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Abstract — In this paper, we propose a quasi-neutral model with non-vanishing
current describing the expansion of a plasma in an inter-cellular gap on a satellite
solar array. Moreover, an electric arc cathode spot model is proposed in order to

give suitable boundary conditions for the expansion model.

1. Introduction
1.1 General framework

We are interested in the modeling of secondary arcs formation on satellite solar genera-
tors. Power on satellites is generally provided by solar generators which use semiconductor
solar cells to convert solar radiation energy into electrical power. Solar generators consist
of individual solar cells of about a few cm? in surface, which are connected in series into
'strings’ to provide the required potential difference (usually ranging from 50 to 150 Volts).
Strings are then connected in parallel to deliver the requested power to the satellite equip-
ments. Solar cells are made of high quality semiconductor materials (usually Silicium)
and are very expensive to fabricate. It happens too often that after a certain operation
time, an entire portion of the solar generator undergoes a permanent failure. The reason
for it is the occurrence of an electrical arc which shortcuts one or several strings.

At the beginning of the scenario which leads to the secondary arc, the satellite charging
in the earth environment plasma triggers a primary discharge between a cell interconnect
and the dielectric which is used in the protective layer [1]. The so-created plasma plume
expands and eventually connects and shortcuts two neighboring solar cells. The potential
difference between the two cells (which is generated and maintained by the operation of
the cells themselves) induces the transition of the primary discharge into a secondary
arc [2],[3], [1]. Once this arc is established, it pyrolyzes the insulating kapton substrate
and may transform it into a conductor, which provides a permanent solid-state shortcut
between the two cells, thereby irremediably deteriorating this part of the solar generator.
The second phase of the discharge scenario, namely the expansion of the plasma plume
and the transition from the primary discharge into the secondary arc can be modeled.
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In this paper, we present a modeling of a secondary arc. Two phenomena are treated
which are respectively the plasma expansion in the inter-cellular gap and the arc cathode
spot.

1.2 Description of the plasma expansion

In the first part of this paper, we are interested in the modeling of a quasi-neutral
plasma with non-vanishing current. The plasma is considered as fully ionized and consti-
tuted of only one ion species. Such a plasma can be described by an isentropic Euler system
for each species (ions and electrons) coupled with the Poisson equation. Due to the very
short length scale associated with the Poisson equation (Debye length), the discretization
of this model requires very fine meshes. Therefore, this model leads to expensive simula-
tions in practical situations. In the present work, we propose a quasi-neutral model which
avoids the resolution of the Poisson equation. In spite of being quasi-neutral, the model
allows the current and the electric field to be non-zero.

In order to test the numerical efficiency of the quasi-neutral model, two one-dimensional
situations are implemented. The first one is a periodic perturbation of a quasi-neutral
uniform steady state with non-zero current. This configuration is described in [4] and an
analytical solution of the linearized system is known. The second situation is a case of
plasma expansion between two electrodes in vacuum. A high density plasma is emitted
from the cathode and undergoes a thermal expansion. An electron current is emitted at
the plasma-vacuum interface. This current obeys a Child-Langmuir law and generates
a non-zero current inside the plasma. This phenomenon has been studied in [5], [6] in
relation with physical applications [2], [1], [7].

1.2 Modeling of the arc cathode spot
In fact, the electric arc has a complex structure which can be reduced to two regions.
The first one is the quasi-neutral plasma plume which has been described previously, and
the other one is the cathode spot which is himself Constituted of i :

cathode, the sheath and the presheath.

€
charee laver zone measurine few Debve lencths characterized

] P J drop near the cathode. In this zone, the electric field is strong
and attracts the ions to the cathode. Then, the combined effects of the electric field and of
the ion bombardment lead to the cathode metal vaporization and a thermo-field electron
emission at the cathode. A condition for the sheath stability is that the ions have a
sufficient velocity to enter the sheath (Bohm criterion). At the point where this condition
is supplied begins the presheath zone which is a quasi-neutral plasma zone where the ions
are created by the ionization of the vaporized cathode atoms and accelerated by a residual
clectric field toward the Bohm velocity.

The cathode spot has two basic functions. It provides for the discharge medium by
emission of matter in the gap and for current continuity at the cathode by emission of
electrons. From a numerical point of view, the cathode spot is a time evolutive boundary
condition for the plasma expansion model which is coupled to the plasma himself by the
circuit. In this paper, we present the main ideas for a modeling of this sheath zone and

lectric potentia
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some numerical results obtained for a silver cathode spot.

