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ABSTRACT
In this study, Kriging model is applied to an acrodynamic design of a high lift device. The position of a slat and a flap is optimized. The
Kriging model is updated by selection of the maximum EI point. Sample points for the Kriging model are evaluated by using UPACS
(Unified Platform for Aerospace Computational Simulation) multi-block solver developed in JAXA. The effect of each position parameter
to the aerodynamic performance can be identified by 3D-plot of the Kriging model.

1. Introduction

Recently, optimization method using approximation models’
attracts a large attention in the field of aircraft design. A designer
can save a lot of computational time for objective function
evaluation by using the approximation model, instead of the high-
fidelity CFD solvers. However, it is apt to miss the true optimum
in the design space if the exploration relies only on the estimated
function values of the approximation model because these values
include uncertainty at unknown points. For the robust exploration
of the true optimum with the approximation model, both the
estimated function value and its error should be considered at the
same time.

The Kriging model®?, developed in the field of spatial statistic
and geostatistics, has gained the popularity today. The Kriging
model predicts the distribution of function values at an unknown
point instead of the function values it self. From the distribution
of function values, the function value and its uncertainty at
unknown points can be estimated. By using these values, the
balanced local and global search is possible. This concept is
expressed using the criterion ‘expected improvement (EDY**. El
indicates the probability of a point being the true optimum in the
design space. By selecting maximum EI point as an additional
sample point of the Kriging model, the improvement of accuracy
and the robust exploration of the true optimum can be achieved at
the same time.

In this study, the Kriging model is applied to the optimization
of the slat and the flap position in the multi-element airfoil.
MDA30OP30N airfoil is used as the baseline airfoil. Sample
positions for the construction of the Kriging model are evaluated
by using UPACS (Unified Platform for Aerospace Computational
Simulation)® multi-block solver developed in JAXA. The effect
of each position parameter to the aerodynamic performance can
be identified by 3D-plot of the Kriging model.

2. Kriging Model
The present Kriging model expresses the unknown function y(x)
as

Y(x) = p+Z(x) M
where X is an m-dimensional vector (i design variables), fisa

constant global model and Z(%) represents a local deviation

from the global model. In the model, the local deviation at an
unknown point (x) is expressed using stochastic processes. The
sample points are interpolated with the Gaussian random function
as the correlation function to estimate the trend of the stochastic

processes. The correlation between Z(x') and Z(X’) is

strongly related to the distance between the two corresponding
points, % and ¥/, However, the Buclidean distance is not used,
because it weighs all design variables equally. In the Kriging
model, a special weighted distance is used instead. The distance
function between the point at x' and ¥ is expressed as

m
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where &, (0<8, <o) is the ky element of the correlation

vector parameter §. By using the specially weighted distance
and the Gaussian random function, the correlation between the
point x' and ¥ is defined as

Corr [Z(Xi)jz(xj)]= exp i— d(x’,x’)} 3)

The Kriging predictor is
P =p+rR7(y -1 4

where I is the estimated value of g , R denotes the

71X 71 matrix whose (i, j) entry is CorriZ(x’},Z(x’)}, ris
vector whose iy, element is

7 (x) = Corr[Z(X},Z(X')] &)

and ¥ = [ p(x' )yerens ,v(x™)].
The detailed derivation of Eq. (4) can be found in [7].

The unknown parameter to be estimated for constructing the
Kriging model is & . This parameter can be estimated by

maximizing the following likelihood function
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where 1 denotes an m-dimensional unit vector.

Maximizing the likelihood function is an m-dimensional
unconstrained non-linear optimization problem. In this paper, the
alternative method® is adopted to solve this problem.

Foragiven §, fZand &7 can be defined as

. _1'R7y o
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Next, vector 8 is updated by using
%m)w - %old + E‘l 6LPZ ©)
o8
where
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and the (J, )y element of matrix B is éz‘ i with
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For this updated 8™ , new values of 4 and O can be

calculated using Eg. (7) and (8). This routine is iterated until
function Ln converges to a maximum value

The accuracy of the prediction value largely depends on the
distance from sample points. Intuitively speaking, the closer point
X to sample points, the more accurate is the prediction j/(X)

This intuition is expressed in following Equation.
~1_\2
(1-1R"r)

2 A2 sy ~1
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) 'R™1
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s%(x) is the mean squared error of the predictor. s(x) indicates
the uncertainty at the estimation point. The root mean squared

error (RSME) is expressed as § = 4/ st (x).

3. Expected Improvement and Treatment of Constraint

In order to find the true optimum, the Kriging model uses both
the estimated function value and the uncertainty at the points.
Based on these values, the point having the largest probability of
being global optimum is found. This concept is expressed by the
criterion ‘expected improvement (EIY. The EI is express as
follows:

ED) =5 [" (fon -2(2)de 3
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where fer:ymin"y ,Zzy_y and
5

N
1(x)={ Eyram _y(x)}

Fyx)<Yan (14
otherwise

To impose the constraint effects into the conventional EI
criterion, the probability of satisfying the constraints is calculated
on the Kriging model for constraints. If there is the
constraintcl x)>a, the probability of satisfying this constraint’

is

)
Ple,(x)2a) = [e® = Jam 09

5,27

___1_@(5'()5)—_0'1)
SI

And the constraint imposed EI criterion is as follows:
E(Iy=E() -Plc(x)>a,) (16)

4, Optimization Problem

The optimization problem is to find the position of the slat and
the flap where maximizing L/D subject to Cl > Cly,gine(= 4.1) at
a specified condition (Mach=0.2 and AOA=16.21).

