝度分布を 256 階調のBMP画像としてPCに収録する，得られた画像の空間分解能 は1画素あたり $0.088 \mathrm{~mm} \times 0.088 \mathrm{~mm}$ である。

3．実験結果と考察

図1はナイフエッジを水平に設定して得た層流加ら乱流への遷移領域における瞬間画像である。境界層内の様子を観察するため高さ方向（ y 方向）に 4 倍に拡大してい る。壁から少し離れたところに見られる輝線（1）は境界層 が層流状態にあることを示している。 $130 \mathrm{~mm} \leq x$ におい てこの輝線は見えなくなり壁から立ち上がる流れ方向に斜めに傾いた棒状の構造（3）が現れている。この構造はそ の輝度分布から密度勾配 $\partial \rho / \partial y$ の変動成分を有すること を示している。境界層内で圧力勾配零（ $\partial \rho / \partial y=0$ ）お よび断熱•総温度一定の仮定が成り立つ場合には密度 ρ と流れ方向速度 u は一対一に対応付けられる。

$$
\begin{align*}
& \hat{u}^{2}=\frac{m+1}{m}-\frac{1}{m} \cdot \frac{1}{\hat{\rho}} \tag{1}\\
& \hat{u}^{2}=\frac{u}{U_{\infty}}, \quad \hat{\rho}=\frac{\rho}{\rho_{\infty}}, \quad m=\frac{\gamma-1}{2} M_{\infty}^{2} \\
& \frac{\partial \hat{\rho}}{\partial y}=2 m \hat{\rho}^{2} \hat{u} \cdot \frac{\partial \hat{u}}{\partial y} \tag{2}
\end{align*}
$$

80100120 （unit：mm） 140
Fig． 1 Instantaneous schlieren photograph of boundary layer transition region expanded vertically by 4 times：knife edge；\odot ．

Fig． 2 Streamwise distribution of the probability for the boundary layer to be turbulent（intermittency factor）．

すなわち，この斜め構造は渦度（速度勾配 $\partial u / \partial y$ ）を有すると判断される（斜め渦構造または単に渦構造と呼 ぶ）。アンサンブル平均の密度勾配場から $130 \mathrm{~mm} \leq x$ で は乱流状態にあると判断されることから，輝線が見えな くなる領域は乱流状態にあると推測される。
図 2 は瞬間画像 400 枚から調べた輝線が見えなくなる （境界層が乱流状態になる）確率（間欠係数）を示す。 $x \leq$ 80 mm では輝線は消えておらず境界層は層流である。一方， $130 \mathrm{~mm} \leq x$ では輝線は全く見られず乱流境界層とな っている．この確率が 0 から 1 の値をとる領域（ 80 mm $\leq x \leq 130 \mathrm{~mm}$ ）が遷移領域であると判断でき，平均密度勾配分布の特徴から判断した結果とほぼ一致する2）。

図 1 の遷移領域では層流境界層の輝線に重なった構造 （2）が確認できる。この構造は乱流境界層中で観察される構造（3）と同様，壁から立ち上がり流れ方向に斜めに傾い ており渦度撹乱であると判断される。また，境界層が層流から乱流へ変化する領域で観察されることから，境界層の平均分布を乱流境界層分布に変える働きを持つ非線形撹乱であると推測される。

この渦度撹乱について詳しく調心゙るため，ナイフエッ ジを垂直にして得た瞬間シュリーレン写真から変動成分 を抽出した画像を図 3 に示す。図 1 と同様，壁から立ち上がり流れ方向に傾いた棒状の構造が確認できる。この画像の明暗は流れ方向の密度勾配 $\partial \rho / \partial x$ の変動を表す が，構造が斜めに傾いていることから $\partial \rho / \partial y$ 成分を有 し，前述の渦構造であると判断できる。このような渦構造に注目し， 100 枚の瞬間画像から約 1800 個の構造を抽出し，その個数 N ，存在する x 位置，高さ h ，傾き θ ，間隔 Δx を統計的に調べた。

Fig． 3 （a）Instantaneous schlieren photograph of boundary layer transition region，（b）magnified view of（a）：knife edge； \mathbf{D} ．

Fig． 4 Probability density distribution of the inclination of oblique vortical structures：solid line indicates log－normal probability density function with same mean and variance．

Fig． 5 Streamwise variation of the number of observed vortical structures．

まず，すべての渦構造について，その傾き θ の確率密度分布（相対度数分布）を図 4 に示す。実線は計測値と同じ平均と分散をもつ対数正規分布を表す。この渦構造 は流れ方向に $30^{\circ} \sim 70^{\circ}$ ，平均 45° 傾いており，発達し た乱流境界層中で観察される組織構造の結果とほぼ一致 する 3,4 。

次に，流れ場を 10 mm 間隔に分割し，各区間に存在す る渦構造について調べた。図5は各区間に存在する渦構造の個数 N を示す。 $x=80 \mathrm{~mm}$ 付近まで渦構造は増加し， その後ほぼ一定値となる，スパン方向渦構造の個数がほ ぼ一定値となる x 位置は遷移開始位置 $(x=80 \mathrm{~mm})$ に一致する。 $120 \mathrm{~mm} \leq x$ で渦構造の個数は減少しているよ らにみえるが，これは，渦構造のスケールが大きくなり （図6参照），また，流れ方向・スパン方向に境界層を埋

Fig． 6 Probability density distributions of the height of the oblique vortical structures：solid lines indicate log－normal probability density functions with same means and variances．

Fig． 7 Comparison between the probability distributions of height of the vortical structures（ 0 ， 0 ）and the normal－to－wall distributions of averaged density gradients（solid lines）at the final stage of the transition． Open symbols（ O ）represent the probability distributions expanded vertically by 1.4 times．

め尽くして，個々の渦構造を識別することが困難になっ ているためであり，渦構造の個数はむしろ増加している と考えられる。
図6は各区間に存在する渦構造の高さ h の確率密度分布を示す。実線は計測値と同じ平均と分散をもつ対数正規分布である。各区間における度数分布の形は相似で，下流に向かって高さを増していくことが確認できる。
図7は遷移後期段階における渦構造の高さh の確率分布を示す。実線は $y=1 \mathrm{~mm}$ の値で正規化した平均密度勾配 $\partial \rho / \partial y$ の y 分布を表し，中空の丸は確率分布（ $\boldsymbol{(})$ を境界層厚さに一致するよら y 方向に約 1.4 倍したもので あるが，両者はほぼ一致している。このことは，これら渦構造によって乱流境界層の平均密度場が定まることを示唆しており，本研究で注目した渦構造が超音速境界層遷移を支配する非線形撹乱であると判断される。この渦構造は，図1において輝線が見えなくなる（境界層が乱流になる）領域で観察される構造に対応し，また，乱流境界層中で観察される組織構造3，4）と同質のものである。 すなわち，この渦構造が存在する領域は局所的に乱流状態であると考えられる。したがって，渦構造が境界層を埋め尽くし，発達した乱流境界層の状態が生まれる遷移

最終段階では，図7の確率分布は間欠係数（主流流体が大規模渦構造に挟まれた谷に取り込まれることによる間欠性）のy分布に対応し，それが平均密度勾配分布とほ ぼ相似であるといら興昧深い結果が得られている。一方， より上流の遷移初期段階においては，乱流状態と渦構造 を伴わない層流状態が間欠的に現れ，このことは渦構造 に着目する確率分布には反映されないため，当然，確率分布と平均密度勾配分布には相似性は見られない。

図3の瞬間画像を詳しく調べると，$x=70 \mathrm{~mm}$ 付近（ Re_{θ} $=580$ に相当）から渦構造が集団を構成しているよらに見 える。ここで集団とは，図3（b）に示すほぼ同じ高さ，間隔で並ぶ渦構造の集まりである。100枚の瞬間画像を調 べたところ，遷移後期段階では判別しにくいが，遷移初期段階（ $60 \mathrm{~mm} \leq x \leq 100 \mathrm{~mm}$ ）において約 100 個の集団 を確認し，集団を構成する渦構造（計約 470 個）につい て統計的に調べた。

図8は集団を構成する渦構造の間隔 Δx の確率密度分布 で，実線は計測値と同じ平均と分散をもつ対数正規分布 を表す。渦構造の間隔 Δx の平均値は 1.5 mm ，境界層厚さ $\delta は x=60 \mathrm{~mm}$ で約 $0.6 \mathrm{~mm}, x=100 \mathrm{~mm}$ で約 2 mm であり，渦構造の平均間隔は境界層厚さにほぼ等しい。

Fig． 8 Probability density distribution of the interval of oblique vortical structures：solid line indicates log－normal probability density function with same mean and variance．

図9は集団を構成する渦構造の高さhの成長率加ら見積もった境界層内の垂直方向速度変動 V / U_{∞} の確率密度分布で，実線は計測値と同じ平均と分散をもつ対数正規分布である，集団の全体パターンはその集団を構成する各渦構造が流れ方向に主流速度 U_{∞} ，垂直方向に速度 v で移流する渦度撹乱の発達過程を示すと仮定し，v変動の大 きさを，

$$
\begin{equation*}
\frac{\Delta h}{X}=\frac{v \cdot t}{U_{\infty} \cdot t}=\frac{v}{U_{\infty}} \tag{3}
\end{equation*}
$$

により評価した。ここで，X は集団の流れ方向長さ，Δh は集団を構成する渦構造の高さの変化，t は例えば集団の最上流にある渦構造が最下流の位置まで移流する時間で ある．v 変動の平均値は $0.062 U_{\infty}$ であり，亜音速平板境界層遷移5）で観察される v 変動の大きさ（主流速度の約 5% ）にほぼ等しい。

以上の結果は，本研究で注目した渦構造が境界層厚さ と主流速度をスケールとする現象であることを示してい る。確かに，斜め渦構造にともなら変動の周波数は，そ の移流速度が主流速度に，平均渦間隔が境界層厚さに等 しいので U_{∞} / δ で与充られる。主流速度の約 5% といら強 い v 変動は，亜音速平板境界層遷移 5 で観察されている よらに，壁近傍の剪断層が粘性で散逸する前に境界層外縁まで浮上できることを意味する。その結果，速度分布 に変曲点が生じて非粘性の不安定機構による強い撹乱が生まれ，大きな運動量を有する主流を境界層内に取り込 み境界層厚さが増すと考えられる。すなわち，観察され たこの渦構造が超音速境界層遷移を支配する非線形撹乱 であると判断される。

4．まとめ

本研究では，超音速境界層の乱流遷移機構を明らかに することを目指し，遷移を支配する非線形撹乱を抽出す ることを狙って風洞実験を行った。主流マッハ数2の超

Fig． 9 Probability density distribution of normal－to－wall velocity in the boundary layer，that is estimated by using the data for growth rates of the height of vortical structures：solid line indicates log－normal probability density function with same mean and variance．

音速風洞ノズル壁境界層の乱流䢬移過程の密度勾配場を シュリーレン法で画像計測し，発達した乱流境界層中で観察される組織構造3，4）と同様の渦構造が $R e_{\theta}=580$ 付近 から集団で現れ始め，それが境界層を埋め尽くすと乱流境界層となることがわかった。この渦構造を瞬間画像 100 枚から約 1800 個抽出し統計的に調べ，この渦構造が境界層厚さと主流速度をスケールとする現象であること を示した。また，重要な結果として，遷移後期段階にお いて渦構造の高さhの確率分布は平均密度勾配分布とほ ぼ相似であることを示した。このことは，シュリーレン法で捉えられたこれらの渦構造によって境界層の平均密度場が定まることを示唆しておら，この研究で注目した渦構造が超音速境界層遷移を支配する非線形擋乱である と判断される。なむ，この渦構造は発達した乱流境界層中の組織構造として従来から注目されていた ${ }^{3,4)}$ が，遷移過程において捉えて統計を調べたのは本研究が初めてで ある。

本研究は部分的に文部科学省科学研究費補助金（No． 14750722，No．12125203）の援助を受けた。

参考文献

1）E．Rechotko，AIAA paper 94－0001（1994）．
2）坂上，西岡，中村，宮地，日本流体力学会誌「ながれ」， 23 別冊，（2004）146－147．
3）E．F．Spina，A．J．Smits，J．Fluid Mech．，182，（1987）86－ 109.

4）M．W．Smith，A．J．Simts，Experiments in Fluids，18， （1995）288－302．
5）M．Asai，M．Nishioka，J．Fluid Mech．，297，（1995） 101 － 122.

相関に基づく遷移モデルの検討

○三坂孝志, 大林茂 (東北大流体研)

Investigation of local correlation based transition model

Takashi Misaka，Sigeru Obayashi
Institute of Fluid Science，Tohoku University

Abstract

In this paper，the $\gamma-\operatorname{Re}_{\theta}$ transition model proposed by Menter et al．is investigated．Correlations not described in the original paper are reproduced based on other literature and validated by several test cases：T3A－$(T u=1 \%)$ ，T3A (3%) ，T3B（ 6% ）for ．atplate boundary layers with bypass transition，and Schubauer\＆Klebanof (0.2%) for ．atplate boundary layer with natural transition．T3LC test case is used for separated ．ow transition which is important for RANS simulation applied to separated ．ow prob－ lems．Transition position on ．atplate for each free－stream turbulent intensity has good agreement with experiment，although transition lengths estimated for low free－stream turbulent intensity are too short． For T3LC test case，the length of laminar separation bubble is correctly predicted by using the present transition model．

1．緒言

層流境界層から乱流境界層への遷移位置の予測は，壁面せん断応力や熱伝達が注目される空力デバイスにおい て重要である。また，境界層遷移は流れのはく離にも大 きな影響を与える。航空機等の実機レイノルズ数におい ては境界層遷移が物体前縁で起こり，数値流体力学 （CFD）によって流れを解析する場合には全面乱流として扱ってよい場合が多い。しかしながら，最大レイノルズ数に制限のある風洞実験の結果とCFD 結果との詳細な比較を行ら場合やレイノルズ数が 10 ののオーダーとなるガス タービン翼列周りの流れを扱ら場合にはCFDにおいても境界層遷移を考慮する必要がある。境界層遷移の予測法 としては e^{N} 法がよく知られている！。また，タービンブ レードのように主流乱れ度の大きな流れでは実験で求め られた相関によって遷移位置を予測する方法が用いられ ている ${ }^{2}$ 。最近では境界層遷移に関してモデルを特別なモ デルを使わずにLES，DNSによって境界層遷移も含めた流れの検討がなされている3，これらの境界層遷移予測法 は翼単体やタービンブレードのように比較的単純な形状 には用いられているが，現状では航空機全機形状や各種流体機械のような一般形状に対しては適用が困難である と考えられる。

Menter らは一般形状への適用を容易にした $\gamma-\operatorname{Re}_{\theta} \theta$ 遷移 モデルを提案した ${ }^{2}$ ．このモデルでは相関に基づいて遷移位置を予測するが，その判定に境界層内の渦度レイノル ズ数の最大値と遷移運動量厚さレイノルズ数の関係を利用している。これにより物体回りで境界層の運動量厚さ を陽に計算する必要が無くなり，非構造格子を用いる Navier－Stokes コードにも導入しやすいことから，航空機全機形状に対する境界層遷移を考慮した流れの計算法と して注目されている。しかしながら，オリジナルの論文 ではモデルを構成するのに必要な式が完全に公表されて おらず，現時点ではMenterらと全く同じモデルを再現す ることはできない。ただし，Menter らの論文にもあるよ らに，これらの式は遷移相関に関する過去の論文や数値計算による較正で決定することができる。

本研究では最終的に $\gamma-\operatorname{Re}_{\theta}$ 遷移モデルを航空機全機形状に対する遷移予測のために用いることを目的としてい る．そのための初期的な検討として，本報では検証問題

を解くことによって $\gamma-\operatorname{Re}_{\theta}$ 遷移モデルに用いる相関の決定を行った結果を報告する。検証問題としては平板境界層における自然遷移およびバイパス遷移と前縁に丸みを持つ平板におけるはく離流遷移の計算を行った。一般に全面乱流を仮定したRANS 計算では，はく離流れを正し く捕らえるのが困難である。このような問題に対して， RANS 計算でも境界層遷移を考慮することによってはく離流れ解析の可能性が期待される。現状ではLES，DNS によって航空機全機形状を解析するのは困難であること から，このようなアプローチも有効であると考えられる。本報ではモデルの検証のために 2 次元計算のみを行った が，ここで開発されたコードはそのまま 3 次元形状へ適用可能である。

2．数値計算法

2.1 流れの数值計算手法

流体の数値解析には非構造格子3次元有限体積法コー ドである Tohoku University Aerodynamic Simulation code（TAS code）${ }^{5-7 を}$ を用いた。TAS code ではNavier－ Stokes 方程式をセル節点有限体積法により離散化し，数値流束フラックスは HLLEW 近似リーマン解法8によっ て求めている。また，基礎変数の線形再構築により空間 2 次精度化している。時間積分にはLU－SGS 法を用いて いる9．境界層を精度良く解像するために物体表面には層状の格子を形成している。乱流モデルにはSST $k-\omega$ モ デルを用いた。
今回計算を行った検証問題はいずれも $M=0.01 \sim 0.1$ の低速流れであるので，圧縮性ソルバーをそのまま用い ると流れ場が収束しないといった問題が生じる場合があ る．この点を解消するために本研究では音速の代わりに流れの速さと同程度の参照速度を用いることにより収束性を向上させる前処理法を適用した。これにより低速，低Re流れにおいても正しい流れ場が得られるよらになる と共に，数値流束フラックスの計算に用いられている上流型の差分による運動量方程式への過剩な数值粘性の付与を抑制することができる 10 。この前処理法の性質によ り圧縮性ソルバーの適用範囲内の速度の流れを解く場合 にも，失速などの逆流および低速領域を含む流れを解く

場合に，より確かな解を得ることが可能となることが期待される。前処理法の定式化はWeiss らの方法に従い ${ }^{11}$ ， LU－SGS に組み込んだもの 12 を用いた。疑似音速として用いる参照速度は，Weiss らの式の代わりに以下の式を採用した ${ }^{13}$ 。

$$
\begin{equation*}
U_{\text {ref }}=\min \left(c, \max \left(|u|, K u_{\infty}\right)\right) . \tag{1}
\end{equation*}
$$

ここで c は音速，u_{∞} は一様流速度，そして，K は定数 で $K=0.5$ とした。参照速度の最小値を音速の 10^{-5} 倍程度とするWeiss の式に比べて，$K u_{\infty}$ とすることでよどみ点における計算の安定性が向上する。

$2.2 \gamma \cdot \operatorname{Re} \theta$ 遷移モデル

本研究では境界層遷移位置の予測に Menter らによっ て提案された $\gamma-\operatorname{Re} \theta$ 遷移モデルを用いる ${ }^{4}$ 。このモデル はブラジウス境界層における遷移運動量厚さレイノルズ数と渦度レイノルズ数の最大値に，

$$
\begin{equation*}
\operatorname{Re}_{v}(x, \tilde{y})_{\text {max }} \sim 2.193 \operatorname{Re}_{\theta}(x) . \tag{2}
\end{equation*}
$$

といら関係が近似的に成り立つことを用いている。流れ場全体に局所的な速度場から相関を用いて $\widetilde{\mathrm{R}}_{\theta_{t}}$ のマップ を作り，局所的な流体変数から求めた $\operatorname{Re}_{v}=\left(y^{2} \Omega\right) / v$ と相関から求めた $\widetilde{R}_{\theta_{i}}$ を比較し，遷移の判定を行っている．
このために $\gamma-\operatorname{Re} \theta$ 遷移モデルでは乱流変数の輸送方程式 に加えて，間欠度 γ および遷移運動量厚さレイノルズ数 $\mathrm{Re}_{\theta_{t}}$ の輸送方程式が解かれる。
$\frac{\partial(\rho \gamma)}{\partial t}+\frac{\partial\left(\rho U_{j} \gamma\right)}{\partial x_{j}}=P_{\gamma_{1}}-E_{\gamma 1}+P_{\gamma 2}-E_{\gamma_{2}}+\frac{\partial}{\partial x_{j}}\left[\left(\mu+\frac{\mu_{t}}{\sigma_{\gamma}}\right) \frac{\partial \gamma}{\partial x_{j}}\right]$,
$\frac{\partial\left(\rho \tilde{\mathrm{Re}} \mathrm{e}_{\theta_{I}}\right)}{\partial t}+\frac{\partial\left(\rho U_{j} \tilde{\mathrm{R}} \mathrm{e}_{\theta_{i}}\right)}{\partial x_{j}}=P_{\theta_{t}}+\frac{\partial}{\partial x_{j}}\left[\sigma_{\theta_{t}}\left(\mu+\mu_{t}\right) \frac{\partial \tilde{\mathrm{R}} \mathrm{e}_{\theta_{i}}}{\partial x_{j}}\right]$.
$\widetilde{R}_{\theta_{t}}$ の輸送方程式は $\tilde{R}_{\theta_{t}}$ のマップを作るのに用いられ， γ の輸送方程式は遷移開始位置からの間欠度の上昇によ る遷移領域を表現するのに用いられる。

2.3 相関

$\gamma-\operatorname{Re} \theta$ 遷移モデルは遷移運動量厚さレイノルズ数 $\operatorname{Re}_{\theta_{i}}$ ，遷移長さFlength および臨界運動量厚さレイノルズ数 $\mathrm{Re}_{\theta_{c}}$ に関する相関を必要とする。遷移運動量厚さレイノルズ数 $\operatorname{Re}_{\theta_{t}}$ は Menter 514 の式を以下のように修正したもの を用いた。

$$
\begin{equation*}
\mathrm{Re}_{\theta_{i}}=110.0+\exp (7.08-T u)^{-1.027} F\left(\lambda_{\theta}, K\right) . \tag{5}
\end{equation*}
$$

ここで，

$$
\begin{align*}
& \left.F\left(\lambda_{\theta}, K\right)=1-\left[-10.32 \lambda_{\theta}-89.47 \lambda_{\theta}^{2}-265.51 \lambda_{\theta}^{3}\right] e^{\left[\frac{-T u}{3.0}\right]}\right] \tag{6}\\
& \text { for } \lambda_{\theta} \leq 0,
\end{align*}
$$

$F\left(\lambda_{\theta}, K\right)=1+\left[0.0962\left[10^{6} K\right]+0.148\left[10^{6} K\right]^{2}+0.0141\left[10^{6} K\right]^{3}\right]$

$$
\begin{gather*}
\times\left(1-e^{\left[\frac{-T_{u} u}{1.5}\right]}\right)+0.556\left(1-e^{-23.99_{0}}\right) e^{\left[\frac{-T_{u}}{1.5}\right]} \tag{7}\\
\text { for } \lambda_{\theta}>0 .
\end{gather*}
$$

$$
\begin{equation*}
\lambda_{\theta}=\frac{\theta^{2}}{v} \frac{d U}{d s}, \quad K=\frac{v}{U^{2}} \frac{d U}{d s} \tag{8}
\end{equation*}
$$

である．圧力勾配ゼロにおける遷移運動量厚さレイノル で数 $\mathrm{Re}_{\theta_{t}}$ と主流乱れ度 $T u$ の相関を Fig． 1 に示す。遷移長 さ Flength は Mayle ${ }^{15}$ より，

$$
\begin{equation*}
F_{\text {length }}=126 \tilde{\mathrm{Re}}_{\theta_{i}}^{1.4} \text {, } \tag{9}
\end{equation*}
$$

となる．遷移長さは平板境界層の計算において遷移長さ

を合わせるために10倍にして計算を行った．臨界運動量厚さレイノルズ数 $\mathrm{Re}_{\theta_{c}}$ に関する相関は遷移位置を調整す るために計算上与えるもので，R．e $e_{\theta_{t}}$ よりも小さな値とな ることがMenter らで述べられている．本研究では平板境界層の計算結果から遷移長さ，遷移位置を実験と比較し て， $\operatorname{Re}_{\theta_{c}}=0.9 \widetilde{R e}_{\theta_{t}}$ とした．

Fig．1：Correlation of $\overline{\mathrm{Re}}_{\theta t}$ for zero pressure gradient

3．検証計算

3.1 平板上の遷移予測

平板上のバイパス遷移の検証としてT3テストケースの計算を行った ${ }^{16}$ 。これはRolls－Royce の P．Stow と N．T．Birchによって層流境界層への主流乱れ度の影響と遷移を調心゙たものである．平板上の自然遷移の検証として はSchubauer \＆Klebanof の実験結果との比較を行った ${ }^{17}$ 。 これらの検証問題はMenter らによっても計算されてお り，同じ問題を解くことによって本コードの正当性を検証した。計算条件をTab． 1 に示す。主流乱れ度 1% ， 3% ， 6% におけるバイパス遷移および主流乱れ度 0.2% におけ る自然喛移の計算を行った。ここで示す FSTI および $\mu_{t} /$ μ の値はSST 乱流モデルの k および ω の一様流値を決定 するのに用いられる。 k_{∞} は FSTI［ $\%$ ］$=100(2 k / 3)^{1 / 2} / U_{\text {ref }}$ より，ω_{∞} は $\mu_{t} / \mu=k / \omega$ の関係式より求める。
Fig．2～5にそれぞれ Schubauer \＆Klebanof，T3A－，T3A および T3B における壁面摩擦係数 C_{f} の実験値，ブラジ ウス解および計算値を示す。計算格子は流れ方向の点分布を変えた 2 種類の格子で計算を行い，結果に格子依存

Tab．1：Computational test cases for flatplate

Case	U inlet	FSTI inlet［\％］	μ_{t} / μ
T3A	5.4	3.5	13.3
T3B	9.4	6.5	100.0
T3A－	19.8	0.874	8.72
Schubauer	50.1	0.18	5.0
\＆Klebanof			

Fig．2：Friction coefficient for Schubauer \＆Klebanof test case（ $T u=0.18 \%$ ）

Fig．3：Friction coefficient for T3A－test case （ $T u=0.874 \%$ ）

性がないことを確認してある。T3A およびT3B は $\mathrm{Re}=10^{5}$ ，T3A－および Schubauer \＆Klebanof は $\mathrm{Re}=10^{6}$ で計算を行った．いずれのケースにおいても遷移位置は比較的実験と一致している。しかしながら，主流乱れ度 の小さいT3A－および Schubauer \＆Klebanof では遷移長 さが実験値と大きく異なるため相関の修正が必要である。低主流乱れ度流れにおける遷移長さに関するこの傾向は Menter らの計算結果でも見られた。

3.2 はく離流遷移の予測

前縁に丸みを持つ平板におけるはく離流遷移の検証と して T3LC テストケースを計算した ${ }^{18}$ 。計算条件をTab． 2 に示す。 Re 数は前縁の円弧の直径を代表長さとしてい る．計算格子をFig． 6 に示す。半円部分に 80 点配置し，物体に垂直方向の最小格子幅は 2×10^{-5} である。前縁にお いても y^{+}は 10^{-1} のオーダであった。

Fig． 7 に壁面摩擦抵抗係数 C_{f} を示す。 C_{f} が負となる領域は逆流の生じている領域である。はく離流遷移を考慮 することによって，再付着位置が実験値に近くなること が分かる。はく離流遷移を考慮せずに全面乱流計算を行 った場合，逆流領域での渦粘性の生成が少なく，再付着

Fig．4：Friction coefficient for T3A test case （ $T u=3.5 \%$ ）

Fig．5：Friction coefficient for T3B test case （ $T u=6.5 \%$ ）

Tab．2：T3LC test case for separated－flow transition

Case	U inlet	FSTI inlet［\％］	μ_{t} / μ	Re
T3LC	5.0	2.39	3.4	3293

Fig．6：Computational mesh for T3LC test case

位置が実験値よりも下流になる。 $\gamma-\operatorname{Re}_{\theta}$ 遷移モデルでは， はく離流遷移を考慮するために逆流領域で渦粘性の生成 を大きくする項が加えられている。Fig． 7 に示す Menter らの計算結果では再付着後の C_{f} が実験値よりも大きく見積もられているが，本計算の条件では実験値と一致した。 Fig． 8 に速度ベクトルと渦粘性のカラーコンターを示す。渦粘性のカラーコンターは上限を 1 に設定している。は

Fig．7：Friction coefficient for T3LC test case （ $T u=2.39 \%)$

Fig．8：Velocity vectors and Contour map of eddy viscosity for T3LC test case

く離流遷移を考慮した計算では渦粘性の生成が多く，再付着位置が全面乱流計算に比べて上流側になっているこ とが分かる。

4．結言

本報では $\gamma-\operatorname{Re}_{\theta}$ 遷移モデルの検証結果を報告した。非構造格子RANS コードに $\gamma-\operatorname{Re}_{\theta}$ 遷移モデルを導入し，低速，低 Re 数流れを解析するために前処理法を適用した。主流乱れ度 $0.2 \%, 1 \%, 3 \%$ および 6% において平板境界層遷移の計算を行い，遷移位置を比較的正しく予測した。 はく離流遷移の検証として T3LC を計算し，遷移を考慮 した計算により再付着位置が実験値に近づくことを確認 した。
$\gamma-\operatorname{Re}_{\theta}$ 遷移モデルはこのままで 3 次元で遷移計算が可能であるが，境界層の 3 次元的な不安定を陽に考慮して いない。3次元計算を行らに当たってはこの点も考慮し ていきたい。

謝辞

本研究は東北大学流体科学研究所未来流体情報創造セ ンターの大型計算機SX－8 を用いて行った。ここに感謝の意を示す。

参考文献

1．Stock，H．W．＂Infinite Swept－Wing Navier－Stokes Com－ putations with eN Transition Prediction，＂AIAA Jour－ nal，Vol．43，，2005，pp．1221－1229．
2．Suzen，Y．B．，Xiong，G．and Huang，P．G．＂Prediction of Transitional Flows in Low－Pressure Turbines Using Intermittency Transport Equation，＂AIAA Journal，Vol． 40，，2002，pp．254－266．
3．渡辺大輔，前川博，松尾裕一＂圧縮性境界層の遷移に伴ら音波発生機構の研究，＂航空宇宙数値シミュレー ション技術シンポジウム 2005 ，概要集，p．32， 2005.
4．Langtry，R．B．and Menter，F．R．＂Transition Modeling for General CFD Applications in Aeronautics，＂AIAA paper 2005－0522， 2005.
5．Ito，Y．and Nakahashi，K．＂Direct Surface Triangula－ tion Using Stereolithography（STL）Data，＂AIAA paper 2000－0924， 2000.
6．Sharov，D．and Nakahashi，K．＂Hybrid Prismatic／Tet－ rahedral Grid Generation for Viscous Flow Applications，＂AIAA paper 96－2000， 1996.
7．Ito，Y．and Nakahashi，K．＂Unstructured Mesh Genera－ tion for Viscous Flow Computations，＂Proceedings of the $11^{\text {th }}$ International Meshing Roundtable，Ithaca，NY， 2002，pp．367－377．
8．Obayashi，S．and Guruswamy，G．P．＂Convergence Ac－ celeration of an Aeroelastic Navier－Stokes Solver，＂AIAA Journal，Vol．33，No．6，1994，pp．1134－1141．
9．Sharov，D．and Nakahashi，K．＂Reordering of Hybrid Unstructured Grids for Lower－Upper Symmetric Gauss－ Seidel Computations，＂AIAA Journal，Vol．36，No．3， 1998，pp．484－486．
10．向井純一＂低速流れの非定常計算における人工粘性の影響，＂航空宇宙数値シミュレーション技術シンポジ ウム 2005 ，概要集，p． $30,2005$.
11．Weiss，J．M．，Maruszewski，J．P．and Smith，W．A． ＂Preconditioned Applied to Variable and Constant Den－ sity Flows，＂AIAA Journal，Vol．33，No．11，1995，pp． 2050－2057．
12．Sharov，D．and Nakahashi，K．＂Low Speed Precondi－ tioning and LU－SGS Scheme for 3－D Viscous Flow Com－ putation on Unstructured Grids，＂AIAA paper 98－0614， 1998.