2. Expansion of a quasi-neutral plasma
2.1 Euler-Poisson model

We denote by m; . the masses of ions and electrons, nie their densities, u; . their
velocities and g; . = d-¢ their charges where ¢ > 0 is the elementary charge. As a first
approximation, the particle pressure laws are assumed isentropic and are given by pj. =
C en;y °°, where 7; . > 1 are the ratio of specific heats and ¢; . are given constants. The
temperatures are given by T} ¢ = p; /N . Moreover, V is the electric potential.

On a domain @ ¢ R% d = 1, 2, or 3, the particle conservation laws are given by
Vo e Q, Vi e RY,
(1) { (ni)e + V.(nmu) =0, mg [(naw)e + V{nau; @ wi)] + Vpi(ni) = qni E,

(ne)i + V.(nette) = 0,  me [(netie)r + V(Nete ® te)] + Vpe(ne) = —gne E,

and the electric field £ = —VV is given by the Poisson equation
(2) —e0 AV =g (n; — ne),

where g is the vacuum permittivity. If we denote by ng the scale of the plasma density

“and by Ty the scale of the plasma temperature (in units of energy), we recall that the
Debye length Ap which is the length scale where electrostatic interactions occur in the
plasma, is given by

(3) /\% = EQTQ/(q2n0).

The numerical resolution of the 2-fluid Euler-Poisson model (1)-(2) presents a very restric-

tive constraint due to the coupling with the Poisson equation. Indeed, the Debye length Ap
must be resolved by the space discretization to guarantee the stability of the scheme (i.e.
Az < Ap where Az is the mesh spacing). In practical situations where quasi-neutrality is
estabnsned the Debye length is very small. This implies very large computational costs

S
nal cases. This is the reason xrhv qfnrhnng the quasi-neut tral limit is

iy 11 3 aAnQin
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necessary to remove the time and length scale constraints related with the electrostatic
ion-electron interactions.

2.2 Quasi-neutral model

For the study of the formal quasi-neutral asymptotical limit in Euler-Poisson model
we refer to [5]. This limit leads to a quasi-neutral model given by Vz € Q et ¢ > 0,

(@) { (na)e + Vo(ngus) = 0, my [(ngwg)e + V(i ® ug)] + Vpi(ni) = —qniV'V,
(ne)t + v-(neue) =0, me [(neue)t + v(Tle'ufe & ue)} -+ vpe(ne) = qnevvva

with a divergence free constraint for the current :

(5) V.(niu; — neue) = 0.
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We note that the potential V is now a kind of Lagrange multiplier of the quasi-neutrality
constraint reformulated by (5). However, equation (5) allows to compute V. Indeed,
taking the time-derivative of (5) and using the momentum conservation laws of (4) leads
to an elliptic equation for the potential:

(6)

7 e 1 1
gV =+ 2 VV | =V -V (nu Qus — Nelle @ Ue) + E—Apz(nz) — ;;Ape(ne).
K

my Me e

2.3 Numerical study for two mono-dimensional applications

The numerical method is based on a time splitting. The transport part of the systems
is resolved by a Godunov scheme (cf. [8]). Then the source term part is taken into account

S L UDVULIVOL Y FOULLOY SUICAT i/ A Bioil Ll

with an Euler scheme. We refer to [5] for the details of the numerical method.

2.3.1 Test-Case: Perturbation of a uniform steady plasma

In this section we perturbate a uniform steady solution n; = n. = nY, u; = u?, Ue =
ul # u?, and V° = 0 of the Euler-Poisson and quasi-neutral model on [0, I]. For a weak
amplitude initial perturbation that is quasi-neutral and of uniform current, the perturbed
solution is closed to the solution of the linearized models. Following the parameters, the
perturbed solution is stable or instable. We do the comparison of the numerical solutions
in a stable case.

Numerical values for the simulation are almost typical of the secondary arc estab-
lishment on a solar array generator (cf. [2], [1]). We take m; = 10*m,, L = 1073 m,
Yi =Y = 3/2 and k; = k. = 1.6 10739 J.m30=1 . The steady state is the following
w0 = 4190m.s !, u? = 8380m.s~1, n® = 5.5310"9 m 3 and VO = 0 V. At the initial state,
the perturbation on velocities is sinusoidal of amplitude ¢ = u? 1072 and of wave length L.
The boundary condition are set periodicals. We note that the density is lower than what it
should be in order to realize Euler-Poisson simulations in reasonable computational times.