4.1. Definition of Design Variables

Total 6 design variables are used to define the position of the
slat and the flap. Figure 1 show the baseline airfoil
(MDA30P30A) and design variables. Search region of each
design variable is defined as follows:

1) slatangle:
-10deg. <A0,<10deg.
2}  xdisplacement of slat:
-0.03<Axg,/c<0.02
3}y displacement of slat:
_0.05<Ay. /o<0.05

V.U 0y gar C V.00

4) flap angie: \
-1 Odeg SAeﬂapfl Odeg

5} xdisplacement of flap:
-0.03<Axp,,/c<0.05

6) vy displacement of flap:
-0.1<AY,y/c<0.01

Figure 1. Baseline geometry and design variables

In this search region, total 20 sample points are selected by using
the Latin hypercube sampling.
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4.2 Evaluation

Evaluations of sample points for the Kriging model are
performed by using UPACS (Unified Platform for the Aerospace
Computation Simulation), a structured multi-block flow solver.
UPACS was developed at Japan Aerospace Exploration Agency
(JAXA; formerly National Aerospace Laboratory) as a common-
base code for aerodynamic researcher.

In this study, Reynolds-averaged Navier-Stokes is used with

the Spalart-Allmaras turbulent model. Flux is evaluated by Roe
scheme with MUSCLE method for the third-order spatial
accuracy.
The computation domain is typically decomposed into 33-36 sub-
domains. Number of cells is about 10,000 in each domain. To
reduce the mesh generation time, the dynamic mesh method is
applied to deform the mesh around the baseline configuration, if
mesh movement is not so large. If the mesh movement is large,
the computational mesh is regenerated.

4.3 Optimization Procedure
The overall optimization procedure is shown in Fig. 2.

Generation of Initial population
And Evaluate the fitness of
each individual
using the Kriging model

No

?
Converged? Selection of Parentsd|

ation vt Kriging Crossover
m‘d‘aq IO Evaluate the fitness and
of new individuals Mutation

Figure 2. Overall procedure of the optimization

1. Kriging models are constructed for C; and L/D with 24
sample points
2. GA operations'®
- Generation of initial population and
evaluation of E.(I) and Area ratio
- Selection of parents
- Crossover and mutation
- Evaluation of new individuals in Kriging
models

When the generation exceeds 100, the point which gives
maximum EI is selected as an additional sample point. This
routine is iterated until the termination criterion is reached. In this
study, termination criterion is the maximum  number of
additional sample points.

5. Results and Discussion

5.1 Initial Kriging model

Figure 3 show L/D plots against Abqa,-Avpay/c: Absa-Aysu/c
and AB,-Abh,, predicted by the initial Kriging model with 20
sample points.
The maximum L/D point in Fig 3(a) is found around Aj,,=-8.
The local maximum is found around Afg,=3 and Aypg/c = 0.
According to the Fig 3(a), the angle of flap gives a large effect to
the L/D performance of this airfoil. On the other hand, the y-
displacement of flap gives little effect to the L/D performance of
this airfoil. In case of Fig. 3(b), the maximum is found at
A8,,=10. and Ayy,/c=-0.04. However, the effect of the slat is

smaller than the effect of the flap. Fig.3(c) shows that the change
of the flap angle gives a larger effect than that of the slat angle.

(C} Aa!h!-Aeﬂlp
Figure 3. L/D plots predicted by the initial Kriging model

5.2 Improved Kriging Model

Figure. 4 shows the L/D and the Cl plot in the improved
Kriging model with 5 additional sample points. In Fig. 4(a),
another local maximum around Afy,=0, Ayg.,=0 which was not
found in Fig. 3(a) is shown. It means that the balanced local and
global search has been done by adding the additional sample
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points. In the improved Kriging model, two positions which show Pl - y
high L/D performance are found. According to Fig. 4(b), Cl at ol —— Bascline |
ABpay=0, Ayngy=0 is higher than Cl at AB;=-0.02, Ayg,,=8. This ’:2:::?, |
result suggests that the baseline configuration is useful for normal am I
landing condition. On the other hand, this result also suggests that o '
the design at A8, =-0.02, Ayp,;=-8 has the potential to be used i e e
for go-around (retrial landing caused by some troubles) condition -00z {
because the drag is lower than that of the baseline configuration. 004

-006

-008

-0 = J

(b) Close up view
Figure 5. Position comparison

Table 1. Comparison of aerodynamic performances

Baseline | Optimuml | Optimum2
Cl 4.103 3.559 4.113

L/D 78.088 78.427 78.091

6. Conclusion
In this study, the Kriging model was applied to the
optimization of the slat and the flap position in the multi-element
airfoil. Sample positions for the construction of the Kriging
model are evaluated by using UPACS (Unified Platform for
Aerospace Computational Simulation) multi-block solver
R developed in JAXA. The effect of each position parameter to the
: aerodynamic performance can be identified by 3D-plot of the
Kriging model.
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