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1. INTRODUCTION

Helicopters are used in various fields such as
EMS (Emergency Medical Service), fire fighting,
disaster relief, news report, and so on because of
the capabilities of hovering and VTOL. However,
noise, cost, and VFR (Vision Flight Rules)
problems prevent helicopters from being widely
used as a means of inter-city transportation in
densely populated area.

Prediction of the flow field of helicopter rotors
in forward flight is regarded as one of the most
challenging problems in current computational
fluid dynamics. Addition of the fuselage
underneath the rotor further amplifies the
complexity, requiring the solution of unsteady
three-dimensional flows involving multiple bodies
in relative motion. The periodic airloads, which is
principally due to the rotating main rotor blades,
impact the undesirable noise and vibration on the
fuselage in the way of a mutual aerodynamic
interference. Therefore, elaborate aerodynamic
analyses of the rotor-fuselage interaction are
needed to understand the physics and as an aid to
the designers.

In the preset study, three dimensional parallel
Euler flow solvers have been developed for the
simulation of unsteady rotor-fuselage interaction
aerodynamics on  both  structured  and
unstructured grids using the ROBIN (ROtor Body
INteraction) configurationts. Validations with
experimental data are conducted by simulating
the flows around the ROBIN fuselage. The
merit/demerit of each grid system is discussed.

2. NUMERICAL METHOD

2.1 Numerical Method for Structured Grid

A three-dimensional numerical flow solver for
the compressible Euler equation is used to
analyze the detailed behavior of tip vortex.

For the calculation of blade grid, inviscid flux
vectors are separated using Roe's flux difference
splitting (FDS) algorithm?, with third-order
accuracy using a TVD scheme. For the time
integration, second-order Euler backward scheme
is used in the conventional delta form. A
diagonalized ADI method with an upwind
flux-split technique is used in the linearized
implicit part for the discretionary governing
equations. A detailed derivation of the governing
equation and numerical schemes is described in a
previous work by Aoyama et al® The typical
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dividing number along the azimuthal direction is
about 4800 per revolution, which corresponds to
the azimuthal angle about 0.075°. The unsteady
calculation is impulsively started from 0°azimuth
angle.

For the calculations over background grid, the
flux difference across cell interface is divided also
using a compact TVD scheme® to get third order
accuracy. MUSCL cell interface value is modified
to achieve 4th-order high accuracy in the
background Cartesian grid. Simple High-
resolution Upwind Scheme (SHUS)? is employed
to obtain numerical flux. SHUS is one of the
Advection Upstream Splitting Method (AUSM)
type approximate Riemann solvers and has small
numerical diffusion. The four stage Runge-Kutta
method is used for the present calculation. The
free stream condition is applied for the outer
boundary of the outer background grid.

Caleulations are performed using Central
Numerical Simulation System (CeNSS), the main
part of the third-generation numerical simulator
of JAXA. Tt is composed of high performance
UNIX servers, FUJITSU PRIMEPOWERSs, which
are connected by a crossbar network. CeNSS has
9TFLOPS peak performance, 3TB memory, 50TB
disk storage, and 600TB tape archive.

2.2 Numerical Method for Unstructured Grid
The governing unsteady Euler equations are
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discretized by using a finite-
the inertial coordinate system. The inviscid flux
across each cell face is computed based on the
Roe’s flux difference splitting formulat. To obtain
second-order spatial accuracy, estimation of the
state variables at each cell face is achieved by
interpolating the solution using the Taylor series
expansion in the neighborhood of each cell center.
The cell-averaged solution gradient required at
the cell center for expansion 1is
computed from the Gauss’ theorem by evaluating
the surface integral for the closed surface of the
tetrahedron. The expansion also requires the
nodal value of the solution, which can be
computed from the surrounding cell center data
using a second-order accurate pseudo-Laplacian
averaging procedure.

An implicit time integration algorithm based
on a linearized second-order Euler backward
difference is used to advance the solution in time.
Initially, a steady-state solution is obtained for a
fixed rotor position based on local time stepping.
Then the time-accurate calculation is performed
using the converged steady-state solution as the
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initial condition. Dual-time stepping is also
adopted to 1mprove the solution accuracy if
necessary. The linear system of equations is
solved at each time step using a point
Gauss-Seidel method.

At the far-field boundary, the pressure is fixed
to the free stream value and other flow variables
are extrapolated from the interior. The far-field
boundary is located seven radii away from the
rotor.

