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Acceleration of GA in aerodynamics by Search Space Reduction and Artificial Neural
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Genetic algorithms (GAs) have been successfully applied to numerical optimization problems, unfortunately GAs

still remain computationally expensive, and the high computational cost make the use thereof impractical in most

Aerodynamic optimization problems. Computational cost reduction is undoubtedly thought to be a common problem

of most Aerodynamic shape optimization.

In our approach, Artificial Neural Network (ANN) is used for function approximation; a number of mathematical
computations are performed on the approximated function to obtain a reduced model. This resulting mathematical
model is used to locate the variables that affect most the cost function.

Our approach is first tested on analytical functions, then numerical experimentations are conducted to solve shape

optimization problem for the design of a wing profile. For each evaluation required by the optimizer, the

Navier-Stokes equations with the Baldwin-Lomax turbulence model are solved.

1. Introduction

In an optimization problem not all of the variables
are of the same importance, or, having advanced in the
optimization process, no more all of the design
parameters are important.

Therefore, it would be more efficient to focus on the
directions of the search space with the highest “pay-off”,
instead of consuming CPU time to explore directions with
a minor impact on the fitness or cost function value.

In the present, Artificial Neural Networks (ANNs)
with Radial Basis Function (RBF) are used with Gaussian
activation funmction to approximate the fitness
-function.

Reduction of Search Space (RSS) is then applied on the
ANN response to locate the variables that affect the most
the cost function.

Firstly., the present method is applied to widely used
GA test functions, then, to drag minimization of a
two-dimensional airfoil.

2. Neural Network for function approximation.

Artificial Neural Networks are very sophisticated
modeling techniques capable of approximating extremely
complex functions. They are particularly well fitted for
approximation when we don’t have any knowledge about the
function a priori. They are applicable in any situation
in which a relationship between the inputs (shape
parameters) and outputs (cost functions) exists.

The choice of the type of ANN has been guided by its
low cost of training. The RBF network (Fig 1) is a
three-layer feed forward network that uses a linear
transfer function for the output units and a nonlinear
transfer function (Gaussian) for the hidden umits.

2
Gaussian activation function: qv(u,s)= exp(— “Asz)

with u=| x—t] distance of x=(x,...,x,) from
center vector £. § spread associated.
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Fig. | RBF Neural Network

From the Fig. | we can see that the network response
to the input x is y:

y=wellx-t,)+..+w,@, (lx-¢,I[D
(Eq. 1)

In our approach the ANN is trained by conventional
back propagation algorithm using the entire database as
centers. The spread is based on Euclidean metrics,
weights # are obtained through Least mean Square
algorithm using a Quasi-Newton algorithm with BFGS
approximation of Hessianmatrix [(b]. LMS is an iterative
procedure; this method of training is robust and
provides good results.

3. Reduction of Search Space.

The reduction of the search space is the result of
mathematical analysis performed on approximations of
the fitness function supplied by Artificial Neural
Networks from (Eq. 2).

Suppose a design point x=(xl,x2,...,xn) in the

Euclidian space E". to be optimized with respect to
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multiple criteria f:E"—$ . An important
information would be to locate the variables that affect

the most f .
The cost function f can be approximated as follows:

r 1 tvr
f(x)=f(x0)+?f(xo)§x+55x fi(x0>53€+.,.
(Ea. 2)
Where Ox = x —x,is the distance from a given point

Xq in the search space and Ef(xb>is Hessian matrix

calculated at x, . After diagonalizing the Hessian

matrix in the basis of the eigenveciors G'of H{x,),

Eq. 2 is reduced to:
N

n

Flx)=£( ita@w AOE? )

=1 (Eq.

3)
with 66 =G'dx

It can be shown [3] that the variables thai cause the

greatest variation &f, to f are those associated with the

largest values of the quantity:

By reordering these values
§ 6,28, <..<4, . ontimization can be

restricted to the
E" =F? @ E" 7P achieving faster convergence.
Having ordered {7 an issue that directly arises is
how many of the corresponding parameters to keep for the
reduced space optimization. Our approach, which seems
to performwell, is to specify a minimum dimension & of
the reduced space and additionally keep the parameiers,

for which the corresponding value {7 is of the same order
of magnitude as {d

subspace  E™F such  that

4. Algorithm

The algorithm can be divided into 3 phases:

U phase 1: The starting population keeps evolving
for a few generations. The genetic operators apply on
all the design variables. The evaluated individuals are
kept in a database, along with their fifness funciion
values.

i Phase 2: An RBF network is trained, a small

percentage, 10% of the population is moved to the region
of the local optimum to enhance exploration (the test

cases are updated). The pUleaLlUu z\cc‘pb EVUIVHLS for
a number of generations, with the genetic operators
being applied onlv to the variables identified as the
most important. Then, the best individual of the local
GA is reinserted randomly into the GA population

[ Phase 3: The GA shifts to full optimization, the
population keeps evolving for a number of generations,
with the genetic operators being applied to all the
design variables

[l Phases 2 and 3 are alternated up to convergence.