The figure 1 (left) illustrates the numerical convergence of the Euler-Poisson and quasi-
neutral models. As we choose the linearized analytical solution as a reference, it is normal

4n ~Aanrra that +h 5 +1 I +3 1 N ~ 1 T
to observe that the relative error of the numerical methods tends to a threshold. However,

this approximation validate the quasi-neutral approach for the description of the plasma.

2.3.2 Expansion of a plasma between two electrodes

A dense plasma is injected at the cathode and undergoes a thermal expansion towards
the anode. For this problem, the inter-cellular gap [0, I] is divided in two sub-regions: the
region [0, X (¢)] is the quasi-neutral plasma zone (described by the quasi-neutral model), and
the region | X (t), L] is an electronic beam zone (described by an analytical Child-Langmuir
law). The current in the plasma is equal to the current created by the electronic emission
at the plasma/beam interface [6].

For the numerical simulations, we use the same masses and pressure laws as in the
previous section. The boundary conditions are n(0,#) = 5.53109m ™3, u;(0,t) = ue(0,t) =
4190m.st, V(0,t) = 0V and V(L,t) = 100V. The gap is free of plasma at the initial
time.
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As the quasi-neutral region [0, X (¢)] is evoluting in time, an interface tracking method
is implemented where the fluxes at the interface are given by the resolution of a Riemann
problem between the plasma and the beam given in [6].

The figure 1 (right) illustrates the progression of the plasma in the gap at different
times for the Euler-Poisson model (reference solution) and the quasi-neutral model. The
good behavior of the quasi-neutral approximation is shown for the density excepting close
to the cathode where a thin non-quasi-neutral layer is observed. For the other variables,
analog results are observed. We refer to [5] for a detailed analysis of these results.
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Figure 1: Left figure - perturbation test-case: relative error between the analytical
solution of the linearized Euler-Poisson system and the numerical solution of non-linearized
model. Right figure - expansion of a plasma: ion density as a function of z at times
t = 23.8ns and 71.6ns computed by the quasi-neutral model (dashed line) et by the
Euler-Poisson model (full line). Mesh size: N = 1000.

The global modeling of the arc cathode spot is based on the following hypotheses.
At first, we suppose that th i

he s
Yy mndal +tha na'{'}\Ode annt haga
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assume that the metal cathode is at liquid state and that pressure at the surface is given
by a Clapeyron/Langmuir law. In the sheath, we consider that the charged species are
the electrons emitted from the cathode in a “thermo-field” regime, the ions generated in
the presheath by ionization and accelerated towards the cathode, and the electrons retro-
diffused towards the cathode. Moreover we assume that the ion and electron currents are
uniforms. In the presheath, we suppose that the total current only is uniform and that
ion and electron temperatures are equal and uniform.

o N
a cylindric geometry. For thermal effects,

3.1 Cathode energy balance

The description of the power exchanges at the cathode has been widely studied in
[9] and our modeling is based on it. The sources and sinks of energy at the cathode
surface which have been retained in our model are: the energy carried by the ions strongly
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accelerated in the sheath by the electric potential drop, the energy lost by the thermo-field
emission of electrons (detailed in [9], [10]), the energy lost by the thermal conduction of the
material, and the energy lost by the cathode vaporization. We note that the Joule effect
and the energy given by the retro-diffused electrons have not been taken into account by
the model for simplicity but should be added for a precise computation.

3.2 Resolution of the Poisson equation in the sheath

One decisive parameter determining the electron emission at the cathode is the surface
field strength. We recall that the sheath zone is a space charge layer generated by a surplus
of ions. It obeys the Poisson equation which can be integrated with the hypotheses made in
section 3.1. One integration leads to an approximation of the electric field at the cathode
surface Fy given by:

4 Van nshka _qVsn
(7) E? = " (T — Jer/TTe — exp .
$ 60«/2” )= L \ kb e/ |
where J; and J, are respectively the ion and electron currents, T, is the electron temper-
ature and Vy, is the drop of potential in the sheath. The quantity ng, is the quasi-neutral
density at the sheath edge which is determined by the Bohm criterion such as:

-

(8) nsh, = Ji (ko(Li +Te)/mi) ™2,
where 7} is the temperature of ions.

3.3 Presheath energy balance

In the presheath, the surface sources and sinks of energy are given by the entering and
outing energy fluxes. Moreover, volume effects such as ionization or electron acceleration
in the presheath have to be taken into account. Then we have

B
£/

0
el .

