BLZEs P R S b — S 3V BT L L AR DT 120057 U i

Robustness Study on Automatic Hexahedra Grid Generation

Paulus R. Lahur
Japan Aerospace Exploration Agency

ABSTRACT
This paper discusses the robustness aspects of an automatic hexahedra grid generation method. The method is capable of automatically
generating hexahedra grid around solid surface comprising overlapping components, offering a significant benefit in design environment,
because the geometry of individual component and their relative positions can be readily modified. The method is based on Cartesian grid
method, which is well known for its efficiency and speed in filling a computational domain. The cells near solid surface are hexahedral
cells of general shape, which includes degenerate forms. The cells are generated from the interior of computational domain toward the solid
surface, resulting in tolerance to surface defects such as small gap and overlap, which are not uncommon. The robustness issues and their
solution at each step of the method are discussed in this paper. In particular, the most difficult issue: capturing sharp concave features, has
been successfully addressed. The method has been applied to a number of geometries, including a model of DLR F6 with engine and pylon.

1. Introduction

For treatment of complicated geometry, there are mainly three
major types of grid, know by their popular names as: (1)
“structured grid,” (2) “unstructured grid,” and (3) “Cartesian
grid.” The “structured grid” popularly known today is actually a
hybrid approach between structured and unstructured grid. The
grid consists of a number of blocks. An example can be found in
Ref. [1]. Within the block, the grid is structured, whereas between
the blocks the relationship is unstructured. The blocks either fit
each other on the boundaries, or overlap each other. Although in
the hands of an expert this type of grid can produce accurate
solution, it takes a considerable amount of manual effort and time
to generate. It is not uncommon for such grid generation to take
months, making it impractical for many design purposes.

The “unstructured grid” addresses the difficulties faced by
structured grid [2-4]. Its generation is automatic and fast.
Although in principle unstructured grid may consist of any cell
shape, the most popularly employed shape is tetrahedron. This
shape, which is the simplest of all polyhedra, along with its
unstructured nature, is responsible for its advantages. However, it
is also this shape that puts limit on its solution accuracy.

The method outlined here

grid” [5-13]. Its generation is fast and automatic. Furthermore, it
has a preferred shape in terms of solution accuracy. The issue to
consider with this type of grid is how to treat the solid surface
properly. Because a method that can generate grid for inviscid
and viscous flows is desirable in this study, a hybrid with
prismatic grid has to be considered. There are basically two
options in generating such hybrid (Fig. 1):

1) Hybrid with cutcell approach, where prismatic grid is
generated first on the solid surface (Boundary to Interior
approach) [6-8].

2) All-hexahedra grid, where the prismatic grid is generated
toward solid surface (Interior to Boundary approach) [9-13].

The present research follows the second approach because, unlike
the first method, it does not require high quality surface grid. A
solid surface does not have to be water-tight, thus gaps between
surface elements and eclement overlaps are allowed (Fig2).
Recently the present method has been extended to direct
treatment of solid surface consisting of components [13]. This is
highly advantageous in design environment.

[}

utlined here belongs to the third type: “Cartesian

The grid generation method is cutlined below, describing topics
such as how to overcome the problem of capturing sharp concave

feature, a common problem to all Interface to Boundary approach.

Discussion on robustness is given, with special attention given to
the most problematic issues. Test cases that include DLR F6 with
engine nacelle and pylon are presented as well.

2. Grid Generation Method

This method can generate computational grid around a solid
surface consisting of a set of triangular elements. Compared to
other methods, the requirement imposed on the solid surface is
not strict. Water-tight surface is not required, so gap between
elements is allowed, provided that its size is small in comparison
to local size of grid cells. The elements may overlap and intersect
each other. Furthermore, there is no strict requirement on the size
of elements, although it is desirable that they are sufficiently
small so as not to degrade solution accuracy significantly. An
important requirement is that the normal vectors of all solid
elements must point outward.

The method consists of the following steps, as described in [13]:
(1) Cartesian grid generation

(2) Removal of cells and construction of “quad surface”

(3) Construction of layer of cells

(4) Construction and capturing of solid features

(5) Quality improvement

Brief deseription and discussion on robustness for each step is
given below, along with a sample of intersecting spheres (I ig. 3).

£ o4t

Note that the robustness of the method as a whole is determined
Aan
robustness issue at each step.