13．Luos，H．，Baum，J．D．and L＂ohner，R．＂Extension of Harten－Lax－van Leer Scheme for Flows at All Speeds，＂ AIAA Journal，Vol．43，No．6，2005，pp．1160－1166．
14．Menter，F．R．，Langtry，R．B．，Likki，S．R．，Suzen，Y．B．， Huang，P．G．and Völker，S．＂A Correlation－Based Tran－ sition Model Using Local Variables Part I ．Model Formulation，＂Proceedings of ASME Turbo Expo 2004， Vienna，Austria，2004，pp．57－67．
15．Mayle，R．E．＂The Role of Laminar－Turbulent Transi－ tion in Gas Turbin Engine，＂ASME Journal of Turbomachinary，Vol．113，，1991，pp．509－537．
16．Savill，M．＂Some recent progress in the turbulence modeling of by－pass transition，＂
17．Schubauer，G．B．and Klebanoff，H．K．＂Laminar bound－ ary－layer oscillations and transition on a flat plate，＂．
18．Vicedo，J．，Vilmin，S．，Dawes，W．N．and Savill，A．M． ＂Intermittency Transport Mmodeling of Separated Flow Transition，＂ASME Journal of Turbomachinary，Vol． 126，，2004，pp．424－431．

Phased－Array による NACA0012 翼型のTEノイズに関する研究

浦弘樹，伊藤健，横川譲（JAXA）

An Investigation of TE Noise on a NACA0012 Airfoil by Phased－Array Measurement

Hiroki Ura＊，Takeshi Ito＊and Yuzuru Yokokawa＊
＊Japan Aerospace Exploration Agency

Abstract

Phased－Array Microphone system has been developed at $2 \mathrm{~m} \times 2 \mathrm{~m}$ Low－speed Wind Tunnel（LWT2） of JAXA．As a function checkout of the system，NACA0012 airfoil was tested．The results of this test were observed distinctly the noise generated near or on the trailing edge．In this paper，the outline of the results is reported．

Keywords ：TE Noise，Phased－array，NACA0012，Separation，Transition

1．はじめに
近年，航空機離着陸時の騒音対策が環境及び騒音規制 の観点から特に注目を集めている。またエンジン低騒音化に伴い，フラップや脚等から発生する機体空力騒音に ついても無視できない状況であり，風洞試験等において これらの詳細な騒音分析が必要とされている。
JAXA 風洞技術開発センターでは風洞試験における騒音分析手法として音源探査システムに着目し，システム の構築を図った［文献（1）］。本試験では空力騒音の例とし て，NACA0012翼の後縁付近から発生する騒音に着目し て音源探査を行ったので，その結果について報告する。

2．システム概要

システム構成を表1に示す。本システムでは 32 ch のマ イクをマイク設置板にフラッシュマウントさせた。マイ ク設置板は，壁面境界層の擾乱を低減するための吸音材 を表面に貼り付け，測定部側壁に設置している（図 2）。

表1 システム構成

計測機材	数量	詳細
マイク	32	$\phi 7 \mathrm{~mm}, ~ 10 \mathrm{~Hz} \sim 20 \mathrm{kHz}, 30 \sim 140 \mathrm{~dB}$
シクナナルコンディショナ	2	HPF1Hz，LPF50kHz，Gain ：OdB，＋20dB
ローパスフィルタ	32	$135 \mathrm{~dB} /$ oct． $1 \mathrm{~Hz} \sim 119 \mathrm{kHz}$
AD	1	32chDAQ，16bit， 1 MHz

解析手法としては，マイクで計測された各データにつ いて各々フーリエ変換を行い，変換後の各位相を探査面 まで補正（Delay）し，波形を足し合わせる（Sum）手法であ る Delay－and－Sum を採用した。［文献（1）］

マイクの配置には Multi Arm Spiral 配置を採用し，周波数帯域 $1 \mathrm{kHz} \sim 7 \mathrm{kHz}$ を対象としてシミュレーションを行い最適化した（図3，［文献（2）］）。またマイクアレイ の特性は，スピーカ音源を用いて無風時•通風時の比較等を通して確認している。［文献（3）］

図2 試験状況

図3 マイクの配置

3．音源探査

NACA0012 2 次元翼模型を $2 \mathrm{~m} \times 2 \mathrm{~m}$ 低速風洞固定壁測定部の床面に垂直に設置して試験を実施した。模型諸元 はスパン 1 m ，コード長 0.4 m である。本試験は， 2 次元翼後縁から発生する騒音現象として広く知られている TE（Trailing Edge）ノイズについて，音源探査により現象 を把握することを目的としている。
図 4 は風速 $50 \mathrm{~m} / \mathrm{s}$ ，迎角 9 deg の計測結果であり，（a）は周波数解析の結果，（b）～（e）は各周波数帯域における模型圧力面側の音源探査結果である。ここで，図4（b）中の矢印は気流方向を示している。音源探査は気流に平行な面に対して行った。探査結果は，探査範囲が $1.6 \mathrm{~m} \times 1.6 \mathrm{~m}$ ，原点が測定部中心と一致した平面上での音圧分布である。 また音圧分布は周波数解析結果の各周波数帯域における音圧レベルで規格化を行い，-6 dB までを出力している。
図 4 （a）の周波数解析結果より1077，1303，1582， 2600 Hz で顕著なスペクトルが観測されている。これらの周波数における音源探査結果（b）～（e）より 1303 Hz のス ペクトルがTEノイズであることが分かる。1077Hz， 1582 Hz のスペクトルについては暗騒音である。 2600 Hz については，下図には示されていないが表示レンジを下 げると 1303 Hz と同じ位置に音源が観測されることから TEノイズの高調波であると考えられる。

（b）

（d）

（c）

（e）

図 4 TEノイズ $50 \mathrm{~m} / \mathrm{s} 9 \mathrm{deg}$

図 5 は風速 $50 \mathrm{~m} / \mathrm{s}$ で迎角を変化させたときの結果であ る。周波数解析の結果（a）をみると，迎角 $9 \sim 11 \mathrm{deg}$ で 1303 Hz の周波数の変化しない離散騒音が発生しており， TEノイズの特徴を示している。また，音源探査結果につ いても同様に $9 \sim 11 \mathrm{deg}$ において翼後縁付近に音圧分布 のピークが観測されている。（d）迎角 9 deg ではこれが内翼側で，（e） $10 \operatorname{deg}$ と（f） 11 degでは外翼側で生じている。周波数が同じであること，翼後縁部での発生でありコード方向には移動がないことを考慮すると，翼端部等の3次元効果の影響によって音圧分布のピークが移動したと考 えられる。

図 6 は迎角 9 deg で風速を変化させた結果である。周波数解析結果（a）より風速 $40 \mathrm{~m} / \mathrm{s} ~ 55 \mathrm{~m} / \mathrm{s}$ で TEノイズの周波数は 1106 Hz から $1399 \mathrm{~Hz} へ$ と 2 割程度変化したことが分かる。この変化の原因を探るため，図（b）では横軸をス

（a）

（b）

（d）

（f）

（c）

（e）

（g）

図5 迎角効果

トローハル数 $\mathrm{St}=\mathrm{ft} / \mathrm{U}$ に換算している。但し，基準長を模型の最大翼厚さ，速度を主流流速として計算している。
結果は $\mathrm{St}=1.2 \sim 1.3$ の幅を持ち， 1 割程度のばらつきが ある。また風速が高くなるほどStが小さくなる傾向があ る。従って，TEノイズの発生原因は翼後縁付近から発生 するカルマン渦による渦騒音のみではないことも予想さ れ，圧力面側層流境界層の遷移や不安定性を指摘している文献もある［ 文献（4）］。次に（c）～（f）を比較すると音源の範囲が風速に比例して内翼側へ移動しているが，これは迎角を変化させた時と同様に，風速に応じて翼端渦による影響を受ける範囲が内翼側へ広がったものと考えられる。

図 6 Re 数効果

4．遷移と剥離

音源探査結果で観測された翼端等による 3 次元効果か ら，TEノイズは遷移や剥離等の流れの状態に依存すると考えられる。そこで本試験では遷移及び剥離について着目し，音源探査結果との関連性について調查を行った。

チャイナクレイ・オイルフロー・プレストン管による計測結果を図 $7 \sim 9$ に示す。ここで，図 7 については乱流部の始点を遷移点と定義し計測した。図8の圧力面側 については乱流部の始点を遷移点と定義し計測した。図 9 は圧力分布を層流•遷移•乱流の各領域に分け，各領域を近似する接線の交点をそれぞれ遷移の始点及び終点 とし，この 2 点の中点を遷移点と定義する手法を採用し た［文献（5）］。また図10は，翼端からスパン方向 500 mm の位置における上記 3 手法で得られた結果の関係を示し たものである。

図10よりチャイナクレイ及びオイルフローで計測さ れた遷移点はプレストン管で計測された遷移領域に収ま っている。また，オイルフローによって計測された遷移点はプレストン管計測結果の遷移の始点と良く一致して いる。そこで本試験でのオイルフローの遷移点をプレスト ン管計測の遷移の始点と仮定すると，風速 $50 \mathrm{~m} / \mathrm{s}$ ，迎角 9 deg で遷移領域の始点がほぼ翼後縁付近に存在すること になる。これはTEノイズが発生し始める角度と一致する。

また剥離については，オイルフローの負圧側に着目す ると迎角 9 deg 以上で剥離が観測された（図8）。遷移現象と同様に，剥離が生じ始める迎角とTEノイズが発生し始める迎角はほぼ一致する。加えて，剥離した領域のス パン方向での位置と音源探査での音圧分布のピークが観測されている領域もほぼ一致している。
以上より，TEノイズの音圧分布は圧力面側の遷移と負圧面側の剥離が翼後縁部に存在することと強い相関があ ることが確認された。またTEノイズが離散的な現象であ ることを考慮すると，その発生機構に圧力面側層流境界層の不安定波等の関連も予想される。

$79 \% \mathrm{X} / \mathrm{C} \quad$ Pressure Surface

図 8 オイルフロー（風速 $50 \mathrm{~m} / \mathrm{s}$ ）

図 9 プレストン（圧力面）

図10 各手法の関係（ $50 \mathrm{~m} / \mathrm{s}$ 端面～500mm）

5．まとめ

TEノイズを対象として音源探査を行い，明確にその音圧分布を捉えた。また，音源探査と遷移位置及び剥離位置の比較により，TEノイズの音圧分布は圧力面側の遷移 と負圧面側の剥離が翼後縁部に存在することに強い相関 を持つことを確認した。Phased－Arrayによる音源探査の有効性を確認するとともに，音源発生機構解明の手がか りを得ることができ，今後，多様な音源探査と騒音低減 への寄与が期待される。

6．謝辞

JAXA 風洞技術開発センターの藤田，岩崎両氏，ISEの安藤氏には作業を手伝っていただいた。また同航空プロ グラムグループの野口氏にはプレストン管計測について の助言をいただいた。厚く御礼申し上げる。

参考文献
（1）Don H．Johnson et al．，Array Signal Processing， 1993
（2）Thomas J．Mueller，Aeroacoustic Measurements， 2001
（3）T．Ito ，H．Ura and Y．Yokokawa ，Arrayed Microphone Measurement in Low Speed Wind Tunnel，ISIASF＇ 05
（4）S．Akishita，Tone－Like Noise from an Isolated Two Di－ mensional Airfoil，AIAA－86－1947
（5）横川 他 低速風洞における非断熱性全機模型上の儚移計測 JAXA－RR－04－018

Prompt Report of Transition Detection of Experimental Supersonic Transport＂NEXST－1＂

Naoko TOKUGAWA，Kenji YOSHIDA，Yoshine UEDA
Japan Aerospace Exploration Agency

Abstract

The experimental validation of natural laminar flow wing designed with the original CFD－based inverse design method is carried out by the flight test of an unmanned and scaled supersonic experi－ mental airplane．It is the first challenge to apply the natural laminar flow wing concept to a supersonic vehicle．The concept of natural laminar flow wing is validated by measuring the surface pressure and the transition location．In this paper，the transition characteristics detected by the hot－film sensors and dynamic pressure transducers are briefly introduced．To classify the transition location objectively，a quantity，called＂transition level＂，is newly introduced．The transition location detected experimen－ tally is in good agreement with numerically predicted location，and the natural laminar flow effect is confirmed at the design condition．

Keywords ：Boundary Layer，Transition Measurements，Supersonic Transport，Natural Laminar Flow， Flight Test

1 はじめに

2005年10月10日，宇宙航空研究開発機構（JAXA）は小型超音速実験機＂NEXST－1＂（図 1）の飛行実験に成功 した［1－5］．本飛行実験は，次世代の超音速旅客機開発を晲みJAXA で推進してきた「次世代超音速機技術の研究開発（National EXperimental Supersonic Transport）」プロジ ェクト $[6,7]$ の一環で，CFD を用いた最適空力設計技術 の飛行実証による確立を主目的としている。次世代超音速輸送機には，ソニックブームおよび離着陸時の騒音の低減や空力特性の向上など様々な課題が課せられている が，その中で最大なのは燃料消費量の削減である。そこ で本プロジェクトでは，機体の抵抗を低減するため，胴体にはエリアルールを，翼に対してアロー型平面形およ びワープ翼と，そして自然層流翼［7－9］の概念を適用し た。この自然層流翼は，独自に開発したCFD 逆問題設計技術［10］を用いて，横流れ不安定と Tollmien－Schlichting不安定の両者の増幅を抑制するよう設計されている。超音速輸送機のらち亜音速前縁の主翼に自然層流翼を適用 したのは世界初の試
みである。
逆問題設計法については，実験機全機模型を用いた超音速風洞試験で検証されているが $[11,12]$ ，風洞には固有 の気流変動があることとレイノルズ数が低いため，実機 に適用される自然層流翼の設計技術を検証するには飛行実験を実施する必要がある。そこでJAXA では，小型の無人実験機を用いた飛行実験を実施した。空気力を明確 に計測するため，実験機は無推力のクリーン形態をとり，地上から固体ロケットによって打ち上げられた。高度約 19 km で分離した後滑空し，マッハ数 2 の条件で空力性能や表面圧力などの技術データを取得した。データを取

得する試験フェーズは α－sweep 試験フェーズと Re 数－ sweep 試験フェーズの 2 つに大きく分類される［1－5］．α－ sweep 試験フェーズは，全機揚力係数 C_{L} が指定した 6 種類の値をとるように迎角を制御する試験フェーズであり，設計点である $\mathrm{C}_{\mathrm{L}}=0.10$ は 4 番目に含まれる。他方の Re数－sweep 試験フェーズは $\mathrm{C}_{\mathrm{L}}=0.10$ を保ちながら Re 数が α－sweep 試験フェーズの約 3 倍となる低空を降下するこ とによって，Re 数の増加による効果を調べる試験フェー ズである。

図 1 小型超音速実験機＂NEXST－1＂
超音速実験機＂NEXST－1＂，およびその飛行実験の詳細 については，他［1－5］に譲り，本論文では飛行実験の最重要目的の一つである自然層流翼の実験的な検証結果を速報として報告する［13－15］．遷移計測には4種類のセンサ

ーが搭載されたが，本報告ではその中のホットフィルム・ センサーおよび非定常圧カトランスデューサーを用いた結果について報告する。

2 遷移計測システム

小型超音速実験機では，遷移点を確実に検出するため， ホットフィルム（HF），非定常圧力トランスデューサー （DP），熱電対，プレストン管の 4 種類の計測方法を併用 した。これらのセンサーは，主として左翼および左舷前胴に，お互いに補完できるように配置した［13－17］．
HF センサーはDANTEC 製55R45 の特注形状であり，本実験機用に開発された定温度型風速計で，フィルム温度が $220^{\circ} \mathrm{C}$ となるように駆動した。打ち上げ中の急激な温度変化で切れることが無いよう，最高高度で実験機と ロケットが分離する際にブリッジ電源が入るように設計 した。また定温度型風速計の過熱を防止するため，ブリ ッジ電源は投入後 5 分で自動的に停止させた。DPセンサ ーは半導体ストレインゲージ型のKulite 製XB44－093で， 0．7BAR の差圧タイプであり，このセンサーを駆動するア ンプも本機用に開発された。
HF およびDP の出力は 100 Hz 以下の DC 出力成分と 10 Hz 以上 10 kHz 以下の AC 出力成分に分離された。 HF のAC ゲインおよびDP のDC ゲインは，飛行実験を模擬した風洞実験結果に基づき，2004年7月にそれぞれ60倍および 140 倍に変更された。なお，DP の AC ゲイン は 100 倍である［20］．DCおよびAC出力は，信号処理器 によってPulse Code Modulation された後データレコー ダに記録された。DC 出力については，テレメーターを用いて地上へ送信された。得られた時系列データから， まず飛行試験の各イベントにあわせて瞬間波形を切り出 し波形の特徴を調べた。また FFT 解析を行い，スペクト ラムを求めた。そして波形の変化を統計的に評価するた めに 0.4 秒ごとの平均値，RMS 値，skewness，最大値お よび最小値を求めた。
HF およびDP の計測システムについては，設計当初ノ イズレベルが大きいこと，また AC 出力にオフセットが のる，圧力アンプに内蔵された電源が脆弱であるなどの不具合が多く発生したが，飛行実験までには全て改良さ れた $[15,16]$ ．例えば，ノイズレベルは次節で述べるよう に，層流状態を正しく捉えるには不十分であるが本飛行実験の目的である遷移位置を検出するには十分なほど低減された。またACのオフセットは，モニターした結果，飛行実験中ほとんど変化せず，遷移計測には影響を及ぼ さなかった。

3 飛行実験結果

3.1 ホットフィルム・センサー

遷移位置を明らかにするために，まず，HF の DC 出力平均 EMEAN および AC 出力変動 $\mathrm{e}^{\prime}{ }^{\text {RMS }}$ の時間変化に ついて調べた（図2）。代表的なものとして分離から $\alpha-$ sweep 試験フェーズまでの $\mathrm{X} / \mathrm{C}=0.25, \mathrm{Y} / \mathrm{S}=0.31$ のセン サー出力を示す。同図には α－sweep による実験機の飛行条件がわかるように，揚力係数 C_{L} の変化もあわせてプロ ットした。

リフトオフからの時刻 $\mathrm{T}_{\mathrm{LO}} \approx 71.7$ 秒における実験機と

ロケットの分離と同時にブリッジ電源が投入され，EMEAN は急激に増加した。その後徐々に増加するが，α－sweep試験フェーズ（ $\mathrm{T}_{\mathrm{LO}} \approx 105.2 \sim 131.5$ 秒）における迎角の変化に合わせステップ状に変化していた。まず α－sweep試験フェーズが開始し $\mathrm{C}_{\mathrm{L}}=-0.01$ になる時刻 $\mathrm{T}_{\mathrm{LO}}=105$ 秒 で $\mathrm{E}_{\mathrm{MEAN}}$ は急激に増加した。次に，α－sweep の第3ス テップ（ $\mathrm{C}_{\mathrm{L}}=0.07$ ）から $\mathrm{C}_{\mathrm{L}}=0.10$ の第 4 ステップに移る $\mathrm{T}_{\mathrm{LO}}=118$ 秒で急激に減少し，α－sweep 試験フェーズに入る以前とほぼ同じ値に静定した。第 4 ステップから $\mathrm{C}_{\mathrm{L}}=0.14$ の第 5 ステップに移る $\mathrm{T}_{\mathrm{LO}}=123$ 秒から緩やかに増加を開始し，第5ステップでは揚力係数 C_{L} が静定す ると，若干オーバーシュートし，第6ステップ（ $\mathrm{C}_{\mathrm{L}}=0.17$ ） では，第 1 から第 3 ステップとほぼ同じ値に静定した。 HF のDC 出力平均は層流では低く乱流では高いことが知られており，従って，第4ステップでは境界層は層流，第1～第3ステップおよび第6ステップでは乱流であり，第5ステップでは層流と乱流の中間の遷移状態であると思われる。

図 2 HF の DC 出力平均，AC 出力変動および瞬間波形

次に，同図に示す AC 成分の出力変動 $\mathrm{e}^{\prime}{ }_{\text {RMS }}$ の変化に着目する。その結果，DC 出力平均から層流と思われた α－sweep の第 4 ステップに対応する $\mathrm{T}_{\mathrm{LO}}=119$ 秒から $\mathrm{T}_{\mathrm{LO}}=122$ 秒では出力変動は非常に小さい $\mathrm{e}_{\text {RMS }}=0.02 \mathrm{~V}$ 程度で安定しており，その前後の α－sweep の第3ステップ および α－sweep の第 5 ステップで変動は非常に大きく，第1，第 2 および第 6 ステップではやや高い $\mathrm{e}_{\mathrm{RMS}}=0.24 \mathrm{~V}$程度で安定していることがわかった。これらの変化は，風洞試験で観測された層流から乱流への変化によく一致 しており［15］，第4ステップでは層流，第1，第2および第6ステップでは乱流，それらの中間である第 3 および第5ステップでは遷移状態にあると思われる．AC出力変動から推測される境界層の状態は，DC 出力平均から推測される境界層の状態と定性的な傾向は一致した。しか し，各ステップの状態を厳密に比較すると，第3ステッ プでは不一致が見られた。すなわち DC 出力平均からは乱流と思われるのに AC 出力変動からは遷移状態である と推測された。

そこで，これまでに述べた DC 平均出力と AC 出力変動から推測される境界層の状態をさらに確認するために，瞬間波形およびスペクトラムを調べた（図2）。図から明 らかなように，第1，第 2 および第 6 ステップ，また第

3および第5ステップの瞬間波形はそれぞれ非常によく似 ていた。第1，第2および第6ステップにおける瞬間波形 は，ホワイトノイズ的であり，このような波形は境界層 が乱流状態であることを示している。一方，第3および第5ステップの瞬間波形には下向きのスパイクが観測さ れ，このような波形は，境界層が乱流に近い遷移状態に あることを示している 18,19$]$ ．そして第 4 ステップでは，瞬間波形の振幅が非常に小さく，境界層が層流状態であ ることを示している，結論として，瞬間波形から理解さ れる境界層の状態は，AC 出力変動から推測される境界層の状態とよく一致することが確認された。

3.2 非定常圧力トランスデューサー

次に，非定常圧力トランスデューサーの AC 出力変動 p＇RMS の変化について調べる。図3に前節で結果を示した HF センサーのやや上流 $\mathrm{X} / \mathrm{C}=0.2, \mathrm{Y} / \mathrm{S}=0.32$ に位置する DP センサー出力を示す。図から明らかなように，第4，第 5 ステップで，${ }^{\prime}{ }^{\prime}{ }_{\text {RMS }}=0.003 \mathrm{kPa}$ と非常に小さく層流状態であると思われる，それ以外の第 1 から第 3 および第 6 ステップでは ${ }^{\prime}$ RMS $=0.02 \mathrm{kPa}$ と大きいが，以下の理由 で第2ステップおよび第3ステップで境界層は遷移状態，第 1 および第6ステップでは乱流状態であると思われる． その理由は，第 2 および第 3 ステップにおける出力変動 は，第 1 および第 6 ステップにおける値よりやや高く， また遷移のちょうど中間で観測される非常に大きなピー クが第 2 ステップから第 3 ステップ れているからである。同様のピークは第5ステップから第6へ移る途中でも観測されている。

図 3 DP の AC 出力変動および瞬間波形

HF と同じよらに，AC 出力変動から推測される境界層 の状態を確認するために，瞬間波形を調べた（図3）。図 から明らかなように，第1から第3および第6ステップと，第4，第5ステップの瞬間波形はそれぞれ定性的に似てい た。まず第4，第5ステップの波形を比較すると，第5ス テップの方が，振幅がやや大きかった。そのスペクトラ ムを比較すると振幅の違いはあるものの両者とも高周波成分が減衰しており，層流状態と判断できることがわか った。次に第 1 から第 3 および第 6 ステップの瞬間波形 を比較すると，第2ステップの瞬間波形には HF に比べ て振幅が小さいが下向きのスパイク信号が，第3ステッ プには上向きのスパイク信号が観測された。一方，第1 お よび第6ステップにはどちらのスパイク信号も観測され

なかった。従ってAC 出力変動から推測した通り，第2ス テップおよび第3ステップで境界層は遷移状態，第 1 お よび第6ステップでは乱流状態であると言えることが確認された。

図 4 遷移レベルと数値予測による等 N 値線

3.3 ＂遷移レベル＂の導入と自然層流効果の検証

前 2 節から，HF およびDP の出力から境界層の遷移状態が明らかにされた。同様の考察から，境界層の遷移状態は，流れ方向に定性的に整合していることがわかった が，これまでの議論は境界層の状態を層流，乱流もしく は遷移状態という非常に大まかな区分に定性的に分類し ただけに過ぎず，本論文の目的である＂遷移位置の検出＂ を定量的に行らことは出来ない。またセンサーの間隔が比較的広いことから，ある時刻において列をなす各セン サーが，層流から乱流までの遷移過程を捉えているとは限らない。そこで，＂䢬移レベル＂という概念を新たに導入し，境界層の遷移状態を客観的かつ定量的に決定す ることを試みた。遷移レベルの詳細な決定方法は他 ［13，14］に譲り，本論文では結果のみを示す。図 4 では，代表的な条件として設計点（ α－sweep試験フェーズの第 4ステップ）における各位置における遷移レベルを色で分類し，センサー位置にあわせて実験機の平面上にプロッ トした。遷移レベル 1 が最も層流， 7 が最も乱流に対応 するものである．その結果，遷移レベルは流れ方向にほ ぼ整合していることがわかった。ただし，幾つか不整合 な点も見出された。例えばHFのDC出力平均から決定さ れた遷移レベルと AC 出力変動から決定された遷移レベ ルが大きくずれている箇所があった。その原因はDC 出力平均から遷移レベルを決定するときに，完全に層流あ るいは乱流とした仮定が誤っていたためである．従って AC 出力変動から決定された遷移レベルを正と見なすこと が可能である。また， $\mathrm{Y} / \mathrm{S}=0.5$ 近傍では $\mathrm{X} / \mathrm{C}=0.25$ と $\mathrm{X} /$ $\mathrm{C}=0.35$ の HF ではそれぞれ乱流および層流と判断された。下流に向かって再層流化することは考えにくく，またDP から判定された遷移レベルも 1 から 2 に変化する層流状態を示しているため，乱流状態を示した $\mathrm{X} / \mathrm{C}=0.25$ ， $\mathrm{Y} /$
$\mathrm{S}=0.51$ の境界層は何らかの原因によって局所的に遷移さ れたものと考える方が自然である。この局所的な境界層遷移の原因は今のところ不明である。
次に得られた遷移しベルを1から5の層流ますよび遷移領域と，6と7の乱流領域の2段階に分類することを考 える，これは遷移位置を，境界層が完全に乱流となる遷移の終了点で定義したこととほぼ同等である。この遷移位置は非設計点である他の条件に比べ大きく後退してい る［13－15］．そこで得られた遷移位置分布を3次元圧縮性層流境界層における線形安定論に基づく $\mathrm{e}^{\text {N法を用いた遷 }}$移予測コードLSTABを用いて予測された等 N 値線と比較した［20－22］．予測に先立つ境界層分布の計算は，飛行実験で実測された圧力分布 $[23,24]$ に基づいている．その結果，実験で計測された遷移位置は，内翼に関しては $\mathrm{N}=12.5$ の等 N 値線とよく一致していた。外翼側の一致 はあまり良くなくその原因は不明であるが，内翼におけ る一致から，実験結果は数値予測と定性的に一致すると結論できる。従って，設計された翼形状において自然層流効果が確認されたものと考えられる。

4 まとめ

小型超音速実験機の飛行実験により，自然層流翼の概念を検証する貴重な実験データを取得した。ホットフィ ルム・センサーおよび非定常圧カトランスデューサーを用いた遷移計測によって，層流から乱流へ至る遷移過程 を示す信号が観測された。客観的に遷移位置を決定する ためにある基準を設け，主翼上面に配置した各センサー の出力を処理した結果，各時刻においてそれぞれのセン サー位置の境界層がどのような遷移状態にあるかが判定 され，各時刻における遷移位置分布が得られた。そして設計 $\mathrm{C}_{\mathrm{L}}=0.10$ では，非設計点での $\mathrm{C}_{\mathrm{L}}=0.04$ などに比べ，遷移位置が大きく後退する自然層流効果が確認された。

今後の課題として，まず，本論文で取り扱わなかった熱電対括よびプレストン管によって検出される遷移位置 との相関をとり，遷移位置の特定精度を向上させること が挙げられる。また遷移位置の特定精度を向上させるに は，遷移レベルの不整合の問題を解決する必要がある。 さらに遷移機構に関する情報を抽出し，今後は遷移の物理的な機構の確認を進める予定である。

謝辞

本小型超音速実験機の飛行実験を成功させ，遷移デー夕を取得するために三菱重工業，川崎重工業，共和電業，富士重工業殿の多大なご協力がありました。この場をお借りしまして厚く御礼申し上げます。またJAXA内部の郭主任研究員，柳良二センター長，横川譲研究員の多大 なご支援を頂きました。ここに深く感謝の意を表します。

引用文献

［1］平子敬一他，第37期年会講演会論文集，2006，pp．30－ 33.
［2］町田茂他，第37期年会講演会論文集，2006，pp．34－37．
［3］大貫武他，第37期年会講演会論文集，2006，pp．38－41．
［4］吉田憲司他，第37期年会講演会論文集，2006，pp．42－ 45.
［5］Fujiwara，T．，et al．，ICAS 2006－6．2．1，on CD－ROM 2006.
［6］Sakata，K．，AIAA Paper 2002－0527， 2002.
［7］Yoshida，K．，and Makino，Y．，ECCOMAS 2004， Jyvaskyla／Finland，July， 2004.
［8］Yoshida K．，held at the VKI，RTO Educational Notes 4， 15．1－16， 1998.
［9］生越博景，第47回応用力学連合講演会，1998，pp．341－ 342.
［10］Jeong S．，et．al．，AIAA 98－0602， 1998.
［11］Sugiura，H．，et．al．，Journal of Aircraft，Vol．39，No．6， pp．996－1002， 2002.
［12］Yoshida K．，et．al．，Y，AIAA Paper 2002－2842， 2002.
［13］徳川直子，吉田憲司，第37期年会講演会論文集，2006， pp．171－174．
［14］Tokugawa N．，and Yoshida，K．，AIAA Paper 2006－ 3165， 2006.
［15］Tokugawa N．，et．al．，ICAS 2006－3．3．2，on CD－ROM 2006.
［16］Tokugawa，N．，et．al．，JAXA－SP－04－002，2005，pp．31－ 32.
［17］高木正平，他，ながれ 18（1999），pp．298－301．
［18］Owen，F．K．，et．al．，AIAA Journal，Vol．13，No．3，pp． 266－269， 1975.
［19］Nishioka，M．，et．al．，＂An experimental investigation of the stability of plane Poissuille flow，＂Journal of Fluid Mechanics，Vol．72，No．4，，pp．731－751 1975.
［20］Arnal D．，AGARD Report，No．793， 1993.
［21］Yoshida，et．al．，AIAA Paper 99－3655， 1999.
［22］Ueda．Y．，Ishikawa，H．，and Yoshida，K．，Proceedings of ICAS 2004－2．8．2，on CD－ROM， 2004.
［23］Kwak，D．－Y．，et．al．，M．，AIAA Paper 2006－3483， 2006.
［24］郭東潤他，第 37 期年会講演会論文集，2006，pp．175－ 178.