/00N oo » i o ) _
(J) Ligin — Ee,out + Ez,zn — Lgout T Feoll T =

where the different terms of this balance equation are detailed in the following sections.

23 T T\ P < U o SR

Gede _E_ Buiid(,e iiuxﬁb

At the sheath edge, the electrons emitted by the cathode have a thermal energy kpTs
(ky is the Boltzmann constant) and have been accelerated by the potential drop Vs, while
the ions are attracted to the cathode and leave the presheath with their thermal energy
kaz’- Then,

(10) Ee,in = (Je/Q) (kaTs + q%h) ﬂ-aza Ei,out = (UTi/ZQ')kbrfi 7('&2.

where a is the spot radius (¢ > 0 is the elementary charge and Zg is the ion charge). At
the spot edge (plasma expansion zone/presheath zone interface), the electrons leave the
presheath with their thermal flux while the flux of entering ions from the plasma can be
neglected. Then

(11) ) Ee,out =JkT.w QQ/Qa Ezm = 0.
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3.3.1 Ionization in the presheath

In the presheath, only the electron-neutral collisions which lead to ionization are taken
into account. Moreover, we suppose that collisions generate an ion and two electrons such
as:

(12) dJ.(2)/dz = nporJe(z).

where n,or is an approximation of the free mean path (n,, is the neutral density and oy
is the collision cross section). Then we have an exponential law for the electron current
increasment. Considering that the ion current is null at the spot edge gives an equation
for the presheath length zg and for the energy sinks:

(13) z20 = (nno'l)_l [IOg(Ji + Je) - log Je] s Ecoll = Vz(Z) Jimw a2a
where V;(Z) is the ionization potential of a neutral atom.

3.3.2 Electric field in the presheath

In the presheath, a residual electric field accelerates the electrons. This gain of energy
for the electron is given by:

(14) By = n(T)200*m o,

where 1(T,) is the Spitzer resistivity for the electrons in a plasma [11].

3.4 Numerical results

In this spot model, three parameters must be fixed to resolve the system of equations.
A natural parameter is the arc boundary applied voltage. Another one, which is experi-
mentally known, is the ratio of ion and electron current at the cathode. Then the last one
is the total current which is given either by the Child-Langmuir emission when the plasma
is not connected to the anode (coupling with the plasma expansion model), or by the
limitation of the generator when the connection has occurred. The results presented on
table 1 and 2 are computed for a silver cathode with an applied voltage of 15 V, the ratio
Ji/J. = 0.25 and for several values of the total current /. In the first table we represent
internal spot variables while in the second one we represent injection boundary conditions
for the expansion plagsma model.

We remark that while the current I is rather large, the magnitude of these results
is correct excepting for the plasma temperature which seems a bit high. When current
decreases, the mathematical solution get non-physical as the potential sheath value goes
deacreses under the ionization potential. Then, under a threshold value for the current no
physical solution can be found, which is in accordance with experiments [3].

4. Conclusion

The numerical results obtained for the cathode spot model show that this cathode spot
can exist only once the current has reached a threshold value. A simple calculation shows
that the electron Child-Langmuir emission at the begining of the plasma expansion does
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not give a sufficient current. Then, one possibility is that the primary discharge during
a small but sufficient duration furnishes the necessary energy to vaporize the metal and
allows matter injection into the inter-cellular gap. A model of primary discharge is in
progress at this time.

E, (V™Y | Ty (K) | Vi (V) a (m)
T=5.10"2%4 6.80 10° 4.7410° 6.18 | 4.2310°8
T=14 3.57107 4.5010° 14.3 | 9.7810
I =104 1.62109 4.8110° 149 |6.3510°°

Table 1: Numerical results obtained for an applied voltage of 15 V, and the ratio J;/J. =

0.25. The cathode surface

the sheath Vi, a

electric field and tem

CleCLile il il

perat
Dera

ure £

J(Am™2) | T (eV) | n (m—3)

T=51024A] 8.8810%° 10.8 | 1.1210%
IT=1A 3.78 1011 9.36 | 5.1310%

T =104 7.910' 9.30 | 1.0810%

e s and 7%, the potential drop in
nd the cathode spot radius a are calculated as a function of 1.

Table 2: Numerical results obtained for an applied voltage of 15 V, and the ratio J;/J. =
0.25. The injection condition of the quasi-neutral plasma in the gap which are electron
current J, temperature 7" and density n are calculated as a function of the current I.
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