2.1. Cartesian Grid Generation

This step starts with one Cartesian cell that covers the whole
computational domain. Refinement is applied on the cell and
repeated on the resulting smaller cells until a targeted grid
resolution is achieved. The refinement is cartied out by dividing a
cell into two in each Cartesian axial direction, resulting in a total
of eight child cells of equal size and shape (isotropic division). As
in all grid generation methods, the grid resolution is made higher

around the solid surface, and even higher if the surface is curved.

This step is very robust. It relies on a well known octree data
structure, which also allows for a very efficient grid generation.
In fact, this is the reason that makes Cartesian grid especially
attractive. Extensive discussion can be found in [5].

2.2. Removal of Cells and Construction of “Quad Surface”

Cells around solid surface are removed to make room for the
construction of hexahedral cells in the next step (See Section 2.3).
Faces of the remaining cells around solid surface form a surface
termed “quad surface,” because almost all of these faces are of
quadrilateral shape. The rest of faces are not quadrilateral,
because they contain hanging nodes that occur when the size of a
cell differs to its neighbor, a typical characteristic of methods
based on Cartesian grid.

The quad surface is in fact a geometric approximation of the
wetted surface of the solid body, albeit a crude one, due to its

This document is provided by JAXA.

42 AT R R

staircase-like appearance and its “inflated” geometry. The surface
is then smoothed to ease the next task (Section 2.3).

This step is also robust. The potential pitfall is failure to form a
valid quad surface. Note that a valid surface is defined here as
one that does not self-intersect, even if the intersection is merely
on a single point. Self-intersecting surface will result if cells are
removed in such a way that the only way to travel from one cell to
its neighbor is through an edge or a point. See Fig. 4. In this
implementation, during cell removal, check for such case is
performed. When found, the offending cells are removed.

Another possible problem is due to a gap on solid surface that is
bigger than local grid cells. The algorithm mistakenly assumes
that the gap is indeed a valid hole on the solid surface, resulting
in failure to remove cells inside the solid body. The gap has to be
closed or at least made smaller before a proper grid generation.
The result of this step is shown in Figs. 5 and 6.

2.3. Construction of Layer of Cells

In this step, first a new quad surface is constructed. Initially it is
just a copy of the quad surface from the previous step.
Connecting the two surfaces is a layer of cells. The new surface is
then snapped onto the solid surface. Note that a snap is defined as
moving an object to the closest target object. In this case, nodes
on the new surface are moved to the closest position on solid
surface. As the result, all nodes of the projected quad surface now
lie exactly on the wetted solid surface. See Fig. 7.

This step is very robust, because the algorithm works even when
the solid surface contains gap and faces that overlap and intersect
each other. One pitfall is when a gap is too big in comparison to
local grid cell size, resulting in snapping into the inside of solid
body. However, if such gap does exist, it already causes problem
in the previous step.

2.4. Construction and Capturing of Solid Features

The snapping procedure in the previous step captures the solid
surface very well, except in the region where the surface is highly
concave. The very nature of the algorithm prohibits snapping
onto concave features. In this step, such deficiency is corrected.

More attention is given to the
101C aliention 18 given 10 tne Giscussion ior it

is the most problematic in terms of robustness. The source of the
difficuity is the complexity of solid surface, which usually has
numerous features. The problem is made worse by the existence
of gap and element intersection.

digeusainn for this gten heeange it
5 58P, oECause it

There are two independent tasks in this step: (1) to construct solid
features and (2) to capture the features. The first step is not
difficult to implement, because the procedure boils down to
simple operations involving a pair of triangles. Features are
formed by intersection between components of solid surface, as
well as by sudden change in angular orientation of the surface.
See Fig. 8.

Depending on the complexity of the geometry, the features may
form a simple line, or they may form a complicated arrangement.
It is found that the key to successful feature capturing is to
capture only valid concave features. A concave feature is either
within a component, or the result of intersection between
components. Thus these other features are ignored:

(1) Convex feature, because the snapping at the previous step

has already captured this.
(2) Features inside solid body and that on “the other side” of
solid body, because they violate geometry integrity.

The second task starts with identifying which quad faces fail to
capture the solid surface properly. Proposed in this study is the
use of “approximation error” of quad surface in capturing the

RIBRERIE R JAXA-SP-05-017

wetted solid surface. This is computed for each quad face by
measuring the maximum distance between the face to the solid
surface. It is found that simply measuring the distance from the
center of quad face is inaccurate when the face is not flat,
resulting in compromised robustness. Therefore, for a non-flat
face, distances are measured from the mid-points of all
combinations of the face’s vertices, and the maximum value is
taken as the approximation error. See Fig. 9. Quad faces with
large approximation error are the ones that will be fixed.