遺伝的アルゴリズムを用いた滑空機設計の最適化

飯田明由，岩崎正志，水野明哲（工学院大学）

Design Optimization of Gliders for Birdman Rally Contest by using a Genetic Algorithm

Akiyoshi Iida，Masashi Iwasaki，and Akisato Mizuno
Department of Mechanical Engineering，Kogakuin University

Abstract

Nowadays，the flight distance of champion team of the birdman rally contest was over 400 m ．In order to break the record，we have to consider the weather conditions，flight conditions and design optimiza－ tion of the glider．For this purpose，we developed the three－dimensional flight simulator and the opti－ mization program based on genetic algorithm．The simulation result of the three－dimensional flight simulator was reasonably agreement with the real flight．GA optimization was carried out with two hundreds samples and fifty generations．The dominant genes of airplane for the contest were obtained with GA．The performance map showed the optimal airplanes such as the champion team were sensi－ tive and not easy－handle．The simulator was suggested another optimized model with flexible wing that was not sensitive to flight conditions．The proposed model got the fourth prize and the referee＇s award of the birdman rally contest 2005 ．

Keywords ：Glider，Optimal design，Genetic algorithm，Flight－simulation，Optimization

1 序論

毎年夏に琵琶湖で行われている鳥人間コンテストでは，高さ 10 m のプラットフォームから動力なしでどこまで飛行できるかを競ら競技が行われている。著者らの所属す る工学院大学でも Birdman Project Wendy として活動を しており，滑空機の設計，製作を行っている。現在の滑空機の記録は 400 m を超えており，この記録を超えるに は最適な機体設計と操縦技術が必要となってくる。しか し，滑空機の設計においては考慮すべき設計変数の数が多く，最適な設計を行らのは容易ではない。また，コン テストは湖の上で行われており，事前に練習するという ことが難しい。

そこで滑空機の飛行プログラムをつくり，滑空機の飛行条件とその最適化をコンピュータで解析することでテ スト飛行ができない欠点を補らことを試みた。

設計パラメータ間の相互関係があまり明らかになって いない滑空機の設計を最適化するために，本研究では遺伝的アルゴリズム（GA）を使用した。これは，GAは多点探索を行らため局所解に収束する可能性が少ない，目的関数が不連続でも適用できるなどの利点があり，機体設計に適していると考えられるためである。GA O欠点 としては計算時間が長い（1）といら問題があるが，これに ついては飛行解析プログラムの負荷が小さいため，大き な欠点とはならないと考主られる。

GAを実施する際，外乱に強い安定した飛行が可能な滑空機を目的関数とした。これは鳥人間滑空機が事前に練

習がほとんどできないことから，姿勢変化や当日の気象条件に左右されないような確実に飛行する機体が必要な ためである。

本研究では鳥人間コンテスト用の滑空機を最適化する ため，鳥人間用滑空機の運動を模擬した飛翔解析プログ ラムと GA を用いた最適化手法について検討し，機体設計について最適化を行った結果について報告する。尚，解析に使用した滑空機は2005年度の鳥人間コンテストで 4 位（大学チームでは 2 位）に入賞し，審査員特別賞を受賞した。

2 解析手法

2.1 鳥人間用滑空機の飛翔解析

本研究は滑空機の飛䍭経路を計算するため，機体の揚力及び抗力を考慮した3次元飛翔解析プログラムを作成 した。機体の運動方程式は，

$$
\begin{align*}
& m(\dot{U}+Q W-R V)=-m g \sin \Theta+X_{a} \tag{1}\\
& m(\dot{V}+R U-P W)=m g \cos \Theta \sin \Theta+Y_{a} \tag{2}\\
& m(\dot{W}+P V-Q U)=m g \cos \Theta \sin \Phi+Z_{a} \tag{3}\\
& I_{\mathrm{xy}} \dot{P}-I_{\mathrm{vz}} \dot{R}+\left(I_{z z}-I_{y y}\right) Q R-I_{x z} P Q=L \tag{4}\\
& I_{y z} \dot{Q}+\left(I_{\mathrm{xz}}-I_{z z}\right) R P+I_{\mathrm{vz}}\left(P^{2}-R^{2}\right)=M \tag{5}\\
& -I_{\mathrm{xz}} \dot{P}+I_{z z} \dot{R}+\left(I_{y y}-I_{\mathrm{xu}}\right) P Q+I_{z z} Q R=N \tag{6}
\end{align*}
$$

と記述することができる ${ }^{(2)}(3)$ 。ここで m は機体質量，g

は重力加速度，また機体に固定された座標軸を機体軸と すると，U, V, W は機体軸方向の速度，P, Q, R は機体軸まわりの角速度，Φ, Θ は姿勢角，$I_{x x}, I_{y y}, I_{z z}$ は機体軸に対する慣性モーメント，$I_{s z}$ は慣性乗積，X_{a}, Y_{a}, Z_{a} は機体軸方向に作用する空気力，L, M, N は機体軸まわ りに作用するモーメントである。また，鳥人間用滑空機 の運動を模擬する際，本研究で用いた飛翔解析プログラ ムでは，滑空機の運動に対して重要な影響を与えると考 えられる，地面効果，翼のたわみ，および風の影響を考慮した。
地面効果は，機体が地面に近づくと，機体の下側の空気が機体と地面にはさまれ，より高圧になって大きな揚力を発生する現象である．地面効果は実験により，

$$
\begin{equation*}
A R_{e}=A R_{\infty}\left\{1+33(H / b)^{3 / 2}\right\} / 33(H / b)^{3 / 2} \tag{7}
\end{equation*}
$$

と表される ${ }^{(3)}$ 。ここで $A R_{\infty}$ は高度 $H=\infty$ の場合のアスペ クト比であり，b は翼幅である。（7）式により有効アスペ クト比 $A R_{e}$ が求まり，この値を 3 次元揚力傾斜 $\partial C_{L} / \partial \alpha$ ，誘導抗力係数 C_{D} ，吹き下ろし角 ε を求める式にの代わり に代入する。以下に代入した式を示す。

$$
\begin{align*}
& \frac{\partial C_{L}}{\partial \alpha}=\frac{a_{0}}{1+\frac{a_{0}}{\pi A R_{e}}} \tag{8}\\
& C_{D i}=\frac{C_{L}^{2}}{\pi A R_{e}} \tag{9}\\
& \varepsilon=\frac{2 C_{L}}{\pi A R_{e}} \tag{10}
\end{align*}
$$

ここで，a_{0} は 2 次元翼揚力傾斜，C_{L} は揚力係数である．
鳥人間用滑空機の翼は軽量化を図るため主桁にカーボ ンパイプを用いている。このため，図 1 に示すように，翼 は飛行中に揚力を受け大きく反ってしまら，そのため翼 に働く揚力は翼が反った分だけ傾くため，機体を持ち上

Fig． 1 Picture of airplane for the birdman rally contest ：Birdman Project Wendy，Kogakuin Univ．

Fig． 2 Simulation results of flight orbits of glider

げるための有効な揚力成分が減少する。このことを考慮 するため，翼をスパン方向に分割し，各要素に働く揚力 から翼要素のたわみ角を算出した。計算したたわみ角を元に翼要素毎の有効揚力成分を計算し，翼全体に作用す る実質的な揚力を算出した。

風の影響は機体の速度と風の速度を合成し，対気速度 を算出し，その値を用いて空気力の計算を行った．飛翔解析プログラムの検証をするため，解析結果とビデオ撮影から求められた実際の飛行経路の比較結果を図 2 に示 す。（a）は本学鳥人間サークルの飛行経路，（b）は優勝于 ームの飛行経路である。縦軸のレンジが 10 m に対して横軸のレンジが 400 m のため，高さ方向の誤差が大きく見 えるが飛行距離の推定誤差は 10% 程度である。飛翔解析 プログラムがほぼ実際の飛行をシミュレートしているこ とがわかる。

2.2 遺伝的アルゴリズム

遺伝的アルゴリズム（GA）は生物の進化を模做した最適化アルゴリズムであり，適当な遺伝子（設計パラメー タ）の組み合わせの中から，目的関数を満たす優秀な固体を選別する方法である。GAでは優秀な設計候補を選択し，選択された個体から遺伝子である設計変数を次世代が受け継いで進化させていくことにより，最適解を探索することが可能であり，滑空機のように設計パラメー の多い場合に効果的な手法である。

本研究では選択の手法としてトーナメント手法を用い ている．トーナメント手法は 2 つの個体の評価値を比較 して，優れている個体の方を生き残らせる手法である。
各個体に与えられる設計変数はそれぞれ 0 と 1 のビッ ト列で表現した。一つ一つのビットを遺伝子とし，遺伝

子が連なったものを染色体とした。設計変数からビット列に変換する際，一度 2 進数に変換し，その後グレイコ ードに変換する手法を用いた。グレイコードを用いると，隣り合った数値に変化する際，ビット列の変更点が 1 箇所ですむため，連続関数においては最適解の探索効率を向上させることができる。

交叉，突然変異はそれぞれ交双確率，突然変異確率を定め，乱数によりそれらの操作を行らか判定させた。交叉が起こると判定された場合，染色体上の一点を乱数で決定し，その点から半分のビット列を親となる個体同士 で交換させた。また，突然変異が起こると判定された場合，染色体上の一点を乱数で決定し，その点のビットを反転させた ${ }^{(4)}$ ，その世代で得られた個体の全てを選択，交叉，突然変異の対象とすると，優秀な個体が選択されな い可能性や，交叉，突然変異の操作で改悪される個体が できる可能性がある。そこで，その世代で最も優秀な個体を選択，交叉，突然変異の対象とさずに，そのまま次世代に受什継ぐエリート戦略を導入した（5）。エリートの数は 1 個とした。

2.3 最適化問題の定式化と制約条件

機体の設計変数として翼スパン，翼弦長，テールパイ プ長，飛び出し角等 8 個とした（図3）。設計変数の定義域等についてまとめたものを表1に示す。設計変数をビ ット列に変換するために，設計変数の定義域をそのビッ ト列で表現できる情報量（本研究では5 ビット＝32段階） で分割し，その各段階の値をとる手法を用いた（6）。

計算によって得られた設計変数から機体の質量，慣性 モーメント，アスペクト比，翼面積を計算し，機体の評価に用いた。また本研究では翼型を設計変数とせず一定 とした，機体各部の寸法変化に伴ら重量及び重心位置は各ケースごとに求めた。

最適設計を行ら際，制約条件を課す必要がある。滑空機の設計においては制約条件がなければ，アスペクト比 をできるだけ大きくすれば飛行距離が伸びると予想され る。実際は構造力学的にアスペクト比に限界があり，制約条件を課すことによって，正当な最適解が得られると考えた。

鳥人間用の機体では揚力を支えるため主翼桁部に大き な荷重がかかる。特に翼の付け根の部分は最大曲げモー メントがかかるため，この部分の強度について制約条件 を課すことにした。飛翔中に主翼に作用する最大応力 σ とカーボンパイプの許容応力 σ_{a} を比較し，$\sigma>\sigma_{a}$ となる時，飛行中に翼が破断したと判断する。この場合は，評価值が 0 となるため，その個体は選択されないことにな る。

Fig． 3 Parameters of design variable
Table1 Design variables in chromosome

Design variable	Admissible values	Granularity	Number of bits	Bit position in chromosome
Wing span	$20 \leqq X_{1} \leqq 26 \mathrm{~m}$	32	5	1 to 5
Wing chord	$0.8 \leqq X_{2} \leqq 1.4 \mathrm{~m}$	32	5	5 to 10
Horizontal tail span	$1 \leqq X_{3} \leqq 10 \mathrm{~m}$	32	5	11 to 15
Horizontal tail chord	$0.1 \leqq X_{4} \leqq 2 \mathrm{~m}$	32	5	15 to 20
Vertical tail span	$1 \leqq X_{5} \leqq 8 \mathrm{~m}$	32	5	21 to 25
Vertical tail chord	$0.1 \leqq X_{6} \leqq 2 \mathrm{~m}$	32	5	25 to 30
Tail pipe length	$1 \leqq X_{7} \leqq 10 \mathrm{~m}$	32	5	31 to 35
Diving angle	$-20 \leqq X_{8} \leqq 5$ deg	32	5	35 to 40

3 解析結果

最適化する際のGAの条件として各世代の個体数を200 とした。世代数は 50 とし，計算終了までに要した時間は約 6 分であった。交叉，突然変異ともに 50% の確率で起 こるものとした。今回の計算では設討候補を得るまでの収束計算はほぼ 40 世代で収束し，最適解が得られた。

飛翔解析プログラムの解析初期条件である初速度は，鳥人間コンテストでの状沅を勘案し， $5.5 \mathrm{~m} / \mathrm{s}$ とした。ま た，制約条件である許容応力は，カーボンパイプの破壊強度の実験値 0.8 GPa と安全率 3 から 0.27 GPa とした。
図 4 は縦軸に水平尾翼のモーメントアーム，横軸に主翼スパン長をパラメータとした解析結果である。 400 m を超える飛行が可能な設計条件の機体もあれば，飛行距離 の小さな機体もある。この図からテールパイプの長さは自由度が高く，他の条件を適切に選ぶことにより 3 m か ら9mの範囲で自由に選ぶことができる。一方，主翼の長 さは飛翔距離に大きく影響し， 300 m を超兄る機体は主翼長さ 20 m 以上でないと実現できない。このよらなことは飛行機の設計としては基本的なことであり，新しい知見 とはいえないが，実際に鳥人間滑空機を作成しているの は高校を卒業したばかりの大学 1 年生から 2 年生である。 テールパイプの長さを決めるだけでも非常に苦労するこ とから，解析によって設計指針が得られるメリットは大

きい。最適化解析により，飛行距離や安定性に特に敏感 な設計パラメータは主翼桁のヤング率，主翼零揚力角，主翼空力中心位置，水平尾翼取付角であることがわかっ た。反対に尾翼の翼弦長，主翼取付角，尾翼の 3 次元揚力傾斜の変更は飛翔距離に対してそれほど敏感ではない ことから，設計時には上記の飛翔距離に敏感なパラメー夕を優先させて設計を行った。

これらの知見を元に外乱に強い機体の抽出を行った。鳥人間滑空機ではプラットフォームから飛び出した後は， ピッチング以外のコントロールを行うことは難しく，特 にロール角に対する制御は機体の基本性能に依存してし まう．このため，離陸時に傾くとそのまま旋回して墜落 するケースが多い。このことを考慮して，初期ロール角 0 度の場合と 10 度の場合の飛行距離を計算した。図 5 に解析結果を示す。縦軸は初期ロール角が 10 度の場合，横軸は初期ロール角が 0 度の場合である。図の対角線上に近いほど，初期姿勢にかかわらず安定した飛行が可能で あることを示す。
昨年，工学院大学で作成した滑空機は図の横軸上にあ り，外乱に対して弱いことがわかった。昨年の機体はわ ずかなロール角で失速してしまらこともわかった．また，横軸上の 350 m 付近にある■印は，大会優勝機の結果で ある。この機体は 350 m 近い飛行が可能であるが，やは り外乱に対しては弱く，大会優勝チームは機体作成技術 だけでなく操縦技術に長けていることがわかる。横軸 200 m ，縦軸 150 m 付近にある は工学院大学の 2005 年大会モデルの結果である。この機体は初期ロール角が大 きくなっても 150 m 以上の飛行が可能である。最大飛行距離は前年度のものよりも劣るが大会で確実に記録を残 すには，このような安定した機体が望ましい。特に飛行練習を行らことが難しいこと，社会人チームに比べ学生 チームはメンバーの入れ替わりがあるため，飛行経験を つむことが難しいので，安定した機体の設計は重要であ り，そのような設計を行らには本研究のようなシミュレ ータと最適化プログラムが有効であることがわかる。機体の安定性は主翼の初期上半角及び飛行中のたわみに左右されるため，主翼の曲げ剛性が重要となる。やわらか すぎると飛翔距離が短くなるので，機体の安定性を考慮 しながら，飛翔距離を伸ばす工夫が必要である。

4 まとめ

鳥人間用滑空機の運動を模擬した飛翔解析プログラム を開発し，遺伝的アルゴリズムを用いた最適化手法を用 いて機体設計の最適化を行った。

機体設計の最適化に寄与するパラメータの検討や外乱 に対する影響について遺伝的アルゴリズムを用いて調心゙ た。遺伝的アルゴリズムによる分析を基にした滑空機は実際の大会でも安定した飛行を実現し，2005年度大会に

Fig． 4 Distribution of flight performance of glider

Fig． 5 Performance map of glider against pitch angle

おいて滑空機部門 4 位（大学チーム 2 位），審査員特別賞 を受賞した。

参考文献

（1）大林 茂，CFD 利用の新段階一数値最適化，日本機械学会誌，第 105 巻，第 999 号，（2002）64－69
（2）加藤寛一郎，大屋 明男，柄沢 研治，航空機力学入門，東京大学出版会，（1982）
（3）東昭，航空を科学する（下巻），酣燈社，（1995）
（4）平野廣美，応用事例でわかる遺伝的アルゴリズムプ ログラミング，パーソナルメディア，（1995）
（5）三宮信夫，喜多一，玉置 久，岩本 貴司，遺伝アル ゴリズムと最適化，朝倉書店，（1998）
（6）Andre C．Marta，Parametric Study of a Genetic Algo－ rithm using a Aircraft Design Optimization Problem ， Genetic Algorithms and Genetic Programming at Stanford 2003，（2003）133－142

No． 14

圧縮性平面チャネル流の乱流遷移構造

上原 敦，前川博（広島大）

Transition to turbulence of compressible plane channel flow

A．Uehara＊and H．Maekawa＊＊
＊Graduate School of Eng．，Hiroshima University
＊＊Graduate School of Eng．，Hiroshima University

Abstract

A study of compressible subsonic／supersonic transitional and turbulent flow in a plane channel with isothermal walls has been performed using a spatially developing DNS．Random disturbance is artificially introduced at the inlet of the computational channel，which yields streamwise vortices and low／high speed streaks downstream．At high Mach number flows，the isothermal boundary conditions give rise to a flow that is strongly influenced by wall－normal gradients of mean density and temperature．These gradients are found to cause major differences of the transitional streak structure between subsonic and supersonic channel flows．

Key Words：Compressible channel turbulent flow，Bypass－transition，DNS

1．序論

圧縮性の壁面境界層における䍚移においては線形安定性理論で予測される初期条件から発達する遷移機構と線形過程をバイパスするいわゆるバイ パス遷移現象があることがこれまで知られている。航空機の翼表面やターボ機械においては，流体の速度は高速で，主流乱れや表面粗さなどにより壁面境界層に大きな攪乱が入る可能性が高く，線形渦程をバイパスした遷移現象が起こると考えられて いる。しかし，バイバス遷移のメカニズムについ ての研究はこれまで非圧縮性のものがほとんどで あり，正縮性の及ぼす影響については明かにされ ていない。そこで本研究では，圧縮性壁面せん断流の選移機構の解明を目的とし，基本的で単純な流れであるチャネル流扎について，風上バイアス コンパクトスキーム ${ }^{1}$ ）を用いた直接数值シミュレ ーション（DNS）を行い，逥移のメカニズムおよび圧縮性の及ぼす影響について調査した。圧縮性チャ ネル流れは流れ方向に周期境界条件を使わず，流入口の層流状態に撹乱を加え，その下流に逥移領域が形成され，さらにその下流に乱流が発達する空間発展問題によって乱流選移機構を研究した。

2．計算法

2． 1 支配方程式

支配方程式は不䌅性 Navie－Stokes 方程式を用いた。

$$
\begin{aligned}
& \frac{\partial \rho}{\partial t}+\frac{\partial\left(\rho u_{i}\right)}{\partial x_{i}}=0 \\
& \frac{\partial\left(\rho u_{i}\right)}{\partial t}+\frac{\partial\left(\rho u_{i} u_{j}\right)}{\partial x_{j}}=-\frac{\partial p}{\partial x_{i}}+\frac{\partial \tau_{i j}}{\partial x_{j}} \\
& \frac{\partial E_{t}}{\partial t}+\frac{\partial\left(E_{i} u_{j}\right)}{\partial x_{j}}=-\frac{\partial\left(p u_{j}\right)}{\partial x_{j}}+\frac{\partial\left(u_{i} \tau_{i j}\right)}{\partial x_{j}}-\frac{\partial q_{j}}{\partial x_{j}}
\end{aligned}
$$

ただし，支配方程式は流入部中心速度 Uo，チャネル半幅L，その他流入部の平均量により無次元化した。全工 ネルギー E_{t} ，熱流東ベクトル q_{i} ，粘性応カテンソル τ_{ij} は

$$
\begin{aligned}
& q_{j}=-\frac{\mu}{(\gamma-1) M^{2} \operatorname{RePr}} \frac{\partial T}{\partial x_{j}} \\
& E_{i}=\frac{p}{(\gamma-1)}+\frac{\rho u_{i} u_{i}}{2} \\
& \tau_{i j}=\frac{\mu}{\operatorname{Re}}\left\{\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}\right)-\frac{2}{3} \delta_{i j}\left(\frac{\partial u_{k}}{\partial x_{k}}\right)\right\}
\end{aligned}
$$

で表され，粘性係数 μ は $\mu=T^{2 / 3}$
とする。なお，代表レイノルズ数および代表マッハ数は $\operatorname{Re}=\frac{\bar{\rho}_{m} U_{0} L}{\bar{\mu}_{m n}}, M=\frac{U_{0}}{\bar{c}_{m \prime}} \quad$（ ：平均量，in：流入部の値） とした。

2． 2 空間の離散化および時間積分

空間の離散化には 6 次精度中心コンパクトスキーム （境界では4次精度），および移流項に対して 5 次精度風上コンパクトスキーム（境界では 3 次精度）を用いた。 また，時間積分には4次精度Runge－Kutta 法を用いた。計算条件は表1に示すとおりである。

Table． 1 Flow and computational parameters

Case	M	$\operatorname{Re} \tau(\mathrm{x}=36 \mathrm{~L})$	$\mathrm{Lx} \times \mathrm{Ly} \times \mathrm{Lz}$	$\mathrm{Nx} \times \mathrm{Ny} \times \mathrm{Nz}$	$\Delta \mathrm{x}+$	$\Delta \mathrm{y}+$	$\Delta \mathrm{z}^{+}$
Case1	0.75	249	$40 \mathrm{~L} \times 2 \mathrm{~L} \times 4 \pi \mathrm{~L} / 3$	$1001 \times 73 * \times 110$	10	$1.1(\mathrm{~min})$, $14(\mathrm{max})$
Case2	3.0	242	$40 \mathrm{~L} \times 2 \mathrm{~L} \times 4 \pi \mathrm{~L} / 3$	$1001 \times 73 * \times 110$	9.7	$1.0(\mathrm{~min})$, $14(\mathrm{max})$

3．計算結果および考察

流入部摫乱振幅を主流速度の5\％としDNSを実行し た結果，チャネル流れにおいて，縦渦，ストリーク構造， ヘアピン渦といった遷移流構造の基本的要素の形成，お よび，その質的変化に伴う乱流への遷移を確認すること ができた。Fig． 1 にcase1（M＝0．75）の渦構造（濃）及 び，低速ストリーク（薄）の下流への発達の様子を示す
（渦構造の可視化には速度勾配テンソルの第二不変量 Q の等値面を用いた）。ヘアピン渦の両足は縦渦対となつ ており，縦渦対の内側では壁面近くの低速の流体が吹き上げられ低速ストリークを形成するため，その低速スト リークを取り巻くようにヘアピン渦が位置している。ま た，一本の低速ストリークに対していくつかのヘアピン渦が主流方向に並んで配置している様子も確認できる。

Fig． 1 Iso－surface of Q， 2.0 （dark）and $\mathrm{u}^{\prime}, \cdot 0.1$（gray）for $\mathrm{M}=0.75$
Fig． 2 は下流部（ $\mathrm{x}=36 \mathrm{~L}$ ）における平均流速分布を示した ものである。wall unit を使って表した速度分布は本研究では $M=0.75$ の場合対数則に非常に近く定数も非圧縮性チャネル乱流の場合に非常に近い。一方，M＝3．0の場合も対数則に近く，時間発展DNSにおけるように対数則 から離れていることはない。ただし，Van Driest 変換（各 y における密度の重みを考慮した解析法）で示すと，そ の分布は対数則に基づく乱流速度分布に漸近することが確認される。ここでは，Coleman らによるDNS の結果 $(1995)^{2)}$ と比較するために， y 方向についての平均速度 を代表速度としたマッハ数 M＊を用いた。Case1，case2 を M^{*} で表すと，それぞれ $\mathrm{M}^{*}=0.51$ ， 1.97 となる。また， Fig． 3 に遷移領域における壁面近傍のストリーク構造を示す。ストリークは主流方向において，他のストリーク と交差し一本のストリークを形成するといった分嶺を繰 り返す。マッハ数の異なる2つの条件を比較すると，マ ッハ数が小さい場合の方がストリークのゆれが大きく，主流方向について頻繁にその構造が変化することがわか る。レイノルズ応力は時間発展計算 ${ }^{3)}$ と同様にマッハ数 で異なる結果を得た。超音速流れでは，入り口付近から擬似衝撃波が発生し選移に影響を与えていることがわかる。

Fig． 2 Distribution of mean streamwise velocity u in wall units．

Fig3．Contours of u^{\prime} at for（a） $\mathrm{M}=0.75$ ，（b） $\mathrm{M}=3.0$ ，（black： u^{\prime} >0 ，white： $\mathrm{u}^{\prime}<0$ ）

また，乱流領域でも圧力勾配がCase1 とCase2 で少し異なる。

4．結論

$\operatorname{Re}=6000$ ，（乱流域で $\operatorname{Re} \tau \approx 250$ ），流入部靚乱振幅 5% としてDNS を実行した結果，チャネル流れにおける遷移流構造の形成および，乱流への遷移を確認すること ができた。異なるマッハ数で比較した場合，マッハ数が大きいほど遷移位置が下流へ移動することを確認できた。 また，マッハ数が大きいほど，選移領域におけるストリ ーク構造のゆれが小さいことがわかった。

参考文献

1）Deng，X．，Maekawa，H．and Shen，C．，1996，AIAA Paper ，96－1972
2）G．N．Coleman，J．Kim and R．D．Moser，1995，J．Fluid Mech，305，p159－183
3）H．Foysi，S．Sarkar and R．Friedrich，2004 J．Fluid Mech ，509，p207－216

No． 15 非一様乱流の交差独立性完結仮説による統計理論

巽 友正（京大，国際高等研）

Statistical theory of inhomogeneous turbulence under the cross－independence closure hypothesis

Tomomasa Tatsumi

Kyoto University，IIAS

Abstract

Inhomogeneous turbulence is studied statistically using the cross－independence closure hypo－ thesis for the equations of multi－point velocity distributions．First，the turbulent velocity field is decomposed into the mean flow and turbulent fluctuation around the mean．The equations for the mean velocity and the distributions of turbulent velocity are derived．These equations are closed by applying the cross－independence closure hypothesis which has been successfully used for homogeneous turbulence（Tatsumi \＆Yoshimura，2004，2006）．The closed equations are obtained for the mean velocity and the one－and two－point velocity distributions．At large Reynolds numbers，these equation are shown to give the inertial normal velocity distributions in the outer range and the non－normal velocity distributions in the local range respectively．

Key Words：Inhomogeneous turbulence，Cross－independence closure hypothesis，Inertial normal velocity distribution，Local non－normal velocity distribution

1．乱流速度の Reynolds 分解

乱流速度 $\mathbf{u}(\mathbf{x}, t)$ を，その平均〈 $\mathbf{u}(\mathbf{x}, t)\rangle$ とそれ からの変動 $\hat{\mathbf{u}}(\mathbf{x}, t)$ とに Reynolds 分解すると，

$$
\begin{equation*}
\mathbf{u}=\langle\mathbf{u}\rangle+\hat{\mathbf{u}}, \quad\langle\hat{\mathbf{u}}\rangle=\mathbf{0}, \tag{1}
\end{equation*}
$$

となる。 このとき，圧力を消去した通動方程式，

$$
\begin{aligned}
\partial \mathbf{u} / \partial t & +(\partial / \partial \mathbf{x} \cdot \mathbf{u}) \mathbf{u}-v|\partial / \partial \mathbf{x}|^{2} \mathbf{u}+(\partial / \partial \mathbf{x})(1 / 4 \pi) \times \\
& \times \int\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{-1}\left\{\partial / \partial \mathbf{x}^{\prime} \cdot\left(\mathbf{u}^{\prime} \cdot \partial / \partial \mathbf{x}^{\prime}\right) \mathbf{u}^{\prime}\right\} \mathrm{d} \mathbf{x}^{\prime}=0,(2)
\end{aligned}
$$

および，非王縮条件，

$$
\begin{equation*}
\partial / \partial \mathbf{x} \cdot \mathbf{u}=0 \tag{3}
\end{equation*}
$$