For the effective treatment of the complicated
flow field involving the relative motion between
the blades and the fuselage, the computational
domain is decomposed into two zones. The upper
zone contains the rotor blades and rotates with
them. The stationary lower zone covers the rest of
the flow field including the fuselage and the far
wake of the rotor. The computational grid of each
zone is constructed independently, and a sliding
grid algorithm is applied to the boundary between
the two zones such that the flow variables convect
across the boundary in a conservative manners®.
The flux at each boundary face is calculated by
using the information about the overlapping area
between the upper and lower sliding boundary
faces. The second-order spatial accuracy of the
flux discretization is maintained across the
shiding boundary by introducing ghost cells
attached to the sliding boundary faces inside the
opposite flow zone.

To reduce the numerical dissipation and to
enhance the tip-vortex preservation, solution-
adaptive grid refinement can be used. A
‘quasi-unsteady’ grid adaptation technique is
adopted to maintain a proper grid resolution,
while avoiding excessive computational time
required for the dynamic grid adaptation applied
in a fully unsteady manner.
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calculated by advancing the rotor by 0.5 degrees
at each time step. The calculation is made using
28 and 8 processors for the upper and lower zones,
respectively, and it takes approximately six hours
of elapsed CPU time for one rotor revolution on
the refined grid. Dual-time stepping is not
adopted in the present calculation.

All  calculations are performed on a
Linux-based PC cluster having 2.4Ghz Pentium
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2.3 ROTOR TRIM

In order to attain the calculated thrust to a
desired level and to eliminate the vrotor
aerodynamic moment, a rotor trim procedure is
enforced for vrotors in forward flight for
unstructured grid calculations. The thrust and
moment coefficients can be expressed as a
function of the collective angle, ¢, and cyclic pitch
angles, 6,6, as shown in the following
equation.
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Then the equilibrium state is obtained by
correcting the trim angles iteratively using the
Newton-Raphson method®19, In this process, the
correction angles of the control settings are
estimated by evaluating the sensitivities which
are the derivatives of the thrust and the pitching
and rolling moments with respect to the control
angles. Each trim cycle consists of seven
revolutions of the rotor, three for calculating the
sensitivities and the rest for the solution iteration.
This trim procedure is computationally very
expensive since it requires several cycles for a
converged solution. Initially, the rotor trim
iteration is performed on the coarse grid. Once the
trim cycle is converged, the grid adaptation is
applied to the coarse grid, and then the rotor trim
procedure is continued to obtain the final trim
solution on the refined grid.

For structured grid calculation, a trim data is
given as an input data, and these trim conditions
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are shown in Table 1.

Table 1: Trim conditions of ROBIN model used for
calculations

Trim Conditions KAIST JAXA
Advanced ratio 0.23
Tip Mach number 0.5298
Thrust coefiicient, CT 0.00648410.006549

Pitch angle Collective angle 5.6 6.47

at 70% of | Cyclic (iongitudinal) -3.61 -2.08

rotor span Cyclic (lateral) 1.54 3.28

(9) Phase lag 0 0

Flapping B0 g
angle BC 0
BS 0
Rotor shaft angle 3
Rotation of Roll 0
fuselage Pitch 0

3. GRID GENERATION

3.1 ROBIN Configuration

The ROBIN configuration, which is tested at
NASA Langley (Refs. 1-3), is consists of a
four-bladed rotor and a generic fuselage. The
blades are made of an NACAQ012 airfoil section
and have a rectangular planform shape with an
aspect ratio of 12.98. The blades are linearly
twisted by -8 degrees from root to tip and have a
root cutout of 0.24R. The shaft is tilted forward by
3 degrees. Figure 1 shows photographs of the
2-meter ROBIN configuration installed in the 14-
by 22-foot subsonic tunnel test section, which was
used for the experiment of Ref. 3.

This document is provided by JAXA.



Az i A S 2 — T al AT R T A20055 SR

1L.97-03935

1.97-03936

Figure 1: Photographs of the 2-meter ROBIN
configuration installed in the 14- by 22-Foot
Subsonic Tunnel test section?

Figure 2 and Table 2 show the sketch of the
ROBIN configuration and coefficients to define
the body shape of ROBIN configuration, which
are used in the related equations.
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Figure 2: Sketch of the ROBIN configuration

Table 2: Coefficients to define body shape of
ROBIN configuration and related equations!
Coeflicients to Define Body Shape
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3.2 Surface & Background Grid Generation

For the structured grid, 131x100x30 nodes for
ROBIN body and 129x101x30 nodes for blades are
used. And the
290%x230x80 and the outer background grids is
83x79x49 nodes.

For the unstructured grid, 3,247,740 and
1,030,250 cells are generated for the rotating and
stationary zones respectively after two levels of
grid adaptation. The sliding boundary plane is set
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inner background grids is

at 1.66 chord lengths underneath the rotor disk -

plane.