Both identification of valid concave features and identification of
the quad faces with large error are crucial in isolating the problem.
Now the problem domain is reduced to a much simpler set of
sharp concave features and a handful of quad faces with large
approximation error. The next job is to fit the quad faces to the
features. All scenarios in fitting one quad face to a feature line are
shown in Fig. 10. Because of the simplification above, most
situation falls into this case. There are a number of possible ways
to fit a feature line, where one, two, or three node(s) of quad face
may be moved onto the line.

The feature capturing takes place from one problematic quad face
to another next to it. When moving the neighbor face to a solid
feature, care is taken so that it moves in synergy with the face that
already captures the feature. This synchronizes the movement of
the quad faces sharing a feature line, and resulting in a robust and
good quality capture. The result is shown in Fig. 11.

The techniques above reduce the complexity of the feature
construction and capturing. It is found that this is the key to a
successful treatment and the solution to the robustness issue.

2.5. Quality Improvement

Although the feature is captured, the grid quality around the
feature is still quite low in term of smoothness. Improvement can
be achieved by means of selective smoothing, where quad faces
that already capture solid features are prohibited from moving.

This step is very robust because it only involves a smoothing
procedure, whose algorithm is well tested. See Fig, 12.

3. Test Cases

3.1. Simple Configuration of DLR F6 Aircraft Model

The model consists of body and wing, as shown in Fig. 13.
Figures 14-16 show the final hexahedra grid, which contains
about 200,000 cells, 700,000 faces, and 250,000 nodes. The time
to generate is around 7 minutes on a Pentium4-based machine. As
can be seen, the grid is rather coarse, especially that around the
wing. It is indeed the purpose for this case to demonstrate that the
method works quite successfully even when the grid is coarse. As
in other methods of grid generation, increasing the resolution of
the grid makes the task easier to perform.

3.2. More Complex Configuration of DLR F6 Aircraft Model
The model consists of four components: fuselage, wing, engine
nacelle and pylon, as shown in Fig. 17. Figures 18-20 show the
final grid, which contains about 900,000 cells. The time to
generate is around 50 minutes on a Pentium4-based machine. The
amount of time is very short when compared with grid generation
methods that rely on manual labor such as multi-block structured
grid, which can take time in the order of weeks. This is indeed a
significant advantage in a design environment. As in the first case,
this case is also handled successfully.

This document is provided by JAXA.

ﬂJLH—»,—:—.H—»j}iﬁ /;:_I/v—\‘/a/&fh ///J\‘/?AZOOE) YE

4. Conclusion

A brief discussion on the robustness aspects of a hexahedra grid
generation method has been presented. The method can generate
grid around solid surface expressed as overlapping components.
Cartesian grid cells fill most of the computational domain,
whereas generic hexahedral cells fill the region around solid

surface. Because the method generates grid towards the solid

surface instead of from the surface, it tolerates surface defects
such as gaps and element overlaps. Recent advancement in this
study exploits this property further by generating grid around
intersecting geometry components.

1t is found that feature capturing causes the most trouble in terms
of robustess, due to the complexity of solid surface. However, it
is also found that, by reducing the complexity of the problems, as
discussed in the refevant section, a robust algorithm can be
constructed. A test case of DLR F6 geometry comprising of body,
wing, engine nacelle and pylon has been used to demonstrate the

capability of the method with satisfactory results.

References

1) Yamane, T., Yamamoto, K., Enomoto, S., Yamazaki, H.,
Takaki, R., and Iwamiya, T., “Development of A Common
CFD Platform — UPACS,” Proc. Parallel CFD 2000 Conf,
Elsevier Science, 2001, pp. 257-264.

2) Lohner, R., “Generation of Unstructured Grids Suitable for
RANS Calculations,” ATAA-99-0662, 1999,

3) Ito, Y. and Nakahashi, K., “Unstructured Hybrid Grid
Generation based on Isotropic Tetrahedral Grids,” AIAA
2002-0861, 2002.

4) Kallinderis, Y., Khawaja, A., and McMorris, H., “Hybrid

?nsmaﬁc/TPtrahedral Grid Generation for Viscous Flows

around Complex Geometries,” ATAA Journal.,, Vol. 34, No.

2, 1996, pp. 291-298.

Aftosmis, M.J., “Solution Adaptive Cartesian Grid Methods

for Aerodynamlc Flows with Complex Geometries,” VKI

Lecture Series, 1997-02, 1997.