に（1）式を代入すると，平均速度〈u〉に対する運動方程式と非王縮条件，

$$
\begin{gather*}
\partial\langle\mathbf{u}\rangle / \partial t+(\partial / \partial \mathbf{x} \cdot\langle\mathbf{u}\rangle)\langle\mathbf{u}\rangle+\langle(\partial / \partial \mathbf{x} \cdot \hat{\mathbf{u}}) \hat{\mathbf{u}}\rangle \\
-v|\partial / \partial \mathbf{x}|^{2}\langle\mathbf{u}\rangle+(\partial / \partial \mathbf{x})(1 / 4 \pi) \int\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{-1} \partial / \partial \mathbf{x} \\
\cdot\left\{\left(\partial / \partial \mathbf{x}^{\prime} \cdot\left\langle\mathbf{u}^{\prime}\right\rangle\right)\left\langle\mathbf{u}^{\prime}\right\rangle+\left\langle\left(\partial / \partial \mathbf{x}^{\prime} \cdot \hat{\mathbf{u}}^{\prime}\right) \hat{\mathbf{u}}^{\prime}\right\rangle\right\} \mathrm{d} \mathbf{x}^{\prime}=0, \tag{4}\\
\partial / \partial \mathbf{x} \cdot\langle\mathbf{u}\rangle=0 \tag{5}
\end{gather*}
$$

および，変動速度 \mathbf{u} の運動方程式と非圧縮条件， $\partial \hat{\mathbf{u}} / \partial t+(\partial / \partial \mathbf{x} \cdot\langle\mathbf{u}\rangle) \hat{\mathbf{u}}+(\partial / \partial \mathbf{x} \cdot \hat{\mathbf{u}})\langle\mathbf{u}\rangle+(\partial / \partial \mathbf{x} \cdot \hat{\mathbf{u}}) \hat{\mathbf{u}}$ $-\langle(\partial / \partial \mathbf{x} \cdot \hat{\mathbf{u}}) \hat{\mathbf{u}}\rangle-v / \partial /\left.\partial \mathbf{x}\right|^{2} \hat{\mathbf{u}}+(\partial / \partial \mathbf{x})(1 / 4 \pi) \times$
$\times \int\left|\mathbf{x}-\mathbf{x}^{\prime}\right|^{-1} \partial / \partial \mathbf{x}^{\prime} \cdot\left\{\left(\partial / \partial \mathbf{x}^{\prime} \cdot\left\langle\mathbf{u}^{\prime}\right\rangle\right) \hat{\mathbf{u}}^{\prime}+\left(\partial / \partial \mathbf{x}^{\prime} \cdot \hat{\mathbf{u}}^{\prime}\right)\left\langle\mathbf{u}^{\prime}\right\rangle\right.$ $\left.+\left(\partial / \partial \mathbf{x}^{\prime} \cdot \hat{\mathbf{u}}^{\prime}\right) \hat{\mathbf{u}}^{\prime}-\left\langle\left(\partial / \partial \mathbf{x}^{\prime} \cdot \hat{\mathbf{u}}^{\prime}\right) \hat{\mathbf{u}}^{\prime}\right\rangle\right\} \mathrm{d} \mathbf{x}^{\prime}=0$,

$$
\begin{equation*}
\partial / \partial \mathbf{x} \cdot \hat{\mathbf{u}}=0 \tag{7}
\end{equation*}
$$

が導かれる

2．変動速度分布方程式

空間内の 3 点における変動速度，$\hat{\mathbf{u}}_{1}=\hat{\mathbf{u}}\left(\mathbf{x}_{1}, t\right)$ ， $\hat{\mathbf{u}}_{2}=\hat{\mathbf{u}}\left(\mathbf{x}_{2}, t\right), \hat{\mathbf{u}}_{3}=\hat{\mathbf{u}}\left(\mathbf{x}_{3}, t\right)$ の結合確率分布は，

$$
\begin{align*}
& f\left(\mathbf{V}_{1}, \mathbf{x}_{1} ; t\right)=\left\langle\delta\left(\hat{\mathbf{u}}_{1}-\mathbf{V}_{1}\right)\right\rangle=\left\langle\delta\left(\hat{\mathbf{u}}\left(\mathbf{x}_{1}, t\right)-\mathbf{V}_{1}\right)\right\rangle, \\
& f^{(2)}\left(\mathbf{v}_{1}, \mathbf{v}_{2} ; \mathbf{x}_{1}, \mathbf{x}_{2} ; t\right)=\left\langle\delta\left(\hat{\mathbf{u}}_{1}-\mathbf{V}_{1}\right) \delta\left(\hat{\mathbf{u}}_{2}-\mathbf{V}_{2}\right)\right\rangle \\
& =\left\langle\delta\left(\hat{\mathbf{u}}\left(\mathbf{x}_{1}, t\right)-\mathbf{v}_{1}\right) \delta\left(\hat{\mathbf{u}}\left(\mathbf{x}_{2}, t\right)-\mathbf{V}_{2}\right)\right\rangle, \\
& f^{(3)}\left(\mathbf{v}_{1}, \mathbf{V}_{2}, \mathbf{v}_{3} ; \mathbf{x}_{1}, \mathbf{x}_{2}, \mathbf{x}_{3} ; t\right) \\
& =\left\langle\delta\left(\hat{\mathbf{u}}_{1}-\mathbf{V}_{1}\right) \delta\left(\hat{\mathbf{u}}_{2}-\mathbf{V}_{2}\right) \delta\left(\hat{\mathbf{u}}_{3}-\mathbf{V}_{3}\right)\right\rangle \\
& =\left\langle\delta\left(\hat{\mathbf{u}}\left(\mathbf{x}_{1}, t\right)-\mathbf{V}_{1}\right) \delta\left(\hat{\mathbf{u}}\left(\mathbf{x}_{2}, t\right)-\mathbf{V}_{2}\right) \delta\left(\hat{\mathbf{u}}\left(\mathbf{x}_{3}, t\right)-\mathbf{v}_{3}\right)\right\rangle, \tag{8}
\end{align*}
$$

で定義される。ここに， $\mathbf{V}_{1}, \mathbf{V}_{2}, \mathbf{v}_{3}$ は，変動速度 $\hat{\mathbf{u}}_{1}$ ， \mathbf{u}_{2} ， \mathbf{u}_{3} に対する確率変数を，δ は 3 次元デル夕関数を表わす。

変動速度 \mathbf{u} の分布を支配する方程式は，（6）式 から出発して，Lundgren（1967）の手法を用い て求められるが，それらは閉じていないから， ここでは交差独立性仮説を用いて完結させる。

2.11 点速度分布方程式

1 点速度分布 f に対する閉じた方程式は，次の ように表わされる。

$$
\begin{align*}
& {[\partial / \partial t+(\langle\mathbf{u}\rangle+\mathbf{v}) \cdot \partial / \partial \mathbf{x}-(\partial / \partial \mathbf{x} \cdot \mathbf{v})\langle\mathbf{u}\rangle \cdot \partial / \partial \mathbf{v}} \\
& -v|\partial / \partial \mathbf{x}|^{2}+\alpha(\mathbf{x}, t)|\partial / \partial \mathbf{v}|^{2} \\
& -\partial / \partial \mathbf{v} \cdot \partial / \partial \mathbf{x}\{\beta(\mathbf{v}, \mathbf{x}, t)+\gamma(\mathbf{v}, \mathbf{x}, t)\}] f(\mathbf{v}, \mathbf{x}, t)=0 .(9) \\
& \text { ここに, } \alpha, \beta, \gamma \text { はいずれも, } \\
& \alpha(\mathbf{x}, t)=\varepsilon(\mathbf{x}, t) / 3 \\
& =(2 / 3) v \lim _{\mathrm{rr} \rightarrow-0}\left|\partial / \partial \mathbf{r}^{\prime}\right|^{2} \int\left|\mathbf{v}^{\prime}\right|^{2} g-\left(\mathbf{v}^{-} ; \mathbf{x}, \mathbf{r}^{\prime} ; t\right) \mathrm{d} \mathbf{v}^{\prime} \text {, } \\
& \beta(\mathbf{v}, \mathbf{x}, t)=(1 / 4 \pi) \iint \mid \mathbf{r}^{\prime-1}\left(\left(\mathbf{v}+2 \mathbf{v}^{\prime}\right) \cdot \partial / \partial \mathbf{r}^{\prime}\right)^{2} \times \\
& \times g\left(\mathbf{v}^{\prime} ; \mathbf{x}, \mathbf{r}^{\prime} ; t\right) \mathrm{d} \mathbf{r}^{\prime} \mathbf{d} \mathbf{v}^{\prime}, \\
& \gamma(\mathbf{v}, \mathbf{x}, t)=\left.(1 / 4 \pi) \iint \mathbf{r}^{\prime}\right|^{-1}\left(\left(\mathbf{v}+2 \mathbf{v}^{\prime}\right) \cdot \partial / \partial \mathbf{r}^{\prime}\right)^{2} \times \\
& \times\left(\mathbf{v}^{\prime} \cdot \partial / \partial \mathbf{v}\right) g\left(\mathbf{v}^{-}, \mathbf{x}, \mathbf{r}^{\prime} ; t\right) \mathrm{d} \mathbf{r}^{\prime} \mathrm{d} \mathbf{v}^{-}, \tag{10}
\end{align*}
$$

で定義されるパラメターで，$\varepsilon=3 \alpha$ はエネルギ一散逸率を表わし，β, γ はいずれもエネルギー の次元をもつ。

2.2 速度和分布方程式

2 点速度分布 ${ }^{(2)}$ と同等の統計的知識は， 2 点交差速度分布 $g^{(2)}$ の成分である速度和分布 g_{+}お よび速度差分布 g－によって与えられる。

速度和分布 g ．に対する閉じた方程式は，次の ように表わされる。
$\left[\partial / \partial t+\left(\left\langle\mathbf{u}_{1}\right\rangle+\mathbf{v}_{+}\right) \cdot \partial / \partial \mathbf{x}_{1}+\left(\left\langle\mathbf{u}_{2}\right\rangle+\mathbf{v}\right) \cdot \partial / \partial \mathbf{x}_{2}\right.$
$-(1 / 2)\left\{\left(\partial / \partial \mathbf{x}_{1} \cdot \mathbf{v}_{+}\right)\left\langle\mathbf{u}_{1}\right\rangle+\left(\partial / \partial \mathbf{x}_{2} \cdot \mathbf{v}_{+}\right)\left\langle\mathbf{u}_{2}\right\rangle\right\} \cdot \partial / \partial \mathbf{v}_{+}$ $-v\left\{\left.\partial \partial \partial \mathbf{x}_{1}\right|^{2}+\left|\partial / \partial \mathbf{x}_{2}\right|^{2}\right\}$
$+(1 / 4)\left\{\alpha\left(\mathbf{x}_{1}, t\right)+\alpha\left(\mathbf{x}_{2}, t\right)\right\}|\partial / \partial \mathbf{v}+|^{2}$
$-(1 / 2) \partial / \partial \mathbf{v}_{+} \cdot \partial / \partial \mathbf{x}_{1}\left\{\beta\left(\mathbf{v}_{+}, \mathbf{x}_{1}, t\right)+(1 / 2) \gamma\left(\mathbf{v}_{\tau}, \mathbf{x}_{1}, t\right)\right\}$
$\left.-(1 / 2) \partial / \partial \mathbf{v}_{+} \cdot \partial / \partial \mathbf{x}_{2}\left\{\beta\left(\mathbf{v}_{6}, \mathbf{x}_{2}, t\right)+(1 / 2) \gamma\left(\mathbf{v}_{+}, \mathbf{x}_{2}, t\right)\right\}\right]$ $\times g_{+}\left(\mathbf{v}_{+} ; \mathbf{X}_{1}, \mathbf{x}_{2} ; t\right)=0 .(11)$
ここに，α, β, γ はいずれも (10) 式で定義される パラメターである。

2.3 速度差分布方程式

速度差分布 g．に対する閉じた方程式は，次の ように表わされる。
$\left[\partial / \partial t+\left(\left\langle\mathbf{u}_{1}\right\rangle-\mathbf{v}\right) \cdot \partial / \partial \mathbf{x}_{1}+\left(\left\langle\mathbf{u}_{2}\right\rangle+\mathbf{v}\right) \cdot \partial / \partial \mathbf{x}_{2}\right.$
$-(1 / 2)\left\{\left(\partial / \partial \mathbf{x}_{1} \cdot \mathbf{v}-\right)\left\langle\mathbf{u}_{1}\right\rangle+\left(\partial / \partial \mathbf{x}_{2} \cdot \mathbf{v}-\right)\left\langle\mathbf{u}_{2}\right\rangle\right\} \cdot \partial / \partial \mathbf{v}-$
$-v\left\{\left|\partial / \partial \mathbf{x}_{1}\right|^{2}+\left|\partial / \partial \mathbf{x}_{2}\right|^{2}\right\}$
$+(1 / 4)\left\{\alpha\left(\mathbf{x}_{1}, t\right)+\alpha\left(\mathbf{x}_{2}, t\right)\right\}|\partial / \partial \mathbf{v}-|^{2}$
$+(1 / 2) \partial / \partial \mathbf{v} \cdot \partial / \partial \mathbf{x}_{1}\left\{\beta\left(\mathbf{v}, \mathbf{x}_{1}, t\right)+(1 / 2) \gamma\left(\mathbf{v}, \mathbf{x}_{1}, t\right)\right\}$
$\left.-(1 / 2) \partial / \partial \mathbf{v} \cdot \partial / \partial \mathbf{x}_{2}\left\{\beta\left(\mathbf{v}-, \mathbf{x}_{2}, t\right)+(1 / 2) \gamma\left(\mathbf{v} \cdot, \mathbf{x}_{2}, t\right)\right\}\right]$ $\times g\left(\mathbf{v} ; \mathbf{x}_{1}, \mathbf{x}_{2} ; t\right)=0 .(12)$
ここでも，α, β, γ はいずれも 10 ）式で定義され
るパラメターである。

3．速度分布方程式の一般的性質

前節で遒いた速度分布方程式（9），（11），（12）は，本研究における基碟方程式を構成する。非一樣乱流に関する 2 次の統計量までのすべての知識 は，与えられた平均流の境界条件の下で，これ らの方程式の解として求められる。
具体的な乱流についての解を求める前に，こ れらの方程式の一般的性質を調心てみよう。

3．1 Kolmogorov の局所等方性仮説

速度分布方程式（9），（11），（12）に関して留意す べきことは，いずれも平均速度〈u〉を伝達項に おいてのみ含をため，その他の粘性項や圧力項 は平均乱流の影響を受けず，粘性散逸に関して は一様乱流の場合と変わらないことである。

このことは，Kolmogorov（1941）がすでに，
「局所等方性仮説」として仮定したことである が，それが数学的に裏付けられたことになる。 また，このことは，「非一様乱流」の統計的取扱いを著しく簡単化させる特性として留意すべ きであろう。

3.2 乱流のエネルギー散逸

速度分布方程式（9），（11），（12）の粘性項に着目 するとき，それが，分子粘性しを係数とする空間的抬散項と，エネルギー散逸率 $\alpha=\varepsilon / 3$ を係数とする速度空間での逆拉散項からなることが理解されるであろう。

前者は層流の場合と同じ「粘性拡散」であり，後者は一様乱流の場合と同じ「慣性散逸」であ る。非一様乱流におけるエネルギー散逸が，こ の両者の和で表わされることは，この場合，そ れらの中間的な表現としての「乱流粘性」とい った概念が現実的でないことを示している。

3.3 エネルギー均衡方程式

乱流のエネルギー散逸を議論するに当たつて，一点速度分布方程式（9）とエネルギー均衡方程式 との整合性を確かめることは有意義であろう。
乱流変動のエネルギー，

$$
\begin{equation*}
E(\mathbf{x}, t)=(1 / 2)\left\langle\hat{\mathcal{u}}^{2}\right\rangle \tag{13}
\end{equation*}
$$

に対するエネルギー均衡方程式は，（6）式加ら直 ちに次のように求められる。

$$
\begin{align*}
& {\left[\partial / \partial t+\left\langle u_{k}\right\rangle \partial / \partial x_{k}-v\left(\partial / \partial x_{k}\right)^{2}\right] E(\mathbf{x}, t)} \\
& \quad+\left\langle\hat{u_{\hat{u}}}\right\rangle\left(\partial / \partial x_{k}\right)\left\langle u_{k}\right\rangle+(1 / 6)\left(\partial / \partial x_{k}\right)\left\langle\hat{u}_{k} \hat{u}_{t}^{2}\right\rangle \\
& \quad+v\left\langle\left(\partial \hat{u_{l}} / \partial x_{k}\right)^{2}\right\rangle=0 . \tag{14}
\end{align*}
$$

一方， 1 点速度分布に対する（9）式をテンソル形に書いて演算 $\int v_{i}^{2} \mathrm{dv}$ を施せば，

$$
\begin{align*}
& \int v_{i}^{2}\left[\partial / \partial t+\left(\left\langle u_{k}\right\rangle+v_{k}\right) \partial / \partial x_{k}-\left(\partial / \partial x_{k}\right) v_{k}\left\langle u_{j}\right\rangle \partial / \partial v_{j}\right. \\
& -v\left(\partial / \partial x_{k}\right)^{2}+\alpha(\mathbf{x}, t)\left(\partial / \partial v_{j}\right)^{2} \\
& \left.-\partial / \partial v_{k} \partial \partial x_{k}\{\beta(\mathbf{v}, \mathbf{x}, t)+\gamma(\mathbf{v}, \mathbf{x}, t)\}\right] f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v}=0 \\
& \text { となるが, } \beta \text { および } \gamma \text { に対する評偳を行ならと, } \\
& {\left[\partial / \partial t+\left\langle u_{k}\right\rangle \partial / \partial x_{k}-v\left(\partial / \partial x_{k}\right)^{2}\right] E(\mathbf{x}, t)} \\
& \quad+\left\langle\hat{u}_{k} \hat{u}_{j}\right\rangle\left(\partial / \partial x_{k} k\left\langle u_{j}\right\rangle+(1 / 6) \partial / \partial x_{k}\left\langle\hat{u}_{k} \hat{u}_{i}^{2}\right\rangle\right. \\
& \quad+\varepsilon(\mathbf{x}, t)=0 \tag{15}
\end{align*}
$$

と書ける。
（15）式は，エネルギー散逸率 ε の定義，

$$
\begin{equation*}
\varepsilon(\mathbf{x}, t)=v\left\langle\left(\partial \hat{u}, / \partial x_{k}\right)^{2}\right\rangle \tag{16}
\end{equation*}
$$

を考慮するとき，エネルギー㘬衡方程式（14）に他ならない。すなわち，1点速度分布方程式（9） はエネルギー均衡方程式（14）と整合している。

3.4 非発散条件

速度分布方程式として確かめておくべきこと は，非発散条件（7）との整合性である。（7）式は 1 点速度分布 f を用いて，

$$
\begin{equation*}
\partial / \partial \mathbf{x} \cdot \int_{\mathbf{v}} f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v}=0 \tag{17}
\end{equation*}
$$

の形に書ける。
1 点速度分布方程式（9）のこの条件との整合性 を確かめるため，演算 $\partial / \partial \mathbf{x} \cdot \int \mathbf{v} \mathrm{d} \mathbf{v}$ を施せば，
$\partial / \partial \mathbf{x} \cdot \int \mathbf{v}[\partial / \partial t+(\langle\mathbf{u}\rangle+\mathbf{v}) \cdot \partial / \partial \mathbf{x}$
$+(\partial / \partial \mathbf{x} \cdot \mathbf{v})\langle\mathbf{u}\rangle \cdot \partial / \partial \mathbf{v}-v|\partial / \partial \mathbf{x}|^{2}+\alpha(\mathbf{x}, t) \partial /\left.\partial \mathbf{v}\right|^{2}$
$-\partial / \partial \mathbf{v} \cdot \partial / \partial \mathbf{x}\{\beta(\mathbf{v}, \mathbf{x}, t)+\gamma(\mathbf{v}, \mathbf{x}, t)\}] f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v}=0$
となる。しかしこの方程式は， 0 平均値条件と積分により，

$$
\begin{align*}
& \partial / \partial \mathbf{x} \cdot \int \mathbf{v}[\mathbf{v} \cdot \partial / \partial \mathbf{x}-\partial / \partial \mathbf{v} \cdot \partial / \partial \mathbf{x}\{\beta(\mathbf{v}, \mathbf{x}, t) \\
&+\gamma(\mathbf{v}, \mathbf{x}, t)\}] f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v}=0, \tag{18}
\end{align*}
$$

と簡単化される。
（18）式の［］内の第1頂（移流項）は，次のよ うに書ける。

$$
T_{\mathrm{r}}=\partial / \partial \mathbf{x} \cdot \int_{\mathbf{V}}(\mathbf{v} \cdot \partial / \partial \mathbf{x}) f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v}
$$

$$
=\int(\mathbf{v} \cdot \partial / \partial \mathbf{x})^{2} f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v}
$$

また，第2項（压力項）は，β と γ の定義式（省略） を代入すると，次のように書ける。

$$
\begin{aligned}
& T_{\mathrm{p}}=-\partial / \partial \mathbf{x} \cdot \int \mathbf{v}(\partial / \partial \mathbf{v} \cdot \partial / \partial \mathbf{x})\{\beta(\mathbf{v}, \mathbf{x}, t)+\gamma(\mathbf{v}, \mathbf{x}, t)\} \times \\
& \times f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v} \\
& =|\partial / \partial \mathbf{x}|^{2} \int[(1 / 4 \pi)] \int|\mathbf{r}|^{-1}((\mathbf{v}+2 \mathbf{v}-) \cdot \partial / \partial \mathbf{r})^{2} \\
& \left.\left(1+\mathbf{v} \cdot \partial / \partial \mathbf{v}_{1}\right) g(\mathbf{v}-; \mathbf{x}, \mathbf{r} ; t) \mathrm{d} \mathbf{r d} \mathbf{v}-\right] f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v} \\
& =-\int\left[\int \delta(\mathbf{r})((\mathbf{v}+2 \mathbf{v}) \cdot \partial / \partial \mathbf{r})^{2}\left(1+\mathbf{v} \cdot \partial / \partial \mathbf{v}_{\mathbf{l}}\right)\right. \\
& \times g(\mathbf{v}-; \mathbf{x}, \mathbf{r} ; t) \mathrm{d} \mathbf{r d v}] f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v} \\
& =-\int\left[\int((\mathbf{v}+2 \mathbf{v}-) \cdot \partial / \partial \mathbf{r})^{2}\left(1+\mathbf{v} \cdot \partial / \partial \mathbf{v}_{1}\right) \delta(\mathbf{v}-) \mathrm{d} \mathbf{v}-\right] \\
& \times f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v}
\end{aligned}
$$

$$
=-\int(\mathbf{v} \cdot \partial / \partial \mathbf{r})^{2} f(\mathbf{v}, \mathbf{x}, t) \mathrm{d} \mathbf{v}=-T_{\mathrm{r}}
$$

したがって，$T_{\mathrm{r}}+T_{\mathrm{p}}=0$ となるから，（18）式は恒等的に成立し， 1 点速度分布方程式（9）は非発散条件（17）と整合することが確かめられる。

3.5 非一樣乱流の統計理論

平均流を伴ら乱流理論において，エネルギー均衡方程式（14）から出発して，その高次項を近似する $K-\varepsilon$ モデルなどの近似理論が知られてい る（木田ほかっ1999）。

しかし上に述べたように，（14）式と整合する速度分布方程式（9），（11），（12）が閉じた形に得ら れており，必要な統計的知識はこれらの方程式 の解として導かれるので，更なる近似を必要と しない。この意味で，問題は原理的には解けた と言って良い。ただ，典型的あるいは実際的に重要な非一様乱流について解を具体的に求める ことは必要であり，これは今後の課題である。

4．非一様変動乱流

平均流の無い非一様変動乱流は，一般の非一様乱流と一様乱流との中間的な存在で，一様乱流に似た一般的性質をもっている。

4.1 速度分布の慣性相似性

非一様変動乱流に対して，2節で考察した速度分布方程式（9），（11），（12）は次のように簡単化 される。

4．1．1 1 点速度分布方程式

$$
\begin{aligned}
& {\left[\left[\partial / \partial t-v|\partial / \partial \mathbf{x}|^{2}+\alpha(\mathbf{x}, t)|\partial / \partial \mathbf{v}|^{2}\right]+[\partial / \partial \mathbf{x} \cdot\{\mathbf{v}\right.} \\
& \quad-\partial / \partial \mathbf{v}(\beta(\mathbf{v}, \mathbf{x}, t)+\gamma(\mathbf{v}, \mathbf{x}, t))\}]] f(\mathbf{v}, \mathbf{x}, t)=0 .(19)
\end{aligned}
$$

4．1．2 速度和むよび速度差分布方程式

$$
\begin{align*}
& {\left[\left[\partial / \partial t-v\left\{\left|\partial / \partial \mathbf{x}_{1}\right|^{2}+\left|\partial / \partial \mathbf{x}_{2}\right|^{2}\right\}\right.\right.} \\
& \left.+(1 / 4)\left\{\alpha\left(\mathbf{x}_{1}, t\right)+\alpha\left(\mathbf{x}_{2}, t\right)\right\}\left|\partial / \partial \mathbf{v}_{1}\right|^{2}\right] \\
& +\left[\pm \partial / \partial \mathbf{x}_{1} \cdot\left\{\mathbf{v}_{ \pm}-(1 / 2) \partial / \partial \mathbf{v}_{ \pm}\left(\beta\left(\mathbf{v}_{ \pm}, \mathbf{x}_{1}, t\right)\right.\right.\right. \\
& \left.\left.+(1 / 2) \gamma\left(\mathbf{v}_{ \pm}, \mathbf{x}_{1}, t\right)\right)\right\} \\
& +\partial / \partial \mathbf{x}_{2} \cdot\left\{\mathbf{v}_{ \pm}-(1 / 2) \partial / \partial \mathbf{v}_{ \pm}\left(\beta\left(\mathbf{v}_{ \pm}, \mathbf{x}_{2}, t\right)\right.\right. \\
& \\
& \left.\left.\left.\left.\quad+(1 / 2) \gamma\left(\mathbf{v}_{ \pm}, \mathbf{x}_{2}, t\right)\right)\right\}\right]\right] \times \tag{20}\\
& \quad \times g_{ \pm}\left(\mathbf{v}_{ \pm} ; \mathbf{x}_{1}, \mathbf{x}_{2}, t\right)=0 .(20
\end{align*}
$$

4．1．3 速度分布方程式のスケール分離

（19），（20）式はいずれも2つの部分，すなわち時間変化項と粘性散逸項を含む等方部分（第 1 の ［］）と，伝達項と圧力項を含む軸対称部分（第2

の［］）とによつて構成されている。この構成は，基本的に一様等方性乱流における対応する速度分布方程式のそれと同じである。そして後者は少粘性 $\vee \rightarrow 0$ または高 Reynolds 数 $R \rightarrow \infty$ の極限において2つのスケールに分離し，外部領域 $\left|\mathbf{x}_{2}-\mathbf{x}_{1}\right|>0$ では方程式の等方部分の解となり，局所領域 $\left|\mathbf{x}_{2}-\mathbf{x}_{1}\right|=\mathrm{O}\left(\mathrm{V}^{3 / 4}\right)$ では軸対称部分の解と なる。（Tatsumi etal．2006）

4．1．4 1 点速度分布

以上の結果を援用すれば，1点速度分布 f は外部領域 $|\mathbf{x}|>0$ では，（19）式の等方部分，
$\left[\partial / \partial t-v|\partial / \partial \mathbf{x}|^{2}+\alpha(\mathbf{x}, t)|\partial / \partial \mathbf{v}|^{2}\right] f(\mathbf{v}, \mathbf{x}, t)=0,(21)$
に従うことになる。
一様乱流の場合には，（21）式は，

$$
\begin{equation*}
\left[\partial / \partial t+\alpha(t)|\partial / \partial \mathbf{v}|^{2}\right] f(\mathbf{v}, t)=0 \tag{22}
\end{equation*}
$$

となり，その自己相似解は，

$$
\begin{align*}
\alpha(t) & =\alpha_{0} t^{-2} \tag{23}\\
f(\mathbf{v}, t) & =f_{0}(\mathbf{v}, t) \\
& \equiv\left(t / 4 \pi \alpha_{0}\right)^{3 / 2} \exp \left[-|\mathbf{v}|^{2} t / 4 \alpha_{0}\right] \tag{24}
\end{align*}
$$

のように求められ，分布はN1と名づけられた。
非一様乱流の場合にも，（21）式の解は，一様
乱流と同様の慣性正規分布で表され，解の \mathbf{x} 依存性は，パラメター，

$$
\begin{equation*}
\alpha(\mathbf{x}, t)=\alpha_{0}(\mathbf{x}, t) t^{-2} \tag{25}
\end{equation*}
$$

の $\alpha_{0}(\mathbf{x}, t)$ を通じて現れると考えることができる。
このとき，（21）式は，

$$
\left[\partial / \partial t+\alpha_{0}(\mathbf{x}, t) t^{-2}|\partial / \partial \mathbf{v}|^{2}\right.
$$

$$
\left.+\left\{\partial / \partial t-v|\partial / \partial \mathbf{x}|^{2}\right\} \alpha_{0}(\mathbf{x}, t) \partial / \partial \alpha_{0}\right] f(\mathbf{v}, \mathbf{x}, t)=0
$$

となるが，この方程式が成立するためには，

$$
\begin{equation*}
\left[\partial / \partial t+\alpha_{0}(\mathbf{x}, t) t^{-2}|\partial / \partial \mathbf{v}|^{2}\right] f(\mathbf{v}, \mathbf{x}, t)=0 \tag{26}
\end{equation*}
$$

$$
\begin{equation*}
\left[\partial / \partial t-v|\partial / \partial \mathbf{x}|^{2}\right] \alpha_{0}(\mathbf{x}, t)=0 \tag{27}
\end{equation*}
$$

が成立すればよい。
雨式の自己相似解は，

$$
\begin{align*}
& f(\mathbf{v}, \mathbf{x}, t)=f_{0}(\mathbf{v}, \mathbf{x}, t) \\
& \quad \equiv\left(t / 4 \pi \alpha_{0}(\mathbf{x}, t)\right)^{3 / 2} \exp \left[-|\mathbf{v}|^{2} t / 4 \alpha_{0}(\mathbf{x}, t)\right] \tag{28}\\
& \alpha_{0}(\mathbf{x}, t) \equiv \alpha_{0}(4 \pi v t)^{-3 / 2} \exp \left[-|\mathbf{x}|^{2} / 4 v t\right] \tag{29}
\end{align*}
$$