Table 3 Grid number for structure grid

Grid
Inner (xXyxz)
Background grid 450X 40080 = 14,400,000
Outer (xXyXz)

Background grid

83X79X49 = 321,293

Main-rotor grid

(chord X normal X span) X blade
(127X 30X 131) X 4 = 1,996,440

Fuselage grid

(chord X normal X span) X blade
131X 30126 = 495,180

— 7l =0.040
@

Total

17,212,913 points

Spacing of inner
background Grid

0.1¢(=0.005R)
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Table 4: Grid number for unstructure grid

x : After two level
Inial gria grid adaptation
Rotating
i 646,452 3,247,740
Stationary
s 428,831 1,030,250

Table 3 and 4 show the specification of
structured and unstructured grid used for
calculation.

Figure 3 shows the computational surfaces on
ROBIN surface for unstructured and structured
grid respectively, and Figure 4(a)-(d) shows
several computational grids of background grid on

the rotor-fuselage configuration for each grid type.

As explained in the previous section, the
structured grid is a moving overlapped grid
system as shown in Fig. 4(b). It is composed of
main-rotor blade grids, tail-rotor blade grids,
fuselage grid, inner background grid, and outer
background grid. For unstructured grid, the
computational domain is decomposed into two
zones, the upper rotating zone with rotor blades
and the lower stationary zone with the fuselage.

N~

(a) structured overset grid

N o~

(b) unstructured sliding grid
Fig.3: Computational surfaces for the ROBIN
configuration
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(c) upper rotating zone (d) lower stationary zone

Fig.4 Computational grid for the rotor-fuselage
configuration; structured overset grid (a, b) and
unstructured sliding grid (c, d)

4. CALCULATION RESULTS

Among the various measurement cases reported
from the experiment, the one with a blade tip
Mach number of 0.562 and an advance ratio of 0.23
is chosen for validation. Table 5 shows the
operating conditions and parameters used in the
calculations.

Table 5: Operating conditions and parameters

Property Value
blade planform Rectangular
radius 0.8606 m
root chord 0.0660 m
tip chord 0.0660 m
number of blades 4
root cutout location 0.24R
flap/lag hinge location 0.06R
airfoil section NACAQ012
twist -8 degree
normal thrust coefficient 0.0065
solidity 0.0977
nominal hover Mttp 0.055
approx. mean conning anlge 1 degree
shift tilt 3 degree
(nose down)

Figure 5 shows an instantaneous iso-surface
of vorticity around rotor and ROBIN body
configuration using structured grid. Tip-
vortices generated from 4 blades are well
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demonstrated, and the ROBIN hody is also well
captured.

In Fig. 6, the predicted unsteady pressure
variations of both structured and unstructured
grids are compared with the experiment at four
selected fuselage surface points. Along the top line
of the fuselage, the peak-to-peak magnitude of the
variation and the phase are well predicted, even
though the predicted result is slightly higher than
the experiment at the point ahead of the pylon. At
the side surface of the fuselage, the magnitude of
the predicted pressure is consistently higher than
the experiment. A similar result is also obtained
at the retreating side. Both CFD codes of JAXA
and KAIST show good agreement with
experimental data.

In Fig. 7, the instantaneous vorticity contours
at the fuselage symmetric plane are presented for
four azimuth angles of the blade for comparison.
The figures demonstrate the generation and the
migration of the tip vortex for several revolutions.
At this relatively high advance ratio, the direct
impingement of the tip vortex on the fuselage is
not observed, even though the downwash and the
pressure on the fuselage are strongly affected by
the blade passage as confirmed in the previous
figures. Even both results show good agreement
in the trace of tip vortex, results of structured grid
show more distinct tip vortex in vortex capturing
ability. One of the reasons comes from the usage
of finer grid and higher-order scheme in the
wake-capturing region by using overlapped grid.

Figure 5 Instantaneous iso-surface of vorticity
around rotor and ROBIN configuration

5. SUMMARIES AND CONCLUSIONS

Three dimensional parallel Euler flow solvers
have been developed for the simulation of
unsteady rotor-fuselage interaction aerodynamics
on both structured and unstructured grids using

the ROBIN (ROtor Body INteraction)

configuration.

(1) Both CFD codes of JAXA and KAIST show
good agreement with experimental data.
(2) Results of JAXA show excellence in vortex

capturing ability, but need to use better trim
condition for better agreement with
experimental data.

(3) Results of KAIST show excellence in speedy
trim calculation, but need to increase solution
accuracy for better tip vortex capturing.

(4) During cooperative research work, each
ingtitute can clearly understand the weak
point of each CFD code to make up for the
better results.
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Figure 6: Comparison of predicted unsteady pressure variations at four selected fuselage surface points
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Figure 7: Comparison of instantaneous vorticity contours at the fuselage symmetric plane
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