Deister, F. and Hirschel, B.H,, “Adaptive Cartesian/Pri

i, o
A Qalatinng e 3]

d solutions 107 mbfii‘?u_y Geomert
.

h
~

[#)}

2
@
S

Grid Generation ar
AIAA 99-0782, 199

7) Leatham, M., Stokes, S., Shaw, J.A., Cooper, J., Appa, I,
and Biaylock, T.A., “Automatic Mesh Generation for Rapid-
Response Navier-Stokes Calculations,” ATAA 2000-2247,
2000.

8) Karman, S.L.Jr, “SPLITFLOW: A 3D Unstructured
Cartesian/Prismatic Grid CFD Code for Complex
Geometries,” ATAA 95-0343, 1995.

9) Tchon, K.F., Hirsch, C., and Schneiders, R., “Octree-based
Hexahedral Mesh Generation for Viscous Flow
Simulations,” AIAA 97-1980, 1997.

10) Wang, Z.J. and Chen, R.F., “Anisotropic Solution-Adaptive
Viscous Cartesian Grid Method for Turbulent Flow
Simulations,” AIAA Journal, Vol. 40, No. 10, 2002, pp.
1969-1978.

11) Wang, Z.J. and Srinivasan, K., “An Adaptive Cartesian Grid
Generation Method for ‘Dirty’ Geometry,” Int. J. Numer.
Meth. Fluids, Vol. 39, 2002, pp. 703-717.

12) Lahur, P.R.., “Hexahedra Grid Generation Method for Flow
Computation,” ATAA 2004-4958, 2004,

13). Lahur, B.R. “Automatic Hexahedra Grid Generation Method

for Component-based Surface Geometry,” AIAA 2005-5242,

2005.

43

This document is provided by JAXA.

- FHAZTIFIE I MR AR, JAXA-SP-05-017

Figure 1. Comparison between the approach of Boundary
To Interior (left) and Interior To Boundary (right).

Figure 2. Solid surface that contains gap (left), element
overlap (middle), and component overlap (right).

Figure 3. Two solid surfaces intersecting each other.

-

Figure 8. Cartesian grid cell containing solid faces that
forms non-planar surface in a single component (left) and
multi-component (right).

Figure 4. Legal configurations (top) and illegal configurations
(bottom). ;

Figure 9. Approximation error of quad face, estimated as the
distance to solid surface, measured from face center (left)
and midpoints of vertices (right).

Figure 5. After removal of Cartesian grid cells around solid
body.

This document is provided by JAXA.

45

[p& S

A ZE Al I b — T a Hl AR P 2005

S
17 2] i

tion.,

xahedra grid around DLR

he
ction.

jun
ing junc

ing

..‘"““"..“..ﬁ
R0
A7
- 2.

5
AROORANOO
S

9

o
272

N
2

0

\/.

77
a2\
7

fw
;-a'

ar

=
27

£ 7

=

1eW O
et

77

’-ﬂ’*

Top v

<>

)
Y

N\

<>

N

i

Z e
2 e
ZZ BN
N%%#Zﬁ‘oﬁo@QQ%‘&ﬁ&&@.
AR
EEE

Figure 14. Overall view of the

Fé.
Figure 15

i
S =
3 L
o o R B -
BERiERy ; %
NEERGI -
o o N
BHB

ing.
improve gri

S AEABAY ST

o !;H.ﬂ!ik.;v..h.r

g

1% A R A
g R AR
A

Result of feature captur|

Figure 10. Capturing feature lines

Figure 1

igure 12. Selective smoothing to

ising

This document is provided by JAXA.

iew of DLR F6 model, compr
lle and pylon.

Exploded v

wing, engine nace

Figure 17
fuselage,

ising

compr

1

iew of DLR F6 model

13. Exploded v
fuselage and wing.

Figure

7 P : -SP-05-017
BB A RIE B JAXA

S HT AL ZE R R B

SR

46

R Ny
AR e ARG L

, heuse
A %‘\‘\‘\‘“&&!‘ﬁi‘ﬁ%

*“‘%?ém-%iﬁ‘i"ﬁ‘i‘?““ “
E‘E\i‘“& \

AR

I‘ 1 .e 18. OVCIall VIEW ()f t]le hexahedfa (4} ﬂd DLR
gur

“"""-V-d.-.
Z 7
6’% =
e "’?
e

=]

7
')

udis Ry
;§$§sm‘§,;§g§
Ry
g:"o‘.‘g!a;*&
,:.:;h:';"tiu
i
Rt

S
i “ <
L 7
"’%”%a.ﬂg
i

%
o

A.
i by JAX.
document is provided

This do