で表すされる。（28）式を分布 BN1と名づける。
（28）式は，変数 \mathbf{V} と \mathbf{x} に関していずれも正規分布であるが，時間的変化の仕方は互いに正反対である。すなわち速度分布は，変数 V に関し ては一様乱流における正規分布と同様，初期時刻 $t=0$ における分布密度 0 の一様分布から出発し，正規形を保ちながら単調に収束して，t $\rightarrow \infty$ の極限で δ 分布に移行する。一方，エネ ルギー散逸率 $\alpha_{0}(\mathbf{x}, t)$ は，変数 \mathbf{x} に関して，$t=$ 0 における δ 分布から出発し，正規形を保ちな

がら単調に拡散して，$t \rightarrow \infty$ の極限で分布密度 0 の一様分布に移行する。

この非一様変動乱流における1点速度の慣性正規分布 BN1は，一様等方性乱流における1点速度の慣性正規分布N1と共に，それぞれの乱流の規準（canonical）分布であると言えよう。

4．1．5速度和および速度差分布

速度和分布 g_{+}および速度差分布 g ．もまた，外部領域 $\left|\mathbf{x}_{2}-\mathbf{x}_{1}\right|>0$ では，（20）式の等方部分，

$$
\begin{align*}
& {\left[\partial / \partial t-v\left\{\partial /\left.\partial \mathbf{x}_{1}\right|^{2}+\partial /\left.\partial \mathbf{x}_{2}\right|^{2}\right\}\right.} \\
& \left.+(1 / 4)\left\{\alpha\left(\mathbf{x}_{1}, t\right)+\alpha\left(\mathbf{x}_{2}, t\right)\right\}\left|\partial / \partial \mathbf{v}_{ \pm}\right|^{2}\right] \times \\
& \quad \times g\left(\mathbf{v}_{ \pm} ; \mathbf{x}_{1}, \mathbf{x}_{2} ; t\right)=0 . \tag{30}
\end{align*}
$$

に従らことになる。
（30）式の自己相似解は，（21）式の場合と同様，慣性正規分布BN2として得られるが，紙数の関係で省略する。

4.2 速度分布の局所相似性

非一様変動乱流に対する慣性正規分布 BN1 お よびBN2は，一様乱流に対する慣性正規分布 N1 およでN2に対応している。前にも述べた ように，分布BN1 およびBN2の慣性相似性 は，全外部領域 $|\mathbf{r}|=\left|\mathbf{x}_{2}-\mathbf{x}_{1}\right|>0$ におふて成り立つ が，BN2は，$|\mathbf{r}|=0 . に お い て 一-一$ 致条件を満た すために不連続的に変化しなければならない。

しかし，このような分布の不連続的な変化は，局所領域を 0 とずる慣性相似性の結果であり，有限の粘性 \vee ○を考慮することによつて，有限 の局所頎域における連続的な変化として求めら れる。（Tatsumi et al．2006）

同様の取扱いは非一様変動乱流におらいても可能であり，速度分布方程式（19）および（20）に よる理論的枠組の中で行ならことができる。そ の取扱いは今後の課題としたい。

引用文献

木田重雄－柳瀬真一郎（1999）：乱流力学，朝倉， pp．320－322．
Kolmogorov，A．N．（1941）：Dokl．Akad．Nauk．SSSR， 30，301－305．
Lundgren，T．S．（1967）：Phys．Fluids，10，969－975．
Tatsumi，T．\＆Yoshimura，T．（2004）：F1uid Dyn． Res．35，123－158．
Tatsumi，T．\＆Yoshimura，T．（2006）：Fluid Dyn． Res．To be published．

2 次元後流乱雑化の微細構造

佐藤 浩 斉藤博之助 中村 宏（流れ研究集団）

Detailed structure of the randomizing process in a two－dimensional wake

Hiroshi Sato，Hironosuke Saito and Hiroshi Nakamura

Institute of Flow Research

Abstract

An experiment was made in the wake behind a strip of screen in the uniform flow．The wake was excited by various kinds of sound introduced from a loudspeaker．One purpose is to compare the turbulent wakes created by various sounds．The close similarity was found．Another accomplishment is the quantative expression of randomness of randomizing wakes．The random componennts in the randomizing process were also clarified．

Key Words ：2D wake randomizing process

0．はしがき

一様流の中に流れに垂直に置かれた金網の層流後流がどの様に乱雑化して，乱流後流を形成する かの過程について詳しく実験しました。その中に $3 つ 0$ 重要な目標を設定しました。
○ 初期条件として外加ら与えられる色々な音に応じて，どのように乱雑化するのかを明らかにす る。そして出来上がった乱流の共通点と相違点を明らかにする。
○ 秩序からのずれとしての乱雑の度合い——乱雑度の定量的な表現法を探す。
○ 乱雑化の微細構造を明らかにするために，簡単な数学モデルで実験結果を模擬する。

1．音の種類と乱雑化過程

実験は測定部断面が $25 \mathrm{~cm} \times 25 \mathrm{~cm}$ ，長さ が 50 cm ほどの低乱風洞で行われました。後流 を作るのは巾 4 cm の網で，メッシュは 40 です。風速は $4 \mathrm{~m} / \mathrm{s}$ の一定です。

音の種類

$\# 0$	無音	
$\# 1$	ピンクノイズ	
$\# 2$	270 Hz 断続	
$\# 3$	270 Hz AM $43 \mathrm{~Hz} 30 \%$	
$\# 4$	$270 \mathrm{~Hz} \mathrm{AM} \mathrm{43Hz} \mathrm{90} \mathrm{\%}$	
$\# 5$	$247 \mathrm{~Hz}+293 \mathrm{~Hz}$	
$\# 6$	270 Hz 連続	

使われた \＃0から \＃6 の 7 種類の音を表に示し ます。スビーカーから音を送らなくても，実験室 には色々な音が充ち満ちています。特に大きいの はファンを駆動するモーターの音です。無音とし ているのはそれらのバックグラウンドノイズを含 んでいます。完全な無音の環境では後流が乱流に ならないのかも知れませんが，それは誰にも検証 することは出来ないでしょう。

第1図 波形
第1図は\＃2という音を使った時の速度変動の波形です。 $\mathrm{x}=100 \mathrm{~mm}$ の時は殆ど正確な正弦波で，確かな秩序です。それに比べて $\mathrm{x}=400$ mm ではほぼ完全な乱流になっています。そのこ とはスペクトルの測定からも分かります。乱雑化 はこの2つのXの間で起きているのです。このこ

とは他の音でも似たような経過を示します。これ を見ると，乱雑の度合いは秩序からの距離で表現出来ることが分かります。

第2図 流れ方向変化
音の波形や強さを変えて実験しました。第2図 は音270 Hz 単音（\＃6）で，あるx断面で， Y 方向に最大値の速度変動の強さを流れ方向にブ ロットLたものです。音の強さなどによって，X $=100 \mathrm{~mm}$ あたりまでは違いがありますが，そ れより下流ではほぼ揃っています。この範囲が乱雑化の進行する範囲です。他の条件でもこの事は定性的には変わりません。

第3図 乱流波形の比較。
第3図を見ると無音と\＃6ともに，$x=400$ mm あたりでほぼ発達した乱流になっていること が分かります。無音と 270 Hz の音で波形を見 ると，殆ど同じように見えます。他の同じような比較でもこのことが確認されています。またエネ ルギースペクトルも色々な音には無関係に同じよ らな形になっています。このことは，十分に発達 した乱流はどれも同じだといら，漠とした信仰に

合致します。

2．類似度と秩序度

速度変動の波形が下流方向へどの様に変化する かを見るために類似度を定義します。それを実行 するのが第4図です。すなわち，上欄の上流での波形を標準波形として，それを適当に分割して，下欄の供試波形との相互相関係数を求め，幾つか の相関係数の平均を類似度とします。これは簡単 なプログラムで実行出来ます。2つの波形が完全 に類似ならば 1 という値をとり，全然関係がなけ れば，0となる筈です。これが乱雑化過程でどの

両方の波形の相関関係を類似度とする
第4図 類似度の定義
様な波形に変わっていくかということを示します。
また秩序がどのように乱れたかを表す秩序度は第5図のように定義されます。即ち，適当な時間 だけずらした自己相関係数です。位相の関係を見 るために，秩序度が最大になるように，少しのず れを調節します。これも信号が正弦波という完全 な秩序を保っていれば，自己相関係数は1となり，逆に完全に乱雑であればほとんどゼロになるはず です。 1 から秩序度を差し引いたものを乱雑度と定義しても良いでしょう。これで歷史上初めて乱雑さの定量的表現が得られたことになります。

第5図 秩序度の定義
第6図は\＃2という音で， $3 つ つ の x$ で計算さ れた秩序度の分布を示しています。点が散ってい るのが気になりますが，このような乱雑化の経過 で秩序度がはつきりしない事が本質的なのかも知

れません。ただしこのことは将来もつと詳しく調 べる必要があります。

第7図 秩序度の分布 2
第7図はもつと大きなXでの秩序度のY分布で す。秩序度が小さくなっていることを示していま す。

第8図は秩序度の流れ方向の変化の有様を示し ています。 $\mathrm{x}=100 \mathrm{~mm}$ あたりから 400 mm

第8図 類似度と秩序度の流れ方向変化 $\quad \mathrm{Y}=0$ までで秩序度が减少して，乱雑度が緩やかに増大 することがはつきりと分かります。やはり点が散 らばっていますが，これは第6図と同じ，乱雑化 の気まぐれによると思われます。

3．速度変動の姿

速度変動の姿をもつとも良く表現するのが波形 です。これは色々な統計量の組み合わせよりも，

もつと直接に我々に訴えます。人を表現すのに，背の高さとか，体重，鼻の高さなどの百万のデー夕よりも，一枚の写真の方がずっと的確なのと似 ています。

我々は一度に画像情報を受け取り，一瞬のうち にそれを認識します。そして，この波形がどの様 な構造に出来上がったのかを調べ，それを簡単な数学モデルで近似できる方法を探してみます。

第9図 $X=200 \mathrm{~mm}$ と $X=400 \mathrm{~mm}$
第 9 図は $\mathrm{x}=200 \mathrm{~mm}$ と $\mathrm{x}=400 \mathrm{~mm}$ の波形の比較です。上の図では音の 270 Hz が少し乱雑化している感じですが，下の $\mathrm{x}=400 \mathrm{~mm}$ では270Hz 成分の面影はほとんど無く，完全 に乱流になっていることが分かります。明らかに乱雑度が増えているのが波形から分かります。

このような波形の変化を模擬するようなブログ ラムを作りました。
for $\mathrm{i}=1$ to ma

$$
\begin{array}{ll}
\mathrm{pb}(\mathrm{i})=\mathrm{qm} * \sin (6.28 * 270 * \mathrm{i}) & , \text { 基礎波 } \\
\mathrm{pb}(\mathrm{i})=\mathrm{pb}(\mathrm{i}) *(1+\mathrm{qa} * \sin (6.28 * 45 * \mathrm{i})) & , \text { 乗算項 } \\
\mathrm{pb}(\mathrm{i})=\mathrm{pb}(\mathrm{i})+\mathrm{qb} * \sin (6.28 * 45 * \mathrm{i}+\mathrm{qc})), & \text { 加算項 }
\end{array}
$$ next i

第10図 波形作成プログラム
第10図はその一つです。分かりやすいように簡単化してありますので，プログラムそのもので はありません。for と next の間の第1行は270 Hz 成分を表現します。その振幅を表すのがq m という係数です。

第2行は非線型干渉の 2 次，乗算項で，基礎波 を振偪変調した形になっています。 q a が変調度 です。

第3行は加算という1次の項です。振幅と位相角に q b とq c という係数が挂かっています。

係数の変化				\square 乱数	
X mm	100	140	200	300	400
q m	2000	1800	800	200	100
qa	0	1	3	20	40
qb	0	1	5	60	80
qc	0	1	20	20	80

第11図 流れ方向への係数の変化
第11図は流れ方向の距離，Xが 100 mm か 5400mm迄変わつた時に，4つの係数をどの ように選べば実験で得られた波形を模擬すること が出来るかということを調べたものです。 q mは常数で，流れ方向へ烈しく減少しています。qa， q b，q cという係数は乱数を含んでいます。

$270 \mathrm{~Hz} \quad X=140 \mathrm{~mm} \quad Y=0$
第12図 波形比較
係数を適当にとって実験と計算の波形を比心゙た のが第12図と第13図です。乱雑度が小さいと きと，乱雑化の進んだ 13 図を見るとこの計算の スキームが適当なことが分かります。

4．乱雑変動の潜入

乱雑化を次のように解釈します。
正弦波の速度変動は周波数の低い乱雑な変動に よって振幅変調を受ける。その乱雑変動の姿を知 るために，速度変動の帯域濾波出力を観察します。 ラジオ受信機の同調と検波といら処理と同じ手法 です。

\＃6 270 Hz 1V $\quad X=400 \mathrm{~mm} Y=0$
第13図 波形比較

$270 \mathrm{~Hz} 1 \mathrm{v} X=300 \mathrm{~mm} \quad \mathrm{Y}=0 \mathrm{~mm} 270 \mathrm{~Hz}$ BPF
第14図 濾波器出力
270 Hz に同調した濾波器の出力を第14図 に示します。振幅は乱雑で，低周波です。

5 結言

最初に掲げた3つの目標はほぼ達成されました。 すなぁち，
○ 外部から導入された音の種類によって乱雑化構造は少し違います。例えば雑音（ノイズ）なら ば最初から乱雑ですが，線型成長の選択性によつ て，ほぼ線スペクトルが作られます。これは周期音によって作られるものと殆ど違いません。出来上った乱流の姿には殆ど違いがありません。
○ 秩序からのずれとして，類似度と乱雑度を定量的に表現することが出来ました。
○乱雑化の過程でどのような乱雑さが付け加わ るのかについての情報が得られました。その乱雑信号がどこから来るのかはまだ分かりません。

No． 17

渦度モデルにおける渦度の変遷
 小橋安次郎（道工大），早川道雄（北大工）
 Vorticity and History of its Family

Y．Kobashi＊，M．Hayakawa ${ }^{* *}$
＊Hokkaido Inst．Technology，${ }^{* *}$ Hokkaido University

Abstract

Development of vorticity family and the role of its family members to the flow phenomena and structures are discussed．

Key Words：vorticity model，vorticle，eddy，vortex，turbulent vortex，organized structure

序詅

実在の流体には渦度を発生して速度の不連続 をなだらかな流れ場に変える粘性の機能がある。渦度モデル「1 」は渦度を担ら流体粒子のファミリ一を渦度子（Vorticle），渦度束（Eddy），渦 （Vortex）の 3 段階に分けることにより層流から乱流に至る流れの変化の機構を解明することを目指しているが，本論文では上記渦度ファミリーの形成と発達の過程を具体的な剪断流及び境界層と言ら流れ場について考えることにする。
渦度モデルは，それぞれの素子が独自の手を持っていて互いに干渉あって粘性の効果を発

図 1 渦度子および渦度束の構造模型

揮するとするもので，これにより流体粒子の運動 ω をより物理的に追求せんとするものである。

1 瀜度子

流れに速度の不連続が現れると，面に添ら流体の分子は渦度を帯びた渦度子に変貌し，誘導速度 $\mathbf{u}_{\mathrm{i}}=1_{\mathrm{m}} \omega_{\mathrm{m}}$ によって速度差を打ち消すによ らに働くが，その強さ ω_{m} は速度差に比例し，分子 の自由行路 1_{m} を渦度子の大きさとするとき

$$
\begin{equation*}
\omega_{\mathrm{m}}=\boldsymbol{\alpha}\left(\mathbf{u}_{0}-\mathbf{u}\right) / /_{\mathrm{m}} \tag{1}
\end{equation*}
$$

の関係が成り立つと考えられる。ここで，α_{m} は流 れの不連続度と洞度の関係を表す定数であるが一層の渦度子だけで速度差を打ち消せない場合には残余の速度差を打ち消すために第 2 の瀜度子の層が現れ，以下同様にして速度の不連続 が無くなるまで渦度の層が現れることになる。こ のばあい渦度は速度差と共に減少し，

$$
\begin{equation*}
\mathbf{d u} / \mathbf{d y}=-\omega_{\mathrm{m}}=\boldsymbol{\alpha}\left(\mathbf{u}_{0}-\mathbf{u}\right) \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\omega_{\mathrm{m}}=\mathrm{A}^{-\alpha y} \tag{3}
\end{equation*}
$$

となり，速度の不連続面が渦度子の分布によって置き換えられたことになる。 y は不連続面からの距離である。

2 渦度束と層流

渦度子は手を使って隣接する渦度子と結びつ いて渦度束を形成する。ただ，渦度子の数が一定値を越えると遠心力が渦度子間結び付けてい る求心力を上回り，逆に斥力となってこれ以上大 きくなることは許されない。 粘性係数は渦度束の持つ渦度の働きの大きさを表す指標で，$\mu=\mathbf{n m}$ $1_{\mathrm{m}} \omega_{\mathrm{m}}=\rho^{2} \omega$ で表わされ，速度 $\mathrm{r} \omega$ を発生して流れ の不連続を打ち消す役割を発揮する。 ただし， r は渦度束の等価円の大きさで，m， n は渦度子 の質量と数である。
（2），（3）の関係は渦度束についても成り立つが，渦度はグループの大きさについての平均値がグ ループの重心に作用していると考えなければなら ず，その場合，渦度の分布形には変化はなく大き さだけが変わることになり，その大きさは流体の粘性係数 μ と

$$
\begin{equation*}
\mu=\mathrm{mn} \omega_{\mathrm{m}}=\operatorname{lr}^{2} \omega \tag{4}
\end{equation*}
$$

加ら，

$$
\begin{equation*}
\mathbf{r} \sim \omega^{-1 / 2} \tag{5}
\end{equation*}
$$

とな。
渦度束が出来上がると，それぞれの渦度束は渦度束の結成に洩れた残りの手を使って隣同士 が繋がりあい応力 $\mu \omega$ を伝達して釣り合い状態 を保つ。 ただ，渦度束が相互に相対速度を持 つ場合には手の繋ぎ換えが必要で，これが円滑 に行われるためには渦度束が整然と並んでいるこ

とが必要で，これが屠流の必須条件と思われる。 こうして出来る渦度束群が流れ場の不連続に対応するとすると，（2）と同様な関係が成り立ち

$$
\begin{equation*}
-\omega=\alpha \mathrm{e}^{-\alpha / 2 y} \tag{6}
\end{equation*}
$$

$$
\begin{equation*}
\mathbf{u}=\left(\mathbf{u}_{1}-\mathbf{u}_{2}\right) \mathrm{e}^{-\alpha / 2 \mathrm{y}} \tag{7}
\end{equation*}
$$

の層流速度が得られる。 ただ，不連続面からの距離 y は r の和となり， n の 1.5 乗に比例して増大する。図2に $\mathbf{u}_{1}, \mathbf{u}_{2}$ の速度を持つ2つの平行流の作る不連続面に沿つて発達する自由剪断流の速度分布の一例を示す。

図 2 自由剪断流速度分布

3 渦と乱流

流れ速度の増加に伴って剪断応力 $\rho r^{2} \omega$ も増加するが，これが一定値を超すと，渦度束は連携 を維持出来なくなり個々に回転を始め，同時に周囲の渦度束や渦度子を巻き込んで循環流を誘発する。これが渦の発生で，流れは層流から乱流に遷移する。この意味で，遷移（Transition） とは静的な釣合い状態を失った渦度束が渦に変貌する現象であると言ら事が出来る。

渦は近隣の渦と干渉して次第に複雑な動きを示すようになり，やがて一見乱雑な挙動を示すに至る。この状態が乱流（Turbulence）である。

従って，乱流解明の基本は流れを渦の誘導速

度場として提えることであるが，実際には関与す る渦の数が多すぎて，厳密な解析を行らことは不可能である。このため渦度モデルでは実験で得 られた乱れの特徴的現象に着目し，乱流渦や秩序構造などの構造モデルを導入しながら渦運動 との関連において乱流の構造を解き明かすことを試みている。

4 境界層

境界層は物体表面の影響が渦度によって伝え られる領域で，渦度の状態によって層流境界層と乱流境界層に区別され，いずれも壁面の摩擦応力が強く残る壁面剪流断と，壁の影響のない自由剪断流との重畳により構成されていると考えら れる。
（1）層流境界層
壁面剪断流の渦度束が壁面の摩擦に抗して流れを押しやろうとする圧力差に比例し，かつそ の大きさが表面からの距離と共に增大するものと すると，$\rho \omega \mathrm{y}$～dp／dxが成り立ち，粘性係数一定 の条件から $\omega=2 \beta \exp \left(-\beta y^{2}\right)$ が導かれ，内層の渦度束の持つ渦度が壁面剪断流と自由剪断流 （6）との和として

$$
\begin{equation*}
-\omega=2 C_{w} \beta \exp \left(-\beta y^{2}\right)+C_{f} \alpha \exp (-\alpha y) \tag{8}
\end{equation*}
$$

のように緮められ，これから速度分布が

$$
\begin{equation*}
\mathrm{u}=\mathrm{C}_{\mathrm{w}} \exp \left(-\beta \mathrm{y}^{2}\right)+\mathrm{C}_{\mathrm{G}} \exp (-\alpha y) \tag{9}
\end{equation*}
$$

となる。ただし，α, β は圧力勾配に比例する常数， $\mathrm{C}_{\mathrm{w}}, \mathrm{C}_{\mathrm{f}}$ は渦度束の発生割合である。
図 3 に一様流の場合の計算の結果を渦度の分布と共に示し Blasius 速度分布と比較してある が，両者の一致は極めて良好であると言ってよ い。

図3 層流境界層速度分布
（2）乱流境界層
乱流境界層は壁面の渦度束の渦化から始まる が，壁面のごく近傍では，渦運動が抑制されて変動の緩やかな粘性底層を形成し，乱流はその外側から始まる。ただ，此処でも渦の大きさは小さ くて干渉作用が強くないため，壁乱流と呼ばれる比較的穏やかな内層が形成される。 此処では渦の径は壁からの距離に比例して増大していて

$$
\begin{equation*}
-\mathbf{r} \omega=\mathrm{ydu} / \mathrm{dy}=\mathbf{u}_{\tau} \tag{10}
\end{equation*}
$$

が成り立つと考えられ，これから内層の対数速度分布が導かれる。 u_{τ} は摩擦速度で Reynolds数の関数である。
内層の外側では渦径の增加に伴って渦間の干渉が活発になり，乱流渦と呼ぶ渦の样落が周期的に出現する自由剪断流型になる。このため外層の流れは均一ではなく絶えず変化しているが，平均速度分布はレイノルズ数の広い笙囲に亘っ て指数分布で表示出来ることが見出されている

$$
\begin{equation*}
\mathrm{U}=\mathrm{Y}^{\mathrm{Ni}} \tag{11}
\end{equation*}
$$

ただし $\mathrm{U}=\mathrm{u} / \mathrm{u}_{0}, \mathrm{Y}=\mathrm{y} / \delta, ~ \mathrm{~N}_{\mathrm{w}}$ は Reynolds 数 の関数で1／4～1／7．5 の範囲の定数で ある。

図4乱流境界層速度分布

5 乱流渦と秩序運動

乱流渦は渦が干渉し合って集団化し，一個の渦のような挙動をする自由剪断乱流の特徴的現像で，乱流境界層外層の大半を占めている。こ のため外層の乱れは特別な構造を持つているよう に観測されるため秩序構造とも㭔ばれている。

ただ秩序構造は下流に向かって移動する際，境界層内の速度差のため引き裂かれて幾つかの小グループに分裂し，さらに移動の途中で別の乱流渦から放出された渦群と干渉して合体し，分裂前と同様な乱流渦を作り出すと考えられる「3」。
このため秩序構造は分裂と合体を繰り返すこと になるが，その周期（ $\left.\mathrm{T}=\mathrm{u}_{0} / \delta\right)$ は 2.5 であること が実験的に知られている「4」。

図5 秩序構造の形成

内層の乱れは相互干渉が小さく，本来は整然と した流れの筈であるが，外層の秩序構造によって周期的に擋乱され，いわゆるバースト構造が現れ

る。バーストは発生位置の流れに乗つて移動す るが，その速度は外層秩序構造のほほ半分で， これから得られる周期は $\mathrm{T}=5$ である「4」。 なお，乱流境界層外層の速度分布については対数分布からの偏差に着目した伴流法則が一般 に用いられているが，渦度モデルが敢て指数分布を固執する理由は外層が壁面の影㬠のない構造である点を主張したいためである。

なお，乱流境界層が Reynolds 数の広い範囲 に亘って同じ構造を保っていられるのは，乱れの エネルギーが内層から外層に向かって絶えず補給されているためで，これには外層の秩序構造に よる内層の擋乱作用が重要で，これによって作り だされたバーストが乱れエネルギーの挶り起こしと運び屋の役目を果たしているためと言ってよい。

6 結語

渦度モデルでは渦度を持つ流体粒子の成長 の過程（渦度子 \rightarrow 渦度束 \rightarrow 渦）の中で層流から乱流への流れ構造の変化を扱っている。

また，乱れや秩序構造の形成過程，更には内層に現れるバースト構造の出現などを単なる random 現象としてではなく，それぞれの因果関係を含めて物理的に追求することが肝要で，渦度モデルの果たす役割は大きいと考える。

参考文献

「1」小橋，早川：渦度モデルと境界層の機構： 36 回乱流シンポジュウム（2005）

「2」Kobashi，Y．and Hayakawa，M．，：13th Austral－ Asian Fluid Mec Conf．， 1998
「3」一条，小橋．，Nagare 1－4（1982）350－59，
「4」：H，Ueda，J．O．Hinze，J，Fluid Mech（1975）
125－43

戸田健二（都科技大院），稲澤歩，浅井雅人（首都大）

Vortex shedding from a circular cylinder moving at a constant acceleration

K．Toda＊A．Inasawa＊＊and M．Asai＊＊
＊Dept．of Aerospace Eng．，Tokyo Metropolitan Institute of Technology
＊＊Dept．of Aerospace Eng．，Tokyo Metropolitan University

Abstract

Vortex shedding from a circular cylinder moving at a constant acceleration is investigated experimen－ tally．The cylinder installed in a linear－motor actuator system moves in the air at rest．The results show that the critical Reynolds number above which the self－sustained wake oscillation occurs due to the global instability of cylinder wake increases with the magnitude of the acceleration normalized by the cylinder diameter and the kinematic viscosity．It is also found that with increasing the acceleration，the Karman vortex street remains two－dimensional even at Reynolds numbers around 200 at which the vortex－dislocation does occur for the case of constant moving speed or steady oncoming flow．

Keywords ：wake，Karman vortex street，accelerating circular－cylinder

1．はじめに

流れの中に物体が置かれたとき，広いレイノルズ数範囲にわたつて後流中に極めて周期的ないわわるカルマン渦列が現れる。とりわけ円柱後流については，カルマン渦列の周波数選択性や渦放出の臨界レイノルズ数さらに渦列構造のレイノルズ数による変化など，Nishioka \＆ Sato ${ }^{1), 2)^{1} \text { を初めとしてこれまでに多くの研究者により調べ }}$ られている。Williamsonによる采統的な実験3），4）括よび解説論文5）を参照すると，円柱後流はレイノルズ数と共 に次のように変化する。まず，レイノルズ数が約 50 にな ると円柱後流におけるカルマン渦列が現れ，$R e=180$ 程度までは二次元性を保つ。その後，Re＝230程度までは異なる2つのスパン方向周期性を持った三次元構造にな るとともに，スパン方向に関する渦放出のタイミングが ずれることに起因する渦列配置のずれ（vortex－ dislocation）が出現する。

しかしながら，上記の観察はいずれも定常流れにおけ るものであり，非定常運動する円柱後流に着目した研究 は，円柱後流の発達やカルマン渦列の発生過程を調べる目的で瞬間的に加速させた実験 6），7はあるものの，非定常性が後流構造自身に及ぼす影響を調べたものは筆者の知 る限り見あたらない。自然界および工学上の多く流れが

非定常であることを考えると，非定常性の強さが後流を不安定に導く臨界レイノルズ数や周波数，渦列の構造に どのように影響与えるかは非常に興味深い。そこで本研究では，静止大気中を移動する走行装置に円柱を搭載す ることで加速および減速運動する円柱を実現し，後流中 のカルマン渦列の諸特性が定常時と比べてどのよらに変化するかを調べた。

2．実験装置および方法

実験は，4mの長さを有するリニアモーターアクチェェ ーター（THK－GLM20S）の走行部に図1に示すような円柱 と計測装置で構成される測定部を搭載して行われた。測定部の移動速度はPCにより $2 \mathrm{~m} / \mathrm{s}$ 以下の範囲でプログラム制御されている。また，周囲からの外乱の侵入を防ぐた めに実験装置全体はアクリル板および木材合板で囲われ ている。モデルとして使用した円柱は真鍮製で，直径 D $=3 \mathrm{~mm}$ および 4 mm ，スパン方向長は $L=50 D$ とし，厚 さ 3 mm ，幅 30 mm ，高さ 50 mm のアルミニウム製の端板 によりその断面中心が下面板から高さ 45 mm の位置に固定されている。下面板先端には剥離を抑える目的で鋭角前縁が取り付けられている。本実験での座標系は円柱ス パン中央の断面中心を原点とし，流れ方向に x ，鉛直方向

図 1 測定部の概要．

にy，円柱スパン方向に z である。
流れ場の測定には，I 型熱線プローブを用いた。熱線の受感部は，直径 $5 \mu \mathrm{~m}$ ，長さ 1 mm のタングステン線であ る。主流のモニタリングと円柱後流の計測を同時に行ら ために， 2 本の 1 型熱線プローブを用い，それらを x, y方向にそれぞれ 45 mm ずつ離し，z 位置は一致させた状態でトラバース装置に取り付けてある。また，円柱後流中に発達するカルマン渦列の全体構造を把握するために， スモークワイヤ法による流れ場の可視化も行った。スモ ークワイヤは，熱線プローブと同様に走行装置に取り付 けてあり，円柱と共に移動する。

3．実験結果および考察

本研究では，円柱の非定常運動を「等加速度運動」に限定して実験を行った。すなわち，円柱は一定加速度で加速させられた後，同じ大きさの加速度で減速させられ る。図 2 は加速度 $|a|=0.48 \mathrm{~m} / \mathrm{s}^{2}$ で 2 秒間加速させた直後 に減速させたときの円柱後流の速度波形である。運動開始（ $t=0 \mathrm{~s}$ ）加ら直線的に速度が増加し，$t=1 \mathrm{~s}$ 付近から周期的な速度変動波形が始まっていることが分かる。こ れは，円柱後流に不安定波動が成長（ホップ分畦）する ことに対応しておち，このよらな周期的な速度波形は円柱が停止する $t=4 s$ 付近まで見られる。

図3（a），（b）はそれぞれ加速度 $|a|=0.48 \mathrm{~m} / \mathrm{s}^{2},|a|=1.53$ $\mathrm{m} / \mathrm{s}^{2}$ で運動させた場合のレイノルズ数とストローハル数 の変化を定常運動させた場合の結果と比較して示したも のである。ここで，渦放出周波数を求めるにあたり，等加速度運動させた場合，渦放出周波数は時々刻々変化す るのでFFT 処理によるスペクトル解析は適していない。 そこで，本研究では速度波形の極大値間の時刻差から周波数を算出した。無次元化に用いる代表速度は極大とな

図 2 後流速度波形の例 $\left(|a|=0.48 \mathrm{~m} / \mathrm{s}^{2}, \quad(x / D=3\right.$ ， $y / D=0.7) ~$ ）。

図3 レイノルズ数とストローハル数の関係（ $D=3$ mm ）．（a）$|a|=0.48 \mathrm{~m} / \mathrm{s}^{2}$ ，（b）$|a|=1.53 \mathrm{~m} / \mathrm{s}^{2}$ 。

図 4 後流速度分布の比較 $(D=3 \mathrm{~mm}, ~ R e=40$ ， $x / D=2,|a|=1.43 \mathrm{~m} / \mathrm{s}^{2}$ ）

る時刻における主流速度とし，周期的な速度変動波形が提えられた最小のレイノルズ数を不安定性（全体不安定）開始の臨界レイノルズ数と定義している。図3で示され るプロットは各加速度において30回円柱を繰り返し走行させて得られた結果をあるレイノルズ数区間（5 また は10）ごとに平均したものである。

図3（a）で示される $|a|=0.48 \mathrm{~m} / \mathrm{s}^{2}$ の場合，臨界レイノ ルズ数は $R e_{c}=103$ まで上昇し，そのときのストローハ ル数は $S t=0.15$ である。これは，定常運動時の臨界レイ ノルズ数 $R e_{c}=45$ の約 2 倍に相当し，ストローハル数は同じレイノルズ数（103）で定常運動させた場合の値 （0．16）よりむ少し小さい。加速度を $|a|=1.53 \mathrm{~m} / \mathrm{s}^{2}$ と大 きくすると，臨界レイノルズ数は $R e_{c}=145$ に増加し，臨界時のストローハル数は $S t=0.16$ でほとんど変わらない がその後定常時の値まで急増する（図3b），このように，加速度を大きくして非定常性を強くすると，渦放出開始直後のストローハル数が急激に増加することが分かった。一方，減速時はいずれの場合も $R e>100$ では定常運動さ せた場合とよく一致しているが，Re＜100になると減速時の方が定常時よりも大きな値となっている。これは， $R e>100$ ではカルマン渦列が放出されており，その段階 からレイノルズ数を下げても履歴効果，すなわちヒステ リシスがあるためと考えられる。次に，加速により臨界 レイノルズ数が増加する原因を探るために円柱後流の速度分布を計測した。図4は $|a|=1.43 \mathrm{~m} / \mathrm{s}^{2}$ で加速運動させ た場合の後流速度分布を定常の場合と比較したものであ る，結果はいずれの場合においても周期的な速度変動波形が後流中に現れない $R e=40$ のものである。加速時に は定常時と比べて後流幅が狭くなるとともに，$y / D=0$ に

図 5 無次元加速度と（a）臨界レイノルズ数および （b）臨界時のストローハル数の関係

おける速度欠損量も小さく後流の発達が遅れている。従 って，加速運動による円柱後流領域の発達の遅れが臨界 レイノルズ数の増加をもたらしていると考えられる。
図 5 は，加速度の大きさと（a）臨界レイノルズ数およよび （b）臨界時のストローハル数の関係を異なる直径の円柱を用いて調べた結果である。加速度は，円柱直径および動粘性係数で無次元化してある。図5（a）のように，等速運動（ $a=0 \mathrm{~m} / \mathrm{s}^{2}$ ）の場合，臨界レイノルズ数は約 45 であ り，安定性理論 8 ）から予測される臨界値 46 と良く一致す る。円柱直径と動粘性係数により無次元化された加速度 で整理することで臨界レイノルズ数が一致している。一方，図3でも述バたが，臨界時のストローハル数は無次元加速度の大きさによらずほぼ一定の値 $S t=0.15$ となっ ている（図5b），以上のことから，加速度の増加に伴ら非定常性の強さは臨界レイノルズ数には影響するものの，

図 6 渦構造の可視化の様子（等速運動時，$R e=$ 200）

臨界時のストローハル数にはほとんど影響しないように見える。

次に，加速運動がカルマン渦列の空間構造に及ぼす影響について可視化実験の結果を基に説明する。図6はRe $=200$ で等速度運動させた場合の可視化結果である．Re $=200$ の定常運動時においては，円柱近傍から渦列の 3 次元化が起こり，図中央よりやや下方で渦列の配置がスパ ン方向にずれているいわゆるvortex－dislocation が観察で きる．図 7 は $|a|=1.43 \mathrm{~m} / \mathrm{s}^{2}$ で加減速させた場合につい て，$R e=200$ まで速度が増加したときの可視化写真であ る．加速して $R e=200$ に到達した時に見られる渦構造は円柱の軸と平行で，下流に至るまできれいな 2 次元性を維持している。このような 2 次元性の維持（3 次元化の抑制）は加速度がより小さな $|a|=0.48 \mathrm{~m} / \mathrm{s}^{2}$ の場合におい ても観察された。一方，$|a|=0.48 \mathrm{~m} / \mathrm{s}^{2}$ で $R e=200$ から減速させた場合，$R e=150$ になったとき図 6 同様の渦列の 3 次元化が見られたものの，$|a|=1.43 \mathrm{~m} / \mathrm{s}^{2}$ においては，円柱が停止する直前まで2次元的な渦構造が維持された。

4．まとめ

等加速度運動する円柱からの渦放出について実験的に調べた結果をまとめると以下のようになる。

1．円柱を加速させることで後流の発達が遅れ，その結果臨界レイノルズ数が大きくなる。
2．臨界時のストローハル数は加速度の大きさにはほと んど依存しないが，非定常性が強くなるとストロー ハル数の急激な増加が起こる。
3．加速度と臨界レイノルズ数の関係は，加速度を円柱直径と動粘性係数で無次元化することで整理される。
4．加速および強く減速させることで後流中に存在する渦構造の 3 次元化が抑制される。

図7 渦構造の可視化の様子（加速運動時， $\left.|a|=1.43 \mathrm{~m} / \mathrm{s}^{2}, \quad R e=200\right)$

参考文献

1）Nishioka M．and Sato H．：J．Fluid Mech．，65，（1974）， pp．97－112．
2）Nishioka M．and Sato H．：J．Fluid Mech．，89，（1978）， pp．49－60．
3）Williamson C．H．K．：J．Fluid Mech．，206，（1989），pp．579－ 627.

4）Williamson C．H．K．：J．Fluid Mech．，243，（1992），pp．393－ 441.

5）Williamson C．H．K．：Annu．Rev Fluid Mech．，28，（1996）， pp．477－539．
6）Bouard R．and Coutanceau M．：J．Fluid Mech．，101， （1980），pp．583－607．
7）Jeon D．and Gharib M．：J．Fluid Mech．，519，（2004）， pp．161－181．
8）Jackson C．P．：J．Fluid Mech．，182，（1987），pp．23－45．

Transition and Instability of Flow past a Pair of Circular Cylinders

Yoichi Ino，Jiro Mizushima
Dept．of Mech．Eng．，Doshisha University，Kyotanabe，Kyoto 610－0394，Japan

Abstract

The instability and transition of flow past two circular cylinders arranged perpendicularly to the stream are investigated numerically．It is a steady symmetric flow that is realized at small Reynolds numbers，but the flow becomes unstable above a critical Reynolds numbers．It has been believed that the resultant flow due to the instability is always oscillatory．However，we found a steady asymmetric flow as well as the oscillatory flow arising from the instability in a region of the gap width between the two cylinders．We evaluated the critical Reynolds number and clarified the region of the gap width in which the steady asymmetric flow is realized．

Keywords ：two circular cylinders，wake，stability，bifurcation．

1．はじめに
2 円柱を過ぎる流れは，一見非常に単純な流れ場と思 われるが実際には複雑な現象を含み，航空工学や土木工学などのさまざまな分野で調べられてきた。2 円柱の配置はタンデム型と並列型および斜め型の3つに分類でき る。タンデム型2円柱を過ぎる流れの研究は双翼型飛行機の翼を支える柱の応用から始まっているため，研究者 の主な関心は円柱の抗力係数や揚力係数にあった。並列型2 円柱を過ぎる流れでは，流れのパターン変化が注目 されてきた。
一様な流れの中に流れと平行または垂直に 2 円柱を配置し，円柱間の間隔と円柱の受ける抗力の関係について調べると抗力係数は間隔比（円柱間距離／直径）によって大きく変化することなどが知られている1）。タンデム型2円柱を過ぎる流れの実験と数値計算の結果で共通してい るのは，円柱間距離を連続的に変えてもある臨界距離を越えると流れのパターンが不連続的に変わることである。臨界間隔の存在は Ishigai et al．2）のレイノルズ数が 1500－ 15000 の実験によって確認されている。彼らは臨界間隔 をストローハル数と表面圧力係数が急激な変化を示す 3．8d 付近であるとした。この不規則な物理量の変化の起源については Mizushima and Suehiroにより数値的に調 べられ，ヒステリシスを伴ら解の分肢ダイアグラムから説明できることが明らかになった ${ }^{3}$ 。

並列型2円柱の場合，その円柱間距離が円柱直径より大きいときには，それぞれの円柱の後流がさまざまなパ ターンを形成することが数値的にも実験的にも確認され ている4）。一方，円柱間距離が円柱直径より小さいときに は，高いレイノルズ数 $\left(R e=10^{3} \sim 10^{4}\right)$ において 2 本の円柱間の流れは一方に偏ることが確認されている。最近 では，低いレイノルズ数（Re＝40～160）におすいて，流

れのパターンはレイノルズ数や円柱間距離によって，6 つに分類できるという数値シミュレーションの結果も報告されているぁ。

しかし，いずれの研究においても流れの分類は流れ場 を特徴つける物理量や，流れパターンに着目して行われ ており，それぞれの流れが生じる原因については詳しく調べられていない。流れが不安定となり遷移すると，流 れのパターンはより複雑になる。したがって，流れのパ ターン変化を調べるにはその遷移構造を明らかにするこ とが最も重要である。

本研究では一様流中に並べられた 2 つの円柱を過ぎる流れについて，数値シミュレーションと流れの安定性解析を行い，その邉移を詳しく調心゙る。

2．定式化と境界条件

一様流中におかれた2本の円柱を過ぎる流れを考える （Fig．1）。Fig．1 では，流体は左から右へ流れる。円柱の直径を $d, ~ 2$ 円柱の間隔を ℓ とする。流れの向きに x 軸，流れと垂直方向に y 軸をとる。円柱の直径 d を代表長 さ，上流における一様速度 \boldsymbol{U} を代表速度とし，流れを特徴づけるパラメータとしてレイノルズ数 Re と中心間隔比 Γ をそれぞれ $R e \equiv U d / \nu$ および $\Gamma \equiv \ell / d$ で定義する。 ただし，ν は流体の動粘性係数である。

2 次元非圧縮流れを仮定し，流れ関数 $\psi(x, y, t)$ および渦度 $\omega(x, y, t)$ による $\omega-\psi$ 法を用いて解析を行った。基礎方程式は連続の式

$$
\begin{equation*}
\omega=-\mathcal{M} \psi, \tag{1}
\end{equation*}
$$

渦度輸送方程式

$$
\begin{equation*}
\frac{\partial \omega}{\partial t}=-\mathcal{N}(\psi, \omega)+\mathcal{M} \omega, \tag{2}
\end{equation*}
$$

Fig．1：Configuration and co－ordinates．

$$
\mathcal{N}(\psi, \omega) \equiv \frac{\partial \psi}{\partial x} \frac{\partial \omega}{\partial y}-\frac{\partial \psi}{\partial y} \frac{\partial \omega}{\partial x}, \mathcal{M} \equiv \frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}
$$

である。ここで，Mは 2 次元ラプラシアンである。上流境界条件として，円柱の十分上流 AB で流れは一様流で，円柱の十分下流 CD でゾンマーフェルトの流出条件を用 いる。円柱上では滑りなし条件を用いる。上下境界 AD と BC は十分遠方にとり，そこでは一様流であるとする。

3．定常解解析

低いレイノルズ数においては，流れは 2 円柱間隔の中心を通る x 軸に対して対称で定常である。対称定常流に対応する解はレイノルズ数の大きさに関わらず境界条件 のもとで基礎方程式（1）と（2）を満たすが，この流れは臨界値を越えると不安定となる。この対称定常流，つま り，（ $\bar{\psi}, \bar{\omega})$ が線形安定性解析の主流である。定常解は，次 の定常渦度輸送方程式およびポアソン方程式を満たす：

$$
\begin{gather*}
\mathcal{N}(\bar{\psi}, \bar{\omega})+\frac{1}{R e} \mathcal{M} \bar{\omega}=0, \tag{3}\\
\bar{\omega}=-\mathcal{M} \bar{\psi} \tag{4}
\end{gather*}
$$

方程式（3）と（4）を適切な境界条件のもとに解くことで定常解は数値的に得られる。

4．線形安定性解析

レイノルズ数 Reが小さいとき，流れは 2 本の円柱の中心を通る流れに平行な中心線（ x－軸）に対して対称な定常流である。レイノルズ数が臨界値 $R e_{c}$ を超えると，対称定常流は撹乱の成長により不安定となり，周期流に遷移する。対称定常流を $(\bar{\psi}, \bar{\omega})$ で表し，撹乱を $\left(\psi^{\prime}, \omega\right)$ と表すと，流れ関数および渦度 (ψ, ω) は次のように対称定常流と撹乱の和で表される：

$$
\begin{equation*}
\psi=\bar{\psi}+\psi^{\prime}, \omega=\bar{\omega}+\omega^{\prime} \tag{5}
\end{equation*}
$$

上式を基礎方程式（1）と（2）に代入し定常流が満たす式 を引くと，次の撹乱方程式が得られる。

$$
\begin{equation*}
\frac{\partial \omega^{\prime}}{\partial t}=\frac{1}{R e} \mathcal{M} \omega^{\prime}+\mathcal{N}\left(\psi^{\prime}, \bar{\omega}\right)+\mathcal{N}\left(\bar{\psi}, \omega^{\prime}\right)+\mathcal{N}\left(\psi^{\prime}, \omega^{\prime}\right) \tag{6}
\end{equation*}
$$

Fig．2：Computational grid．$\Gamma=1.5$

$$
\begin{equation*}
\omega^{\prime}=-\mathcal{M} \psi^{\prime} \tag{7}
\end{equation*}
$$

線形安定性解析においては式（5）の右辺第4項（非線形項）は十分小さいものとして無視する。撹乱 (ψ, ω) を $\psi^{\prime}=\hat{\psi}(x, y) e^{\lambda t}, ~ \omega^{\prime}=\hat{\omega}(x, y) e^{\lambda t}$ のよらに時間依存成分と空間依存成分の積で表し，これらの式を方程式（5）と（6） に代入し，非線形項を無視すると次式が得られる。

$$
\begin{gather*}
\lambda \hat{\omega}=\frac{1}{R e} \mathcal{M} \hat{\omega}+\mathcal{N}(\hat{\psi}, \bar{\omega})+\mathcal{N}(\bar{\psi}, \hat{\omega}) \tag{8}\\
\hat{\omega}=-\mathcal{M} \hat{\psi} \tag{9}
\end{gather*}
$$

ここで入は撹乱の複素線形増幅率である。
線形固有関数 $(\hat{\psi}, \hat{\omega})$ の境界条件として，円柱より十分上流（AB）で $(\hat{\psi}, \hat{\omega})$ は 0 であるとし，十分下流（CD）でゾ ンマーフェルト放射条件を用いる。また，計算領域側面境界（ADとBC）で撹乱 $(\hat{\psi}, \hat{\omega})$ は 0 とし，円柱上では数値 シミュレーションの場合と同様にすべりなし条件を用い る。入の実部 λ_{r} は撹乱の線形増幅率であり，λ_{r} が負のと き対称定常流は安定であり，正のとき不安定である。よ って，$\lambda_{r}=0$ となるときのレイノルズ数が臨界レイノル ズ数 $R e_{c}$ となる。

5．数值計算法

流れの時間発展を調べるため，基礎方程式（1）と（2） を初期値境界値問題として数値的に解く。数値シミュレ ーションでは，渦度 ω と流れ関数 ψ を用いて定式化し，差分近似を行う。計算領域として，円柱上流側に $L_{1}=5 d$ ，下流側に $L_{2}=20 d$ とし，幅は $L_{3}=\ell / 2+9 d$ ととる。また，計算格子として Steger and Sorenson ${ }^{6)}$ の楕円型方程式に よる格子生成法を用い，最小格子幅は円柱近傍で 0.01 ，最大格子幅は流出および上下境界において0．1dとなった。計算格子の例として，$\Gamma=1.5$ における計算格子を Fig． 2 に示す。この図のように，格子は円柱近傍において密で あり，円柱から離れるにしたがって疎になる。これは，円柱近傍において速度場が急激に変化することを考慮に入 れるためである。

数値シミュレーションにおいては，空間微分には2次

精度の中心差分を，時間微分については 4 次精度のルン ゲ・クッタ法を用いて方程式を差分近似した。ポアソン方程式の解法にはSOR 法を用いた。対称定常解の数値計算においては，空間微分に 2 次精度の中心差分を用い て方程式を近似し，SOR 法を用いて計算を行った。ここ で，x 軸に対して対称な流れ場を求めるため $\bar{\psi}$ と $\bar{\omega}$ に y について反対称条件を課して計算を行った。線形安定性解析では，空間微分に 2 次精度の中心差分を用いて方程式を近似し，SOR 法を用いて計算を行った。ここで，擋乱の線形固有関数 $(\hat{\psi}, \hat{\omega})$ には中心軸に対して対称条件を課した。

6．計算結果

ここでは，レイノルズ数 $\Gamma \leq 100$ と間隔比 $0.3 \leq \Gamma \leq 1.0$ の範囲で数値シミュレーションを行った結果，流れ場は Fig． 3 （a）－3（f）に示されるような 6 つの流れパターンに分類できることがわかった。

一様な流れに垂直におかれた 2 本の円柱を過ぎる流れ は，レイノルズ数が低いとき x 軸に対して対称で定常な流れ（対称定常流）であるが，レイノルズ数が臨界値を超 えると振動流または非対称定常流を経て偏向振動流へと遷移する。
間隔比が $\Gamma=0.5$ の場合，レイノルズ数 $R e=40$ では流 れは対称な定常流であるのに対し（Fig． 3 （a）），Re $=50$

Fig．3：Flow pattern．（a）Steady symmetric flow． $\Gamma=0.5, R e=40$ ，（b）Periodic flow．$\Gamma=0.5, R e=$ 50．（c）Periodic deflected flow．$\Gamma=0.5, R e=60$ ． （d）Steady asymmetric flow．$\Gamma=0.6, R e=57$ ．（e） In－phase－synchronized oscillatory flow．$\Gamma=0.62$ ， $R e=55 . \quad$（f）Periodic deflected flow．$\Gamma=0.62$ ， $R e=60$ ．
（a）

（b）

Fig．4：Bifurcation diagram．$\Gamma=0.5$ ．（a）Hopf bifurcation．（b）Pitchfork bifurcation．

では流れが x 軸に対して円柱よりかなり後方で振動する振動流となる（Fig． 3 （b））。このような対称定常流から振動流への遷移について調べるために，円柱の下流にある点 P_{2}（Fig．1）における y 方向速度 v_{2} とレイノルズ数 Re との関係を調べて分岐図を描いた。
こうして得られた分岐図より，その分岐構造はホップ分岐であり，臨界レイノルズ数は $R e_{c}=40.1$ であること がわかった。この分岐図を Fig．4（a）に示す。レイノル で数を $R e=60$ まで増やすと，流れは 2 本の円柱を過ぎ た直後で偏向し，かつ円柱の下流で振動する偏向振動流 が確認された（Fig． 3 （c））。ここで，流れが偏向する原因 を調べるために，円柱下流の点 P_{1}（Fig．1）における y 方向速度 v_{1} とレイノルズ数 Reとの関係を調べた。これを Fig．4（b）に示す。その結果，この偏向振動流は臨界レイ ノルズ数を $R e_{c}=54.6$ とするピッチフォーク分岐により生じているという奇妙な現象であることが判明した。つ まり，$\Gamma=0.5$ の場合には，点 P_{2} において，$R e_{c}=40.1$ と するホップ分岐が起き，さらにレイノルズ数を上げてい くと，点 P_{2} で $R e_{c}=54.6$ とするピッチフォーク分岐が生 じていることになる。

間隔比 $\Gamma=0.6$ の場合，$R e=57$ では流れは非対称定常流となっている（Fig． 3 （d））。 $\Gamma=0.5$ の場合と同様の手順 で分岐図を描くと，流れは臨界レイノルズ数 $R e_{c}=55.1$ を超えると対称定常流から非対称定常流へと遷移し，そ のときの分岐構造はピッチフォーク分岐であることがわ かった（Fig．5）。

間隔比 $\Gamma=0.62$ の場合，$R e=55$ では流れは 2 本円柱直後で振動している（Fig． 3 （e））。これまでと同様の方法で流速を測定したところ，$R e_{c}=54.5$ とするホップ分岐が

Fig．5：Pitchfork bifurcation．$\Gamma=0.6$ ．
得られた。さらに，定常解計算により $R e_{c}=55.4$ とする ピッチフォーク分岐が得られた。 $R e=60$ の流れパター ン（Fig． 3 （f））ではピッチフォーク分岐の影響はわかりに くいため，擋乱 $\hat{\psi}$ をFig． 6 に示す。 $R e=55$ では上下対称 な擋乱場であるが（Fig． 6 （c）），Re＝60ではピッチフォ ーク分岐の影響により，上下非対称な撹乱場が確認され た（Fig． 6 （d））。
 （b）$\Gamma=0.6, R e=60$ ．（c）$\Gamma=0.62, R e=55$ ．（d） $\Gamma=0.62, R e=60$ ．

また，$\Gamma=0.6, ~ R e=60$ の撹乱場（Fig． 6 （b））をみると， $\Gamma=0.62, ~ R e=60$ の撹乱場（Fig． 6 （d））とは明らかに異な ることがわかる。擋乱場をみると，$\Gamma=0.6$ では円柱のか なり後方で振動しており，この振動は後流の不安定性が原因である。 $\Gamma=0.62$ では流れ場全体で振動しており， この振動は円柱が存在することで振動している。つまり，偏向振動流の範囲において， $0.6<\Gamma<0.62$ の非常に狭い範囲でモードが変わっていることがわかる。
本研究の結果を $\left(\Gamma, R e_{c}\right)$ 平面にまとめると Fig． 7 のよ らになる。Fig． 7 より，この流れは臨界間隔比 $\Gamma_{c}=0.58$ で，遷移の特性が変わり，$\Gamma<0.58$ では流れは対称定常流から振動流を経て偏向振動流に至り， $0.58<\Gamma<0.62$

Fig．7：Transition diagram．○：Pitchfork bifurcation， －：bifurcation．

では対称定常流から非対称定常流を経て偏向振動流に至 るパターンに遷移することがわかる。2本の円柱を過ぎ る流れでピッチフォーク分岐が起こることは予期しない驚きであった。 $0.62<\Gamma<1.0$ では流れ場全体で振動流が生じ，この範囲での偏向振動流は $\Gamma<0.62$ とは異なる流 れであることがわかった。また，図中の点線は今後期待 される線である。

参考文献

1）Y．Ohya，A．Okajima and M．Hayashi．＂Wake Interfer－ ence and vortex shedding＂，Encyclopedia of Fluid Me－ chanics（Ed．N．P．Cheremisioff，Gulf Pub．，Houston）， 8 （1988）323－389．

2）S．Ishigai，E．Nishikawa，K．Nishimura and K．Cho， ＂Experimental study on structure of gas flow in tube banks with tube axes normal to flow，＂Bull．JSME，15， 949 （1972）．

3）J．Mizushima and N．Suehiro，＂Instability and transi－ tion of flow past two tandem circular cylinders＂，Phys． Fluids．， 17 （2005）104107－104107－11．
4）C．H．K．Williamson，＂Evolution of a single wake be－ hind a pair of bluff bodies＂，J．Fluid Mech．， 159 （1985） 1－18．
5）S．Kang，＂Characteristics of flow over two circular cylindrs in a side－by－side arrangement at low Reynolds number＂，Phys．Fluids， 15 （2003）2468－2498．
6）L．J．Steger and L．R．Sorenson，＂Automatic mesh－ point clustering near a boundary in grid generation with elliptic partial differential equation＂，J．Comp． Phys．， 33 （1979）405－410．
7）T．Akinaga，J．Mizushima＂Linear Stability of Flow past Two Circular Cylinders in a Side－by side Arrange－ ment＂，J．Phys．Soc．Jpn．， 74 （2005）1366－1369．

亜音速非定常流体現象に対する高精度数値解析法について

黒滝卓司，住隆博（宇宙航空研究開発機構総合技術研究本部）

Numerical Simulation of Unsteady Subsonic Flow with High Accuracy and Resolution

T．Kurotaki＊，T．Sumi ${ }^{\star}$
＊Institute of Space Technology and Aeronautics，JAXA

Abstract

An advanced Large Eddy Simulation（LES）technique with high accuracy and resolution is proposed with the Approximated Deconvolution Method approach，the generalized characteristic interface con－ ditions，and the generalized Navier－Stokes boundary conditions．Several applications to flows around 2－D NACA0012 aerofoil are presented and discussed．Numerical results show that this method can capture the laminar to turbulent transition phenomena in the order of Reynolds number of 106．In order to validate the present LES technique in more detail，the results are compared with existing wind－tunnel experiments and linear stability analyses with the eN method and discussed．

Keywords ：Subsonic Flow，Transition，Unsteady Flow，LES

1．序論

近年の計算機能力の発達に伴い，数値流体力学の分野 では様々な計算手法が提案され，現象の解明や予測，航空機をはじめとする設計に活用されている。しかし，そ の成果に比例して，数値解析技術へ要求される能力も高 くなり，従来では，風洞試験や理論解析でしか定量的に扱らことのできなかった課題へ用いることが期待されて いる。

特に航空機設計の分野においては，翼の失速特性の定量的な把握や，乱流渦に起因するとされる空力騒音の予測及び軽減等が重要な課題となりつつある。これらの問題は，たと方簡単な形状であっても，層流から乱流への遷移，剥離及び再付着，乱流現象等の複雑な流体現象の組み合わせであり，従来の解析手法では困難とされてき た。
我々は，これらの挑戦的課題に取り組むことを目的と して，高レイノルズ数領域における複雑形状周りの流れ を扱ら手法を開発している。本報告では，第一報として， 2 次元翼周りの流れを中心に，成果の一部を紹介する。

2．解析手法

本研究では，航空機の開発に必要な実用レベルでの比較的高いレイノルズ数領域において，できるだけ少ない格子点数で，乱流遷移が特別なモデル無しに捕獲でき，

かつ層流剥離，乱流剥離，再付着等の現象が定量的に把握できる技術を目指している。

現時点及び近い将来の計算機性能をもってしても，複雑形状周りの乱流•遷移等の非定常現象を直接計算（D NS）のアプローチで解析ずることは困難と考えられる ため，乱流部分はLES（Large eddy simulation）的アプ ローチをとり，3次元圧縮性ナビエストークス方程式を基礎方程式として，高精度な空間微分，時間積分法を採用 した。具体的には，対流項と粘性項の差分には3重対角型の 6 次精度最適化コンパクトスキーム［1］，時間積分に は，低容量型の 2 －step 最適化 4 次精度 Runge－Kutta スキ ーム（LDDRK）${ }^{[2]}$ を用いている。また，LES のモデリン グとしては，ADM（Approximate Deconvolution Model） ［3］によるアプローチを採り，一般座標系に拡張された高精度境界条件である Navier－Stokes characteristic bound－ ary conditions（NSCBC）${ }^{[4]}$ を組み合わせた。

次節で取り扱ら2次元翼型の解析では，C型単一格子 を用いるが，一般に翼後縁部から生じる特異線周辺の取 り扱いに注意を要する。本解析では，上下面の単純平均 を取る代わりに，計算領域同士の境界面を通過する物理量を特性波理論的に決定する方法を構築することによっ て（Generalized Characteristics Interface Conditions），解 の低精度化を避けている。この結合法は，一般に異なる計算領域を単点で結合し，かつ急峻なキンクを許容する

といら優れた特徴を有している ${ }^{[5]}$ 。

3．解析結果及び考察

ここでは，翼型として典型的なNACA0012を例にと り，異なるレイノルズ数領域における 2 つの解析例を示 す。

3． 1 剥離泡を含む流れのシミュレーション
図 1 から図 3 に， $\mathrm{Re}=2 \times 10^{5}, \mathrm{U}=20 \mathrm{~m} / \mathrm{s}, \alpha=9 \mathrm{deg}$ にお けるNACA0012 周りの結果を示す。格子点数は約 350万点，スパンは 25% コード長である。この流れは，前縁 での層流剥離，剥離泡内での乱流遷移，再付着など複雑 な流体現象を含むことが，実験で明らかにされている［6］。図1は，スパン方向渦度の瞬時値であり，前縁に層流剥離泡が形成され，そこから乱流が形成される様子を示し ている。図 2 は平均 Cp 分布を表し，剥離泡の形成領域が明膫に捕えられている。図3は，Cp のRMS 値を表す。変動量等の非定常物理量は，音響解析等で特に重要とな るが，精度の良い解析値を得ることは十分な格子点が必要とされ，比較的難しいとされている。本解析例では，比較的少ない格子点数にもかかわらず実験［6］との一致は良好である。

3． 2 境界層遷移シミュレーション

次の例は，高レイノルズ数領域における境界層遷移を含む 2 次元翼の解析検証結果である。図 4 に， $\mathrm{Re}=2.2$ $\times 10^{6}, \mathrm{U}=30 \mathrm{~m} / \mathrm{s}, \alpha=0 \mathrm{deg}$ におけるNACA0012 周りの壁面近傍におけるスパン方向渦度の瞬時値を示す。格子点数は同じく約 350 万点，スパンは 25% コード長であ る。この図から，前縁付近から 2 次元的な波，いわゆる T－S 波が発達していることがわかる。さらにこのT－S 波 は下流に伝播するにつれスパン方向に構造を持ちはじめ ており，中弦付近では 2 次元翼境界層に特徴的な斜行波 の存在が見て取れる。そしてさらに下流では流れ場の 3次元化が進み，最終的にはこの境界層が乱流へと遷移し ていく様子が明確に捉えられている。
図5は上記と同じ $30 \mathrm{~m} / \mathrm{s}$ のケースについて各コード位置における速度変動の様子を示したものである。図4の結果と整合して，およそ 20% コード位置付近から正弦波的な波動が見られ，下流方向に発達しながら伝播してい ることがわかる（各々の図の縦軸スケールがそれぞれ最適化されていることに注意）。 50% コード位置でこの波動 の振動数を見積もるとおよそ 200 Hz 弱であり，これが境界層中を発達するT－S 波の振動数であると考えられる。
引き続いて，本解析によるこれらの結果が，境界層遷移といら複雑な物理現象をどの程度正確に捕えているか

図 1 Instantaneous vorticity of the spanwise component （NACA0012， $\left.\operatorname{Re}=2 \times 10^{5}, U_{\infty}=20 \mathrm{~m} / \mathrm{sec}, \alpha=9^{\circ}\right)$ ．

図 2 Averaged Cp distribution（NACA0012， $\left.\operatorname{Re}=2 \times 10^{5}, U_{\infty}=20 \mathrm{~m} / \mathrm{sec}, \alpha=9^{\circ}\right)$ ．

図 3 RMS of Cp distribution（NACA0012）

図 4 Instantaneous vorticity of the spanwise component （NACA0012， $\operatorname{Re}=2 \times 10^{6}, \mathrm{U}_{\infty}=30 \mathrm{~m} / \mathrm{sec}, \alpha=0^{\circ}$ ）．

を検証するため，まず遷移位置に関する実験結果との比較について考察を行った。

ここで比較する実験結果は徳川ら［7］によって得られた

ものを用いた。上記の $30 \mathrm{~m} / \mathrm{s}$ のケースの他 に， $25,20,15 \mathrm{~m} / \mathrm{s}$ の計 4 ケースのデータが得られているので，全ケースについて解析
 を行い，レイノルズ数変化に関する傾向の変化も調べた。遷移位置の定義については，図 6 に示すように，Cf曲線を 3 本の直線で補間したときに現れる 2 つの交点の上流側 を遷移の onset，下流側を end とし，その中点を遷移点とする徳川らの手法をそのまま用いた。

図 7 はこの方法に基づき，各々のケース について遷移位置を特定した結果を，図 4 と同様な渦度の等値面図に示したものであ る（左から \Rightarrow ：onset，\Rightarrow ：transition，\Rightarrow ：end）。 この図をみると，遷移位置は主流の増加に ともない上流側に移動することがわかる。一般に境界層遷移はRe 数の増加（この場合主流の増加と等価）とともに早まることが知られており，この結果は十分妥当なものと言える。

これらの結果を実験結果と合わせて示したのが図 8 で ある。図の横軸は主流速度，縦軸はコード位置を表して おり，■は数値計算の結果を，と $\mathbf{\Delta}$ は実験結果を表す。 なお○は鉄道総合技術研究所の大型低騒音風洞， $\mathbf{\Delta}$ は JAXA 大型低速風洞によるもので，風洞残留乱れはそれ ぞれ $30 \mathrm{~m} / \mathrm{s}$ でおよそ $0.04 \%, 0.16 \%$ である。
これらの結果を見ると，主流速度の増加にともなら遷移位置の前進の傾向は全てにおいて共通であり，定性的 には数値計算の結果は良い一致を示すものと言える。な お数値計算の結果が大型低騒音風洞（ ）の結果により近いのは，数値計算に含まれる初期擋乱が小さいことに対応していることに対応していると思われる。ただ主流速度が $15 \mathrm{~m} / \mathrm{s}$ の場合は両者の結果が極めてよい一致を示 すのに対し，主流速度が増加するとその差が大きくなっ ており， $30 \mathrm{~m} / \mathrm{s}$ のケースでは約 10% コード長の差が認め られる。
次に擋乱波の不安定性を定量的に検証するために，数値計算から得られる平均速度場のデータを用いて線形安定性解析を行った。擋乱の安定性に関しては 2 次元境界層方程式
に平行流近似と線形性を仮定して得られる Orr－Sommner－ feld 方程式を用いて行ない，遷移位置予測等で一般的に用いられる e^{N} 法によって不安定波の特性を評価した。
e^{N} 法によって求めたN値を，各々の振動数をもつ撹乱波別にプロットしたのが図9である。解析は主流速度が $30 \mathrm{~m} / \mathrm{s}$ のケースについて行われた．横軸にコード位置，縦軸に N 値をとっている。この図を見ると，比較的小さな

図 5 The velocity fluctuations at some streamwise at 0.8 mm distant from wall surface location．

図 6 The definition of the transition location．

図 7 The transition location for each cases．

振動数を持つ擋乱波は安定から不安定になるいわゆる臨界点がより下流方向にあり，また振幅（ N 値）の増加も ゆっくりしている。擋乱波の振動数を増加させると臨界点はより上流側に移動し，かつ最終的な振幅も大きくな る。ただし振動数が 700 Hz を超えると増幅率はやや減小 に転ずる。

このことを明確にするため， $\mathrm{x} / \mathrm{c}=0.4$ におけるNの値を撹乱波の振動数の関数として図10に示した。この図よ り，明らかに振動数の増加とともに N 値が増加すること がわかる。しかし $\mathrm{f}=700 \mathrm{~Hz}$ をピークに減小する。つまり この流れ場においては，最も強く増幅される撹乱波は $\mathrm{f}=700 \mathrm{~Hz}$ の撹乱であることを示す。

一方，実験から得られた最も強く増幅される撹乱波も ほぼ 700 Hz 付近であることがわかっており，これらの結果は，本解析で直接得られた 200 Hz 弱といら周波数と異 なる。現在，この原因を特定すべく，引き続いて，解析精度の向上，格子点密度の影響等を調査している。

4．結論

乱流や遷移などの複雑な流体現象を伴ら高レイノルズ数領域における流れを，比較的少ない計算資源で捕える ことのできる手法を開発した。本手法は，基本的にADM （Approximate Deconvolution Model）的アプローチに基づ くLESをベースに，Generalized Characteristics Interface Conditions，高精度スキーム等を組み合わせたものであ る。

検証例として，2 次元翼周りの流れに関する解析例を示し，本手法が，層流剥離泡を含む流れ及び高レイノル ズ数領域における境界層遷移を含む流れの解析に有効で あることを示した。特に後者の例では，擋乱の増幅特性 に関しては安定性解析及び実験結果との差が大きく，解析精度や格子点密度等の点に関して，改善の余地がある ことが示されたものの，遷移位置が実験結果と比較的良 く一致するなど，満足すべき結果が得られた。

謝辞

本解析結果の検証を行らにあたり，境界層の安定性解析を担当していただいた宇宙航空研究開発機構総合技術研究本部 跡辺隆主任研究員に感謝します。

参考文献

［1］J．Kim and D．Lee，AIAA Journal，Vol．34，1996，pp．887－ 893.
［2］D．Stanescu and W．Habashi，Journal of Computational Physics，Vol．143，1998，pp．674－681．
［3］Stolz，S．，Adams，N．A．and Kleiser，L．，Phys．Fluids， Vol．13，2001，pp．2985－3001．
［4］J．Kim and D．Lee，AIAA Journal，Vol．42，2000，pp．47－ 55.
［5］Sumi，T．，Kurotaki，T．and Hiyama，J．，AIAA 2006－1272， 2006.
［6］宮澤ら，第18回数値流体力学シンポジウム，B1－2， 2004
［7］徳川ら，ながれ 22，2003，pp．485－497．

図 8 The transition location with the experimental results．

図 9 Variation of the N factor with x / c ．

図 10 Variation of the N factor with frequency at $\mathrm{x} / \mathrm{c}=0.4$ ．

境界層における層流と乱流の流れ方向界面に関する研究

寺島 修，三木 佑介，伊澤 精一郎，熊 㢣魁，福西 祐（東北大工）

Study of Laminar／Turbulent Streamwise Interfaces in a Boundary Layer Flow

O．Terashima，Y．Miki，S．Izawa，A．K．Xiong and Yu Fukunishi
Dept．of Mech．Eng．，Tohoku University

Abstract

Streamwise interfaces between laminar and turbulent regions in a at－plate boundary layer are investi－ gated using a rake of single hotwire probes．Two pieces of piezo－ceramic actuators are used to gener－ ate trapezoidal shaped turbulent regions，which have a wide leading edge in the spanwise direction．Its aim is to eliminate the contamination between the side interfaces and the downstream interface that are unavoidable in turbulent spot experiments．Experimental results show that a turbulent region has a sharp leading edge and a gradual trailing edge．It is shown that when a turbulent region passes by， the RMS value remains high for a while although there is little disturbance remaining．It is also shown that inside this region，known as the calmed region，because the ．ow returns laminar away from the wall，the turbulent ．ow near the wall is accelerated，which may be causing the inverse－transition．

Keywords ：turbulent sopt，calmed region，streamwise interface，boundary layer

1．はじめに

境界層の乱流への遷移のらちのバイパス遷移の典型的 なものは，乱流斑点が生まれ，成長し，境界層中を埋め尽くすことで完了する。半世紀以上も前にその存在が確認された乱流斑点に関する研究は，実験話よび数値計算 によって様々な角度から進められ，その基本的な性質は かなり明らかったされている（1）。最近では，個々の乱流斑点が層流領域をどのように浸食していくのかといら観点 からの研究も進み，圧力勾配の大きさが乱流斑点の伝播 に及ぼす影響（2）や，乱流斑点の合体と乱流領域の成長の関係（3）などについての報告がなされている。われわれの グループでも，稲澤（4）が，ピエゾアクチュエータを用い て平板上にくさび状の乱流領域を励起し，乱流領域と層流領域のスパン方向の界面構造を条件付き抽出法とアン サンブル平均処理により調べ，乱流領域が層流領域へせ り出す瞬間には壁面垂直方向に並ぶ一対の縦渦が存在し，
この縦渦対により誘起される乱流領域から層流領域へ向 から流れが乱流領域の拡大をもたらしていることを明ら かにした。

このよらに乱流領域の浸食メカニズムに関する知識は多くなってきているが，矢じり型の乱流斑点の場合前縁部は横の界面をも兼ねているため，その界面の本来の姿

を知ることはできない。そこで本研究では，乱流領域の前縁と横の界面を切り離して考えられるように，点源の代まりにスパン方向に十分な大きさをもつたアクチュエ一夕を用いて平板境界層中に間欠的に台形状の乱流領域 を励起し，層流領域と乱流領域の流れ方向界面の構造に ついて詳細に調べた。また，得られた結果を従来知られ ている乱流斑点の特徴と比較し検証した。

2．実験装置

実験は吹き出し型の低乱風洞を用いて測定部を密閉型 の状態で行った。本実験で用いた風速 $U=5.0 \mathrm{~m} / \mathrm{s}$ におけ る主流の乱れ強さ $u^{\prime} \mathrm{ms} / U$ は 0.25% 以下である。Fig． 1 に実験装置の概略を示す。平板は全長 $1,800 \mathrm{~mm}$ ，幅 490 mm ，厚さ 10 mm のアルミニウム合金製で，前縁部は長短軸比 が 24：1 の楕円状に加工されておら，前縁部と平板部の継 ぎ目において主流乱れを受容しないように曲率変化が滑 らかになるような工夫がなされている。また，測定部上部壁面は可動式になっており，平板上の圧力勾配がゼロ になるように調整した。その際，流れが前縁近傍ではく離しないよら平板後縁に取り付けたフラップを操作した。座標系の原点は前縁部中央とし，流れ方向に x 軸，壁面垂直方向に y 軸，スパン方向に z 軸をとつた。

本実験では，ピエゾセラミックアクチュエータを用い て層流境界層中に乱流領域を間欠的に導入した。アクチ ュエータは，平板前縁から 350 mm の位置にその後縁がく るようにスパン方向に 2 枚並べて貼り付けた。1枚のア クチュエータの大きさは，幅 40 mm ，長さ 150 mm ，厚さ 0.5 であり，アクチュエータ端部の影響を取り除くため平板の端まで同じ厚さのダミーフィルムで覆われている． ピエゾアクチュエータの駆動周波数は 1 Hz ，印加電圧は 80 Vrms とした。このとき，アクチュエータの上流側 30 mm を両面テープで壁面に固定しているため，下流端 が 1 Hz で上下する．アクチュエータが最も持ち上がった ときの先端の高さは壁面からおよそ 2 mm であり，これは この位置における境界層厚さ $\delta_{0.99}$ の 39% ，排除厚さ δ^{*} の 113% に相当する．なお，ピエゾアクチュエータが静止し た状態での流れは層流であり，上げたままの状態では，x 600 mm において速度分布は十分発達した乱流の速度分布 をとる。
流速の測定には単線の熱線風速計を用い，アクチュエ ータの駆動信号を基準信号として条件付き抽出とアンサ ンブル平均処理を行った。サンプリング周波数は 5 kHz で ある．さらに流れ方向の層流•乱流界面の様子を詳しく調べるため，$y=1.0,2.5,4.0,5.5,7.0,8.5 \mathrm{~mm}$ の高 さに計 5 本のプローブを取り付けた櫛形のプローブ列を作成し，検出用プローブとして $x=750 \mathrm{~mm}$ の位置に設置 した。

3．乱流領域の特定方法

本研究では，速度変動の強さではなく，その不規則性 が大きい領域を乱流領域と定義じている。 すなわち，あ る位置 x における速度分布 $U(t)$ を層流時の流速 U_{l} と速度変動 $u(t)$ に分解し，

$$
\begin{equation*}
U(t)=U_{1}+u(t) \tag{1}
\end{equation*}
$$

不規則成分を速度変動 $u(t)$ のアンサンブル平均からのず れとして定義し，不規則成分強度 $\left.<u^{\prime}(t)\right\rangle$ を次式

$$
\begin{equation*}
\left\langle u^{\prime}(t)\right\rangle=\sqrt{\frac{1}{N} \sum_{i=1}^{N}\left(u_{i}(t)-\langle u(t)\rangle\right)^{2}} \tag{2}
\end{equation*}
$$

により算出する．ここで N はアンサンブル平均の回数で あり，実験により $96 \sim 120$ である。そして，この不規則成分強度が主流の 2% 以上であれば乱流領域と見なす こととした．したがって，たとえ速度変動のRMS 値が大 きくても，不規則成分強度が低ければ乱流領域とは見な さない。

Fig． 1 Experimental setup．

4．結果と考察

Fig． 2 に，$z=0 \mathrm{~mm}$ における不規則成分強度を用いて判別した乱流領域を示す。ここで，T はアクチュエータ の駆動周期であり，測定領域（ $650 \leq x \leq 920$ ）における境界層厚さは，層流時 $7 \sim 9 \mathrm{~mm}$ ，乱流時 $10 \sim 18 \mathrm{~mm}$ で ある．乱流領域の先端は $y=5 \mathrm{~mm}$ 付近にあり，層流領域 にせり出すように進んでいるのに対して，乱流領域の最後尾は壁面近くにあり，裾を引きずるように進んでいる ことがわかる。このとき，乱流領域のスパン方向への広 がりを見てみると，Fig． 3 に示すように，乱流領域の前縁部はスパン方向にほぼ一様である。したがって，ピエ ゾアクチュエータを用いたことによってスパン方向界面 とは独立した流れ方向界面がねらい通り生成できている ことがわかる．また，この図から乱流領域のスパン方向 への広がり角を求めてみると 10.12 度程度となっており， これは乱流斑点の広がり角とほぼ一致する。
Fig． 4 は，$z=750 \mathrm{~mm}$ における乱流領域の通過に伴う速度変化を表している。Fig．2（a）に見られるように乱流領域は壁面から離れた位置からせり出しはじめるので， それにともなって，まず $y=5 \sim 8 \mathrm{~mm}$ の高さの速度が急激に減少する。約 0.01 T 遅れて壁面付近の領域も乱流領域に取り込まれ，流速が急に増加している．$y=3.5 \mathrm{~mm}$ の高さでは一旦速度が増加してから減少している。この ような高さの違いによる流速の増減は，層流境界層と乱流境界層の速度分布の違いによるものである。これに対 して乱流領域の後縁部では，前縁部のように $t / T \simeq 0.12$ を境に速度変動と不規則度が急激にステップ状に増加す ることはなく，変動が大きくても乱れがないままの状態 でゆるやかに層流の速度分布に回復していく，また，こ のとき壁面に近い領域では回復が遅い。このように，速度変動の大きい領域と不規則性が強い領域とは必ずしも

Fig． 2 Contour maps of $\left\langle u^{\prime}\right\rangle / U_{\infty}$ in $x y$ plane at $z=$ 0 mm and $t / T=0.122$（a）， $0.140(\mathrm{~b})$ and 0.178 （c）．

一致していない。両者を比較した場合，乱れの不規則性 が強い領域を乱流領域と定義する本手法の方が妥当であ ると我々は考えている。
そこで次に，流れ方向および壁面垂直方向の複数の測定点における測定から得られた乱流領域のアンサンブル平均像をもとに，高さごとの界面の移動速度とその高さ における局所流速の比較を試みた。その結果，励起され た台形状の乱流領域前縁部界面の移動速度は $0.8 U \infty \sim$ $0.95 U_{\infty}$ であり，過去の研究で測定されている乱流斑点前縁の移動速度とほぼ等しいことがわかった。一方，後縁部界面の移動速度は乱流斑点のそれよりも小さく， $0.3 U_{\infty} \sim 0.4 U_{\infty}$ 程度であった。ただし後縁部では速度が ゆるやかに回復する calmed region が存在するので，検出方法やしきい値の違いでこの移動速度の値は大きな影響を受けやすい。
Fig． 5 は，前縁部および後縁部界面の移動速度 U_{int} を局所平均流速 U と比較したものである。図中縦軸の η は，壁面からの高さ y を主流速度 U_{∞} と平板前縁からの距離 x を用いて無次元化したものであり，$\eta=y \sqrt{U_{\infty} / \nu x}$ ，\AA ある．乱流領域の前縁部では，界面の移動速度は $\eta=4$以下の領域で局所流速よりも速くなっており，その差は壁面に近づくほど大きくなっている。また，後縁部にお

Fig． 3 Contour maps of $\left\langle u^{\prime}\right\rangle / U_{\infty}$ in $x z$ plane at y $=2 \mathrm{~mm}$ and $t / T=1.380$ ．

Fig． 4 Ansemble－averaged signals of the rake of hotwire probes，$\langle U\rangle / U_{\infty}$ ，at $x=750 \mathrm{~mm}$ and $z=$ 0 mm for the different distances from the wall．

いては，$\eta \simeq 1.3$ を境に界面の移動速度と局所流速の大 きさが逆転している。したがって，層流•乱流界面を通 しての流体の移動に注目すると，前縁ではどこでも界面 を通して層流側から乱流側へと流体が流れ込んでいるこ とになるが，後縁では壁面から離れた領域ではやはり層流側から乱流側へと界面を通しての流体が流れ込むのに対し，壁面近傍では界面を通して乱流領域から層流領域 に向かって流体が移動している。すなわち乱流状態にあ った流体が界面を通過して層流化していることになる。
Fig． 6 は，境界層の速度分布が乱流領域の通過に伴いど のように変化するかを調べた結果である．Fig． 4 に示し た熱線の出力波形からも明らかなように，乱流領域のせ り出しによって壁面から離れた $\eta=4.0$ 付近の速度分布 が大きく変形している $(t / T=0.122)$ ，これはこの高さで は乱流部分の速度勾配が大きいことによる。 さらに乱流領域の浸食が進むと，速度分布は乱流境界層の速度分布 に近づく（ $t / T=0.140$ ，Fig．2（b））．その一方で，乱流領域後縁部では壁面から離れた場所が先に層流となるため，

Fig． 5 Propagating velocity of the laminar／turbulent interface compared to the local velocity．
（Fig．2（c）），境界層の外縁から速度勾配が緩やかとなる （ $t / T=0.178$ ）．その結果壁面近くの乱流領域は加速を受 け，乱流型の速度分布が右へとシフトする形になる。同様の結果は，Johonson の乱流斑点を対象とした数値シミ ュレーション（5）においても報告されている．このように乱流領域後縁部の再層流化が起きている領域は増速領域 になっており，壁面近傍で引き起こされるこの局所的な加速がこの領域で乱流状態の流体が再層流化する原因で ある可能性が高い。

Fig． 6 Streamwise velocity profiles accompanying the passing of a turbulent region．

5．まとめ

ピエゾアクチュエータを用いて，スパン方向に十分な大きさをもった台形状の乱流領域を平板境界層中に間欠的に励起し，層流領域と乱流領域の流れ方向界面の構造 について調べ，以下の知見を得た。励起された台形状の乱流領域前縁部界面の移動速度は従来のくさび形の乱流斑点のものとほぼ等しく，calmed region と呼ばれる後縁 では，乱れはなく速度分布がゆるやかに層流の速度分布 に回復する。この再層流化が起こる壁面近傍の乱流領域 は増速領域にあり，ここでの流れの加速が乱流を層流化 させる原因である可能性が高い。

参考文献

1）Riley J．J．，Gad－el－Hak，M．，Frontiers in Fluid Mechan－ ics，Springer－Verlag（1985），123－155

2）Chong，T．P．，Zhong，S．，Journal of Thrbomachinary， 127 （2005），545－551
3）Makita，H．，Nishizawa，A．，Journal of Turbulence， 2 （2001），1－14
4）Inasawa，A．，Ph．D．Thesis，（2005）
5）Johonson，M．W．，International Heat and Fluid Flow， 22 （2001），409－416

横川譲，村山光宏，山本一臣，伊藤健，藤井啓介（宇宙航空研究開発機構）

Low－Speed Wind－Tunnel Test of the High－Lift Configuration Aircraft Model

Y．Yokokawa＊，M．Murayama＊，K．Yamamoto＊，T．Ito＊＊and K．Fujii＊＊
＊Civil Transport Team，JAXA
＊＊Wind Tunnel Technology Center，JAXA

Abstract

The results of the wind tunnel testing for a high－lift configuration aircraft model in JAXA are given in this paper．The testing was aiming to store large amount of basic aerodynamic information by various mea－ surement techniques to provide the experimental data for CFD validation and to understand flow phys－ ics．As a result of the testing，data for forces，moments，pressure distributions，surface flow patterns， transition characteristics were acquired．In addition，measurement techniques，especially PIV，PSP and noise survey were advanced．

Keywords ：High－lift system，realistic aircraft configuration，CFD validation

1．始めに

高揚力装置の性能向上は，ペイロードの増加，燃料消費および空力騒音の低減など，航空機のD．O．C．低減や環境問題に大きく寄与することから，国産旅客機研究開発 における重要課題として取り上びられている。
CFD技術の向上により，離着陸時の複雑形態に関して も高精度なシミュレーションが可能になりつつあるあの の，高揚力装置はそのものが複雜な幾何学形状である上，周辺の流れ場についても境界層遷移，剥離むよびそれら の干渉等が生ずる複雑なものであるため，CFDを主とし た性能予測は困難である。従って，設計技術の高度化に は，実機形態の模型を対象とした風洞栻験において力• モーメント，静圧分布，遷移，流線，失速パターン等の各種計測を行い，CFDデータを検証し，また実験抽よび CFDの両データを補完的に用いて現象の理解を深める取 り組みが必要不可欠である。
欧州の研究プログラムの一つEUROLIFT ${ }^{1)}$ において は，実験とCFDの両面から高揚力装置の空力解析手法の開発が集中的に進められ， 2 次元形態，単純 3 次元形態抽 よび実機形態に対するデータ相互検証の結果として，実機開発時の要求を满たすレベルの大きな進歩が得られた。方，NASA－Langley 记括いては＂Trapezoidal Wing＂と称 される胴体付きの単純3翼素形態模型を用いた風洞試験が実施され，そこで得られたブータは 3 次元の高揚力装置に関するCFD 技術の向上に大きく寄与している2）。
宇宙航空研究開発機構航空プログラムグループ国産旅客機チーム（CTT／APG／JAXA）においては，これまで2次元 2 翼素， 2 次元 3 翼素および単純 3 次元 3 翼素に対

するCFDを采統的に実施し，格子依存性や乱流もデル倲存性に関する検証の結果，単純形態に対する性能予測技術を碓立している。3，4）

研究の次のステップは，実機形態で生ずる現象に対す るCFD予測技術の構築抽よび現象の理解であるが，同形態に対する広䈭な実験データは公開されておらず，また CFDと実験の両面から効率的に研究を推進するためには独自の模型を用いることが有効かつ不可久である。

このような背景から，我々は高揚力装置（スラット，フ ラップ），ナセル・パイロン，FTF および胴体から成る3次元実機形㦔模型を設計•製作し，低速風洞試嵞を実施 した。風洞試験の主たる目的は，CFDコード検証用デー夕および現象の解明に資するデータの取得およびCFDコ一ドの高度化や実機開発において必要とされる計測技術 の向上である。
本論文におおいては，各種の計測結果を報告し，さらに実験データとCFDデータの比較検証を併せて行ら。

2．模型

使用した模型は，100人乗ワクラスのリージョナルジ エット機を想定しJAXAが独自に設計した $1 / 6$ スケール半裁模型である。模型は図1に示すとおり， 90% スパン の前縁スラット，外舩にシングルスロッテッドフラップ，内舷にダブルスロッテッドフラップ，フロースルーナセ ル，パイロン，FTF，および胴体を供えている。主翼は スパン 2.3 m （半翼），翼弦長 0.5292 m ，アスペクト比 9.42 ，前縁後退角 33.0 度，面積 $1.1233 \mathrm{~m}^{\wedge} 2$ であり，胴体は全長 4.9 m である。なお，本試験では高揚力装置を着陸形態に

設定している。
模型には，主翼，フラップ，スラット上9断面，およ び胴体，パイロン上に合計 456 点の静圧孔が設けられて いる。さらに，機体騒音発生機構解明に寄与する模型表面非定常圧力を計測するため，スラット，母翼前縁，フ ラップ周辺に合計 20 個の非定常圧力センサー（Kulite－ XCS062）が設置されている。

Fig． 1 Half model in LWT1 test section

3．風洞試験および数值解析

試験は，宇宙航空研究開発機構（JAXA）の $6.5 \mathrm{~m} \times 5.5 \mathrm{~m}$低速風洞（LWT1）において実施した。模型は図1に示す とおりターンテーブル上に垂直に設置している。胴体と風洞床面の間には風洞壁境界層と模型本体との干渉を避 ける目的で胴体下部を延長した断面形状の 150 mm 高さ の排除板を設置した。力およびモーメントは，半裁5分力天秤により，また 456 点の模型表面静圧は 10 台のスキ ャニバルブにより計測を行った。また，CFD結果の検証 や基本空力特性の把握のため，オイルフロー法およびタ フト法，チャイナクレー法により模型表面流の可視化計測を実施し，失速特性，遷移特性の等を詳細に観察した。 どちらの場合にも可視化画像はデジタルカメラにより撮影した。さらに，非定常表面圧力センサーからの電圧信号はシグナルコンディショナーを介してA／D変換した後 に各種の統計処理を行った。これらに加え，主として計測技術の高度化を目的とし， 48 CH から構成されるフェ ーズドアレーマイクロフォンによる音源探査，ステレオ PIV 計測，低速 PSP 計測も実施した。

一方，CFD は非構造格子ソルバーであるTAS－code ${ }^{5)}$ を用いて行った。乱流モデルには，生成項において渦度 とひずみ度の最小値をとる修正を加えて渦中心領域の過大な渦粘性を減らす，修正 Spalart－Allmaras 1 方程式モ デルを用いた。全面乱流を仮定したもの，および実験で取得したデータを使用して遷移点位置を固定したものの 2 種類を行った。
主流風速は基本を $U=30, ~ 40, ~ 50, ~ 60, ~ 70 \mathrm{~m} / \mathrm{s}$ ，とした が，計測の種類によっては特定の風速のみに限定してい

る。また模型迎角は風速条件にもよるが，0度から 21 度 とした。対応するレイノルズ数は平均翼弦長基準で 1.05 million ~ 2.47 millionである。CFD は高揚力装置支持金具およびFTFを省いたモデルに対して $60 \mathrm{~m} / \mathrm{s}$ で行った。

4．結果

4．1．揚力および表面静圧分布

図 2 に 4 種類の主流風速における揚力係数CLの迎角に対する変化を示す。データは迎角を上昇させながらピッ チアンドポーズにより取得した。 $60 \mathrm{~m} / \mathrm{s}$ に対する CFD 結果も併せて示す。実験データに対してはAlan Popeの手法6）により風洞壁境界修正を行った。

線形域においては，揚力勾配が一定であるものの，主流風速の上昇と共にCLが増加するいわゆるレイノルズ数効果が現れている。一方，$\alpha=10$ 度以上の失速域におい ては主流風速の条件により特性が大きく異なる。 $U=60 \mathrm{~m} / \mathrm{s}$ においては失速角を過ぎると揚力は急激に減少 し，その後はほぼ一定の値となる。 $50 \mathrm{~m} / \mathrm{s}, ~ 40 \mathrm{~m} / \mathrm{s}$ にお いてはピークが二つ存在する。また， $30 \mathrm{~m} / \mathrm{s}$ では線形域 を離れた後，緩やかなカーブが続き，失速角後も緩やか に揚力が下降する。最大揚力および失速角に注目すると，主流風速の上昇と共にそれらの値が小さくなっており，レ イノルズ数効果とは逆の現象が生じていることがわかる。

CFDデータは実験データと比較し，揚力勾配がやや小 さくまた定量的にも差が見られるものの，本模型のよう な非常に複雑な形状と流れ場に対しても大まかな特性や失速角を捉えられていることがわかる。

Fig． 2 Variation of Lift coefficient versus AoA

図3に $U=60 \mathrm{~m} / \mathrm{s}$ における内舷断面 $(\eta=0.245)$ および翼端付近断面（ $\eta=0.891$ ）の表面静圧分布を示す。実験 における設定迎角は $\alpha=4$ 度であるが，風洞壁干渉補正後 の有効迎角は $\alpha=4.43$ 度である。図には $\alpha=5$ 度に対する CFD の結果を併せてプロットしている。

内舷断面においてはスラットおよび母翼で実験とCFD の結果が概ね一致している。しかしながらフラップの上面では両者に 20% 程度の大きな差が見られる。一方，翼端付近の断面においては母翼前縁付近を除き，両者に良好な一致が見られない。これらは剥離パターンの差異に よるものと考えられる。

Fig． 3 Static pressure distributions $(60 \mathrm{~m} / \mathrm{s}$ ）

4．2．表面流線および遷移特性

図 4 に $U=60 \mathrm{~m} / \mathrm{s}, ~ \alpha=15$ 度におけるオイルフロー可視化結果および CFD（金具，FTF なし）で得られた $\alpha=14$度における表面流線を示す。実験，CFDのどちらの結果 においてもナセルの下流で大規模な剥離が生じている。 この剥離のパターンによって失速特性が支配されている ことが詳細解析によって明らかとなっている。7）また，実験結果では母翼前縁およびフラップ前縁に層流剥離が生じており，さらに翼端付近で大きな剥離が生じている ことが分かる。このような流れ場の特性の違いが前項で示した表面静圧分布の差異の一つの原因であるものと考 えられる。

図5に $U=60 \mathrm{~m} / \mathrm{s}, ~ \alpha=10$ 度におけるチャイナクレー可視化結果を示す。スラット上では外舷側で乱流域が現れ てるものの，内舷側は層流であることが分かる。一方，母翼上では外舷側前縁付近に層流域が見てとれる。この層流域は $\alpha=4$ 度では見られず，迎角を大きくした場合に現 れることから7），母翼前縁では遷移と最層流化等が関与 する複雑な現象が生じているものと考えられる。

（a）Oil－flow visualization $(60 \mathrm{~m} / \mathrm{s}, \mathrm{AoA}=15 \mathrm{deg})$

（b）Restricted streamline $(60 \mathrm{~m} / \mathrm{s}, \mathrm{AoA}=14 \mathrm{deg})$
Fig． 4 Surface flow pattern of Exp．and Comp．

Fig． 5 China－clay visualization $(60 \mathrm{~m} / \mathrm{s}, \mathrm{AoA}=10 \mathrm{deg})$

4．3．非定常力および音源探査

図 6 に $U=70 \mathrm{~m} / \mathrm{s}, ~ \alpha=3.5$ 度におけるスラットコーブ内 の表面非定常圧力のスペクトル密度を示す。LES （ $69.2 \mathrm{~m} / \mathrm{s}, ~ \alpha=4$ 度）による計算結果を併せて示している。高周波域におけるピークおよび低周波数域におけるブロ ードバンドの変動が定性的に一致していることが分かる。 すなわち，LESにより非定常流れ場の特性が高精度に捉 えられていることが明らかである。8）

図 7 に $U=60 \mathrm{~m} / \mathrm{s}, ~ \alpha=5$ 度において計測された音源探

査結果のらち，周波数 5058.5938 Hz 成分の分布を示す。主翼翼端に支配的なピークが存在し，またフラップ端部に も強い音源が存在することが分かる。しかしながら本図 はあくまで特定の周波数成分を観察しているものであり， これらが狭帯域音であるかもしくはブロードバンドであ るかは判断できない。音源探査は広範な風速，迎角，周波数条件に対して実施しており，これらを多角的に解析中である。9）

Fig． 6 PSD of unsteady pressure （W．T．：70m／s，AoA＝3．5，CFD：69．2m／s，AoA＝4）

Fig． 7 Noise source distribution（ $60 \mathrm{~m} / \mathrm{s}, \mathrm{AoA}=5 \mathrm{deg}$ ）

4．4．PIVおよび PSP

図 8 に $U=60 \mathrm{~m} / \mathrm{s}, ~ \alpha=5$ 度において PSPにより計測さ れた翼上面静圧分布を示す。図中の左上に示した曲線は内舷側断面におけるコード方向分布を静圧孔データと比較したものである。前縁サクションピークのレベルを除 き両者が概ね一致していることが分かる。
図 9 に $U=60 \mathrm{~m} / \mathrm{s}, ~ \alpha=10$ 度においてステレオPIVによ り計測されたフラップ翼端付近のスパン方向速度分布を示す。速度分布およびそれらのベクトルが精度良く捉え られていることが分かる。本計測はステレオPIVにより行っているため，速度場は3方向成分すべてを可視化で き，CFDのバリデーションに極めて有用である。

Fig． 8 Surface pressure by PSP（ $60 \mathrm{~m} / \mathrm{s}, \mathrm{AoA}=5 \mathrm{deg}$ ）

Fig． 9 Velocity distribution（ $60 \mathrm{~m} / \mathrm{s}, \mathrm{AoA}=10 \mathrm{deg}$ ）\backslash

5．まとめ

高揚力形態の航空機に対するCFDコードのバリデーシ ョンおよび物理現象の理解を目的として，高揚力装置付 の実機形態半裁模型を用いた低速風洞試験を実施した。結果として，基本空力特性に関するCFDコードバリデー ションに有用な大量のデータが得られたことに加え，各種の計測手法により多角的に現象を観察することができ た。今後も試験結果とCFDの両面から更なる解析を継続 し，物理現象の詳細を明らかにすることにより高揚力装置の性能向上に努める。

参考文献

1）H．Hansen，et al．，AIAA Paper 2004－0767， 2004.
2）http：／／db－www．larc．nasa．gov／trapwing／archive／register／
3）M．Murayama，et at．，J．Aircraft，Vol．43，No．2，pp．395－ 406， 2006.
4）M．Murayama，et at．，AIAA Paper 2006－1396， 2006.
5）M．Murayama，et at．，J．Aircraft，Vol．42，No．2，pp．340－ 346， 2005.
6）Low－Speed Wind Tunnel Testing，Third Edition．
7）Y．Yokokawa，et at．，AIAA Paper 2006－3452， 2006.
8）T．Imamura，et at．，AIAA Paper 2006－2668， 2006.
9）T．Ura，et at．，AIAA Paper 2006－2565， 2006.

第37回•第38回研究会の総括と成果

「境界層遷移の解明と制御研究会は平成17年度中に 2 回開催され，合計4日の間に 23 の講演が行われた。第37回と第38回の研究会で発表•討論された講演を内容別に分類すると次のようになる。

- 遷移•不安定性に関する研究（7）
- 乱流•秩序構造に関する研究（4）
- 渦•空力音に関する研究（5）
- 現象•利用に関する研究（4）
- 数値流体力学に関する研究（3）

以下にテーマ毎の研究成果をまとめる。

1．遷移•不安定性に関する研究

境界層遷移においては比較的擋乱が大きい場合線形過程をバイパスするいわゆるバイパス遷移の存在が知られ ているが，これに関連した発表が 3 件あった。浅井•小西（37回）は乱流斑点に先立つストリーク構造の崩壊過程を，二つの基礎実験を通して調心ている。ひとつは弱 い乱れのもとでの線形不安定変動の際に現れるストリー・ ク構造が，その崩壊から乱流まで成長する過程を観察す る実験で，もうひとつは，強い乱れのもとでのストリー ク構造の崩壞を調べる実験である。その結果，強い乱れ のもとでのストリーク構造は線形不安定性によるのでは なく，Transient Growthによって崩壊にいたることが明 らかとなった。彼らは強い乱れのもとでのバイパス遷移 だけでなく，弱い乱れのもとで現れるストリーク構造は， ストリーク不安定から基本波数モードの発達によって， ジグザグ状に重なりあった縦渦が生成され，壁乱流に発達することも明らかにした。このようなストリークと縦渦のメカニズムや組織的運動が平板以外の流れでも普遍的であることが明らかになれば，境界層遷移予測の精度 のさらなる向上，あるいはストリーク構造を維持／消失 させることによる新しい乱流制御が生まれるのではない かと興奮させられる。

寺島ら（38回）は乱流領域と層流領域のスパン方向の界面の構造を，スパン方向に十分な大きさをもったピエ ゾアクチュエータを用いて，平板境界層中に台形状の乱流領域を励起することで，実験的に調い゙た。その結果，前緑は界面の移動速度と同じで，後縁はゆるやかに再層流化するといら界面の構造が明らかになった。本発表の成果により，バイパス遷移の典型的なケースである，乱流斑点が層流領域をどのように侵食して乱流にいたるかと

いらメカニズムの詳細がさらに明らかになったことにな る。

圧縮性流むを対象にしたこの種の研究が上原と前川 （38回）によってなされた。ここでは圧縮性壁面せん断流 の遷移機構の解明を目的とし，チャネル流について風上 バイアスコンパクトスキームを用いた直接数値シミュレ ーションを行っている。遷移現象を調べるため時間発展型ではなく，下流方向に変化する空間発展型を採用して いる。数値計算の結果は縦渦，ストリーク構造，ヘアピ ン渦といった遷移流構造の基本的要素の形成およびその帰結としての乱流遷移を再現した。特に一本の低速スト リークに対していくつかのヘアピン渦が主流方向に並ぶ様子が示されるなど，これまでにない新しい知見が得ら れている。さらに遷移領域におふるストリーク構造は， マッハ数が大きいほどそのゆれが小さくなる傾向を明確 に示した。これらの結果は超音速境界層の遷移現象を理解する上で重要な位置を占めることになる。

坂上と西岡（37回）は超音速境界層の乱流遷移機構の解明を目指し，シュリーレン法を用いて風洞ノズル壁に沿ら境界層遷移の定量計測を行った。彼らは先に同様な手法により実験を行い，層流•遷移•乱流の判別に成功 している。今回はこの経験をもとに境界層遷移を支配す る非線形撹乱の抽出を狙ったものである。渦構造の同定 には 100 枚の瞬間画像から抽出された約 1800 個もの渦を用いており，非常に丁寧な統計処理を行っている。その結果，平均密度勾配と渦構造の大きさとの間に強い相関 を見出し，これらの渦が乱流境界層の平均密度場を定め ていること，すなわちこの渦構造が超音速境界層遷移を支配する非線形撹乱であることが示唆されることを示し た。渦構造の統計的性質が実験結果から定量的に表され たことは初めてのことであり，非常に貴重な知見を与え ることになった。
2005年10月10日，JAXAは小型超音速実験機＂NEXST－ 1＂の飛行実験をオーストラリア・ウーメラで実施し，大成功を収めた。この実験の目的はCFDを用いた最適空力設計技術の実証である。そのための遷移計測の結果につ いて徳川ら（38回）が速報した。計測はホットフィルム （HF），非定常圧カトランスデューサー（DP），熱電対，プ レストン管の 4 種類で，相互の干渉が最小限になるよう必要な箇所に複数配置された。実験機は高度約 19 km で口 ケットから分離され，マッハ数2の条件で滑空しながら α－Sweep，Re－Sweepを行ら。それぞれのセンサーから有意な情報が得られ計測は成功したが，問題は遷移位置

をどら同定するかにあった。ここで筆者らは「遷移し心゙ ル」といら概念を導入し，遷移位置の定量評価を図った。 これは計測された信号レベルを層流から乱流まで 7 つの領域に分割し，全体の整合をとりながら遷移が発生する レベルを決定するものである。これにより評価された遷移位置は事前に線形解析で予測された遷移位置とよく一致することが示され，設計手法の妥当性が確認された。 ただし外翼については一部一致しない部分もあり，課題 も残るとしている。計測系における複数の不具合に対処 しつつ，一度しかない本番で満足のいく成果を挙げてい ることは賞賛に値する。

水島と稲生（38回）は，円柱直径より小さい間隔で並 んだ並列型 2 円柱を過ぎる流れに，複数の流れのパター ンが生じる原因について，数値シミュレーションと流れ の線形安定解析を行って，数値的に調心゙た。その結果，解 の分岐形状による説明で，流れのパターンが生じる起源 と，その存在領域を明らかにした。一方，石井らは長い スパンをもつ3次元キャビティ流れの内部構造を，6次以上の高精度と，結合コンパクトスキームを用いることに よる高解像度をもつ数値解法を用いることにより調べた。 この結果，アスペクト比が 5 以上の流れでは，トーラス状の流線が現れるが，中心付近でもカオス的な流れは依然存在し続けることを明らかにした。これは中央付近に セル構造があるとした実験による従来の報告よりさらに詳細な流体内部の構造が明らかになったといえる。

2．乱流•秩序構造に関する研究

佐藤ら（37回）は流れの乱雑化現象を定量的に扱らた め，短冊型の金網を一様流中に垂直に配置し，その後流 を調ベる風洞実験を行った。後流の速度変動スペクトル は下流に行くほど乱雑になっていくように見えるが，ど の程度乱雑であるのか，すなわち，＂乱雑度＂といら量を定義した。乱雑度は，無次元化されたいくつもの速度波形を振幅－波長平面内にプロットしたときの，平均位置か らの距離の平均値によって算出した。その結果，後流中 の非線形干渉段階で乱雑度が増加し，さらに下流では乱雑度がそれ以上増えない飽和状態に達することがわかり，乱雑化が開始してから終了するまでの一連の過程が示さ れた。
佐藤ら（38回）は前回に引き続き短冊型金網の後流に おける乱雑化過程を調べた。外部のスピーカにより後流中に速度変動を誘起することができ，乱雑化の初期条件 を種々に変えることができる。最初からノイズを導入し た場合や単一周波数成分を導入した場合など，種々試み た結果，線形成長段階で作られる線スペクトルや下流の発達した乱流の姿は初期条件に倲らずほとんど違いの無

いことが示された。また，秩序的な速度変動の標準波形 と取得した速度変動波形との相互相関係数から波形の類似度を定義し，さらに，波形の自己相関係数から秩序度 といら量をそれぞれ定義した。これらの概念を実験デー夕に適用した結果，下流に向って類似度も秩序度も減少 することが示された。
細川（37回）は，Monin－Lundgrenの多点速度分布の方程式（1967）に Tatsumi \＆Yoshimura（2004）の交差独立性仮説を適用して得られる方程式について，相似変数を新 たに導入して1点分布関数を得ることによって，Tatsumi \＆Yoshimuraの方程式の解法を試みるとともに，得られ た解の妥当性についても検討している。また，Tatsumi \＆ Yoshimura 方程式の相似解の存在を仮定した時，平均散逸率の減衰則，および，有限長さの渦スケール，レイノ ルズ数などの特性についても考察している。さらに， Kolmogorov仮説に基づく方程式とTatsumi \＆Yoshimura方程式の併用についても言及しており，統計乱流の知見 を深めるものとなった。
巽（38回）は，乱流の統計理論を大きく進歩させ得る交差独立性仮説を導入して，これまでに一様乱流に適用 してきた。本研究では，1点速度分布，おおよび，速度和分布，速度差分布に関する閉じた方程式を導出し，これら の方程式に基づいて物理的考察を行った結果， Kolmogorovの局所等方性の仮説を数学的に説明するとと もに，1点速度分布方程式とエネルギー散逸，非発散条件 との整合性も考察された。さらに，非一様乱流について， 1 点速度分布，およよび，速度和分布，速度差分布に関する方程式を導出して，乱流統計量はそれらの方程式の解と して算出されることを説明している。本研究では交差独立性仮説を非一様乱流にも拡張し，乱流理論の進展にお いて新たな一歩となる有益な研究である。

3．渦•空力音に関する研究

益田と有蔶（37回）は，これまでダウンバーストの研究を行ってきており，その一連の研究過程の中で本論文 では，数値解析によって周囲流体よりも軽い層流渦輪が鉛直下方へ移動するときの特性について調べている。密度差のない渦輪と比較して，密度差がある渦輪の場合，渦度のピーク値が小さく，渦度の分布領域が狭くなるこ とを示し，これらは渦輪の外側に形成される負の渦度領域の影響によるものであることを提言している。この負 の渦度領域が渦輪の進行速度や循環の時間減少率に与え る影響についても，密度差を変化させて調べており，周囲流体と密度差の異なる渦輪に作用する浮力について理解を深めるものとなった。

小橋と早川（38回）は，渦度子，渦度束，渦の 3 種類

によっで渦度を表すモデルを導入し，乱流への遷移機構 を説明することを試み，混合層と境界層について，上記 3 種類の形成と発達過程について検討している。本モデル では，層流の必須条件は「渦度束が整然と並んでいる状態」であると考えており，また，乱流遷移とは「静的な釣合い状態を失った渦度束が渦に変化すること」である と捉え，渦度子から渦度束へ，渦度束から渦へという成長過程を用いて遷移のメカニズムを解明している。さら に，この渦モデルを用いて，せん断流中の秩序構造と渦運動の関係を説明し，せん断流の遷移機構に新しい解釈 を与えている。

戸田ら（38 回）は，非定常性が円柱後流の特性に与え る不安定性に興味を持ち，非定常な円柱後流を解明する ために，走行台車を用いて加減速する円柱後流の臨界レ イノルズ数，臨界時のストローハル数を計測するととも に，渦構造の様子を可視化した。定常流中の円柱後流と比較して，加速する円柱の臨界レイノルズ数が大きくな ることを示し，これは，速度分布の計測で得られた後流 の発達が遅くなることに起因していると説明している。 また，非定常性が強い場合，臨界時のストローハル数が急激に増加することも明らかにしている。さらに，非定常性の強さは臨界レイノルズ数に影響し，臨界時のスト ローハル数には影響しないことや，渦構造の3次元性に与える加減速の影響を解明し，非定常な円柱後流に関す る貴重な結論を得でいる。

一般に円柱や鈍頭柱体が流れの中に置かれると，物体後方から周期的に放出される渦に同期して空力音が観測 されることはよく知られている。エオリア音と呼ばれる この音波は卓越的な周波数を持つのがその大きな特徵で，流れの絶対不安定が絡んでいると言われている。またこ の空力音は流線型の二次元翼でも観測され，ここには境界層中に発達するT－S 不安定と渦放出が連成した自励的 フィードバック機構が存在すると考えられている。しか し広帯域に渡り不安定化するT－S 不安定では卓越した周波数の選択機構を説明することはできない。そこで高木 ら（37回）は，空力音の発生に絶対不安定性が関与して いる可能性に着目し，振動平板境界層に対する安定性解析およびNACA0012翼を用いた実験を行った。前者では周期的な変動のある位相点で撹乱波の群速度が 0 に近 ゙ く傾向を示し絶対不安定の可能性を示㕹する結果を得た が，確証には至つていない。また後者の実験ではフィー ドバック機構を除去するためT－S波が成長しない低Re数環境で実験を行い，広域帯撹乱に加え振幅増幅率が極め て大きな狭域帯撹乱の存在を明らかにした。そしてこれ らの研究から空力音は流れの絶対不安定に起因する可能性が大きいと結論づけた。

浦ら（37回）は，航空機の離着陸時に発生する騒音低減に役立つ基礎データを得るために， $2 \mathrm{~m} \times 2 \mathrm{~m}$ 低速風洞中に設置したNACA0012の翼後縁から発生する trailing edgeノイズの音源探查を゙行った。multi arm spiral配置し た32本のマイクから得られたデータをdelay－and－sum 法 によって解析し，trailing edgeノイズは，遷移や剥離に依存することを説明し，チャイナクレイ，オイルフロー，プ レストン管による計測結果と合わせて考察し，trailing edgeノイズは庄力面側の流れの遷移，および，負圧面側 の剥離に強く関係していることを解明し，航空機の低騒音化のため，音源の発生機構を突き止める有益な提言を行った。

4．現象•利用に関する研究

スクラムジェットエンジンでは，吸気から排気までエ ンジン全域にわたつて流れは超音速となり，ラムジェッ トエンジンのようにエンジン内部で亜音速音速に減速さ れることはない。このよらに極めて短時間のらちに反応 が完了する超音速燃焼を実現するためには，燃料の水素 とその酸化剤である空気の混合を促進させるだけでなく， その混合レベルをきちんと評価することも大切である。

新井（37回）は，白金線とニクロム線の触媒反応の有無による発熱量の差を利用して，水素と空気の混合レベ ルを判定する方法を提案した。すなわち，水素濃度の変化は触媒反応を起こす白金線上の発熱量の変化として現 れるため，測定用プローブを構成する白金線とニクロム線への電力量の時間変動の相関値が水素と空気の混合レ ベルに対応することになる。プローブが測定領域に対し て十分に小さければ，白金線が起こす計測のための触媒反応は局所的であり全体の混合速度に及ぼす影響は小さ い。このような触媒のもつ高い反応速度を混合状態の判定に利用するアイデアは，燃料の空間分布を直接計測し よらとする従来の方法と異なり非常にユニークである。 この研究で計測対象として取り上げられているのはバッ クステップ流れである。このステップの角にスリットを複数設け，そこからジェットを噴射する。ジェットの噴射角度をスパン方向に互い違いになるよらにすると，ス テップ後の自由せん断層中にはつきりとした組織構造が認められるようになり，相関係数も大きくなる。また，キ ヤビティ内から噴射するポートホール型の噴射器も混合促進に効果的であることを報告している。触媒反応を利用する問題点としては，同一の実験条件下であっても相関係数にばらつきが見られ，相関値自体の分散が大きく なってしまらことではないだろらか。触媒による水素の反応速度は，気流温度や衝撃波による水素分圧の変化な どの影響を受けることも考えられ，原因の特定は難しそ

らである。
飯田ら（38回）は，鳥人間コンテスト用の滑空機の最適設計を目的として，機体の揚力及び抗力の変化を考慮 した飛翔解析プログラムに遺伝的アルゴリズムを組み合 わせることで，各設計パラメータが飛行性能に及ぼす影響について詳細に調心゙た。また，過去のフライトデータ を分析することで，最も大きな飛行距離を達成した優勝 チームに対して何が足りないのか，飛行距離を伸ばすた めには何が必要かといった現状分析も試みている。特に，大会に優勝した機体といえども離陸時のロール角度とい った外乱に対する安定性が必ずしも高いわけではなく，操緃技術によって機体の安定性の不足をカバーしている といら指摘は興味深い。毎年メンバーの入れ替わりを余儀なくされ，飛行練習も十分に行えない学生チームにと って，パイロットの飛行経験をあてにした機体設計はリ スクが高い。しかし，このよらなコンピュータによる様々なスペックの機体に対する仮想飛行試験の蓄積は，単 に機体の設計指針を与えてくれるだけではなく，学生自身が滑空機設計の勘所を体験的に学習できるといった教育効果を得られるところが魅力である。
現在就航している旅客機は，速度の遅い離着陸時にお ける揚力をかせぐため，フラップやスロットといった高揚力装置を備えている。この装置の空力性能のわずかな違いが，ペイロードや燃料消費といった航空機の性能に大きく影響するため，性能向上への努力が続けられてい る。横川ら（38回）は，風洞実験とCFDの兩面から，高揚力装置に加え，ナセル，パイロンおよびFTF（Flap－ Track Fairing）と胴体からなる実機形態モデルを用いて流 れの解析を試みている。その結果，CFDデータは失速域 における揚力特性を除き，おおむむね実験とよい一致が得 られたこと，また翼面上の静圧分布を見ても，はく離パ ターンの影響を受けるフラップ近傍などの領域以外では実験と定量的にほぼ一致することを報告している。また， マイクロフォンアレイを用いた音源探査も行い，主翼翼端に支配的な音圧のピークが存在し，フラップ端部にも強い音源が存在することを指摘した。さらには，PSPや ステレオPIVによって翼面全体の静圧分布やフラッフ端近傍の流れについても詳細な計測を行い，膨大なデータ を取得している。これらの貴重な実験データは，数値シ ミュレーションのコードの検証とその高精度化に大きく寄与することは間違いないが，境界層の遷移やはく離， それらの干渉といった非常に複雑な実際の流れを理解す るために，今後大いに頭を悩ますことになりそうである。

5．数値流体力学に関する研究

境界層の乱流遷移位置予測は，壁面剪断応力や熱伝達

の評価にむおてて重要である。実機レイノルズ数における境界層遷移は通常物体前縁で生じるため，数値計算で流 れを解析する場合には全域乱流として扱ってよい場合が多いが，風洞実験と数値計算結果の詳細な比較を行ら場合や，ガスタービン翼列周りの流れを数値計算で扱ら場合には，境界層遷移を考慮する必要がある。しかし，遷移予測によく用いられる e^{N} 法をはじめとして，DNS や LES は，航空機全機形状や各種流体機械のような一般形状に対しては適用が困難である。Menterらによって提案 された $\gamma-R e_{\theta}$ 遷移モデルは，一般形状物体の遷移予測へ の適用を容易にしたモデルであり，境界層内の渦度レイ ノルズ数 $\operatorname{Re}_{v}\left(=y^{2} \Omega / v\right)$ の最大値と遷移位置における運動量厚さ θ に基づくレイノルズ数 $\operatorname{Re}_{\theta}(=U \theta / v)$ の関係 を利用して遷移位置を予測するため，非構造格子を用い るNSコードにも導入しやすいことから，境界層遷移を考慮した航空機全機周りの流れ場の計算法として注目され ている。三坂と大林（37回）は，この $\gamma-R e_{\theta}$ 遷移モデル を，現状ではDNSやLESで解析することが困難な全機形状に対する遷移予測に用いることを目指し，非構造格子 RANSコードに導入して平板境界層遷移および剥離流遷移の計算を行い，その検証を行った。その結果，剥離流遷移に関しては，$\gamma-R e_{\theta}$ 遷移モデルを適用した場合は全域乱流とした場合より逆流域での渦粘性の生成が大きく なり，再付着点が上流へ移動し実験結果に近づくことを示した。また，平板境界層遷移に関しては，主流乱れが小さい $(0.2 \%, 1 \%)$ 自然遷移の場合には $\gamma-R e_{\theta}$ 遷移モデ ルが必要とする遷移レイノルズ数と臨界レイノルズ数お よび遷移長さに関する相関式の修正が必要であるが，主流乱れの大きい $(3 \%, 6 \%)$ バイパス遷移を含めて遷移位置を比較的正しく予測可能であることを示した。特にバ イパス遷移に関する結果は，境界層遷移予測には e^{N} 法で対象とする固有撹乱の線形発達を考慮するだけでは不十分であり，遷移を支配する（境界層の平均分布を層流か ら乱流に変える）撹乱に関する知識が不可欠であること を示嗡しており，非常に興味深い。
乱流における圧力変動の挙動を把握することは，乱流騒音や振動の予測や，より高精度な乱流モデルの構築に おいて非常に重要であるが，圧力変動は速度変動などと異なり，領域全体で決定されるグローバルな物理量であ ることから，その性質を調心゙ることは難しい。これまで に実験的•理論的研究が数多く行われているが，最近の数值計算法•計算機の能力向上とともに，直接数値シミ ュレーション（DNS）による圧力場の3次元的な挙動の解析が可能となり，圧力変動の特徴が調べられている。 しかし，その解析は壁面摩擦速度 u_{τ} とチャネル半幅 δ に基づくレイノルズ数で $R e_{\tau}=u_{\tau} \delta / v<400$ の低レイノルズ

数で行われており，DNS結果に存在する低レイノルズ数効果のためレイノルズ数依存性を検討することが難しい。间部ら（37回）は，$R e_{\tau}=180 ~ 1020$ の平行平板間乱流 のDNS データベースを用い，圧力変動の特徴をRMS 値 やパワースペクトルを基に調ベ，そのレイノルズ数依存性を検討した。その結果，圧力変動のRMS値のレイノル ズ数依存性は壁面近傍で顕著であり，壁面圧力変動の2乗平均値 $p^{\prime}{ }_{\mathrm{rms}}{ }^{2} / \tau w^{2}$ はレイノルズ数の増加とともに $\log \left(R e_{\tau}\right)$ に比例して増加すること，流れ方向の壁面圧力変動の波数スペクトルは外層におおける圧力変動の大規模構造に起因して $k x \delta=2.5 \sim 3.4$ の波数域に大きなピークが現れることを示した。また，この波数スペクトルの低波数域における挙動は乱流境界層の実験における周波数ス ペクトルの低周波数域における挙動と本質的に関係して いることを示晙している。

計算機の能力向上に伴い，流体現象の解明や予測，航空機の設計等に数値流体力学が活用され，その成果に比例して数値解析技術に対する要求も高くなり，従来では風洞試験や理論解析でしか定量的に扱らことが出来なか つた課題に用いることが期待されている。例えば，航空機設計分野の重要な課題として，翼の失速特性の定量的把握，乱流渦に起因する空力騒音の予測および軽減等が あげられるが，これらは，たとえ単純な形状であっても，境界層の剥離•再付着，遷移，乱流現象など複雑な流体現象の組み合わせであり，従来の解析手法では困難とさ れている。黒滝と住（37回）は，航空機開発に必要な比較的高いレイノルズ数領域において，できるだけ少ない格子点数で，特別なモデル無しに乱流遷移を捉衣，剥離•再付着等の現象が定量的に把握できる手法の開発を目指 し，Kim らの3重対角型 6 次精度最適化コンパクトスキ ーム，Stanescuらの2step 最適化4次精度Runge－Kutta ス キームといった高精度な空間微分，時間積分法を，一般座標系に拡張された高次精度境界条件であるKimらの NSCBC（Navier－Stokes Characteristic Boundary Conditions）に組み合わせ，KleiserらのAMD （Approximate Deconvolution Model）的アプローチに基ゞ くLESを乱流部分に適用した解析手法を構築した。手法 の検証例として，2次元翼周りの流れ場を解析し，前縁 での層流剥離，剥離泡内での乱流遷移，再付着といった現象を含む流れや，高レイノルズ数領域における境界層遷移を含むら流れについて，平均場だけでなく圧力などの変動量についても比較的少ない格子点数で実験結果と比較的良く一致する結果が得られ，手法の有効性を示した。 しかし，高レイノルズ数の境界層遷移解析に関しては，流速によって遷移位置の実験結果との差が大きいこと，計算で確認されるT－S 波の周波数が実験や安定性解析で

得られる最大増幅撹乱の周波数と異なることなど，格子点配置や計算方法に起因すると考えられる問題点があり， さらなる改善が必要である。

$$
\begin{array}{llr}
\text { 研究会幹事 } & \text { 高木 } & \text { 正平 } \\
& \text { 徳川 } & \text { 䐈子 } \\
& \text { 跡部 } & \text { 隆 } \\
& \text { 杉浦 } & \text { 裕樹 } \\
\text { 編集委員 } & \text { 坂上 } & \text { 昇史 } \\
& \text { 関下 } & \text { 信正 } \\
& \text { 伊澤精一郎 } \\
& \text { 西沢 } & \text { 啓 }
\end{array}
$$

宇宙航空研究開発機構特別資料 JAXA－SP－06－013
発 行 平成19年2月23日
編集•発行 宇宙航空研究開発機構
〒 182－8522 東京都調布市深大寺東町 7－44－1
URL ：http：／／www．jaxa．jp／
印刷•製本（株）共 進

本書及び内容についてのお問い合わせは，下記にお願いいたします。宇宙航空研究開発機構 情報システム部 研究開発情報センター〒 305－8505 茨城県つくば市千現2－1－1 TEL ：029－868－2079 FAX ：029－868－2956
© 2007 宇宙航空研究開発機構
※ 本書の一部または全部を無断複写•転載•電子媒体等に加工することを禁じます。

本書は再生紙を使用しております。