The algorithm can be summarized by the following
flowchart:

| Find best ndividual of
{ cuent GA generation

Iritalize locel population near best |
i individesl
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| Rewrie local population in
main GA.

Evaluaticn of the modified
Fig 2 Flowchart of GA with the Reduced Model

5. Test functions.

GA with Reduced Model algorithm has been tested on
Rastrigin and Rosenbrock functions:

i=1

Rastrigin —2n+2(0 1x? —2cos(—x)} (~5.12<x,<5.12)

Rosenbrock := E (2, -2 +(1-x)?) (-5.12< %, <5.12)

Using GA strategles from the table Fig 3.

Due to the randomness intrinsic of the GA (initial
random population, crossover and mutation operators)
several runs need to be evaluated and results from
Fig. 4-7 show the “best” run of the conventional GA
against the “worst” run of the proposed approach

From Fig 4-5, unimodal function, we can clearly see
the advantages of the algorithm By doing local search
near the best individual of the current GA and by
privileging some search directions the convergence is
accelerated. Indeed the proposed algorithm act like a
“gradient-based” search method, with the particularity
that instead of evolving in the descent direction we
perform GA on the most “pay-off” variables. Which
should not be the case, a priori, of a multimodal
function, as we would be trapped into a local optimum

However, applied to the Rastrigin test function
Fig 6-7, the algorithmperformrelativelvwell and allow
to reach the global minimum in fewer function

1 + = A tn th Klhngt? 1
evaluations compared to the “best” conventional GA In

fact, the dimension of the local search, based on the
variance of the individual, is wide enough to move out
from the local minimum
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Acceleration of convergence has been verified on fest
functions, we can apply this methodology to shape
optimization problem

6. Shape parameterization.

In the present study we perform Bezier curve fitting
of the set of data points to restrict {he design
variables to the z Bezier control points. The control

points (xBi,yiB) 7=0, n#/of the Bezier curve of degree
# that best fit the airfoil (x;,,) . /= #¢ are

deternmined by minimizing the norm:
1N,1

> 0a(0)- 9, F o

2

Bezier parameterization:

Since previous work [4] show that cosine distribution
of abscises x% often used in practice, indeed gives
somewhat more accurate results than a uniform
distribution and fully optimized distribution of point
we keep the abscises fixed using a cosine distribution
As a consequence, optimization is carried out only on

=0 ntl

7. Drag minimization problem

The methodology has been applied to the drag
minimization of the RAE2822 transonic airfoil (Mach =
0. 73;404=2. 79, Re/m=0. 5e5), vparameterized with 38
control points for the upper and lower surfaces (Fig. §)

The RANS equations are solved using a finite
volume-cell-centered for the space discretization and
a 5th order Runge-Kutta scheme for the time infegration
Implicit residual averaging combination of second and
fourth order artificial dissipation, local-time
stepping and Baldwin-Lomax turbulence are used, the
calculation domain is a C-type grid.

The [itness function is:

Flz,..y

CD

aparam=68

S = nparam ) -
Do

with C, ~drag of the initial geometry.

Concerning the GA strategy, we used the same sirategy
as the test function of dimension 8.

After conducting the optimizations, the proposed
approach reaches the solution of the conventional GA in
only 1550 CFD evaluations and converges more
significantly (Fig. 9). The pressure-drag is reduced
from 0.0135 to 0.012. The corresponding initial and

optimized iso-Mach number contours are given on Fig. 10
and 11. We can notice that the shock strength has visibly
been reduced.

This experiment demonstrates the effectiveness of the
proposed approach.

Conclusions

Acceleration of GA by Artificial Neural Network and
Reduction of Search Space has been verified However the
results still depends upon many parameters that needed
to be tuned by the user (dimension of the local search
when to use the Reduced Model, quality of approximated

function, i.e. ANN). Indeed, as the GA evolves, the
training of the ANN gets not only more and more time
consuming (still reasonable compared to usual CFD
calculation), but also it mav leads to some
discrepancies due to the clustering of the centers
{(niching). Future investigations need to be done to

obtain a self-adaptative and efficient algorithm
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Function Rastrigin Rosenbrock
Dimension 2 8 2 8
Population size 10 50 10 a0
One point crossover prob. 0%
Mutation probability 105 | 2% [ 10% | 2%
Coding 26 bits
Generation using ) 5 5 5
Full Model
Generation using 3 5 3 5
Reduced Model (RM)
High Mutation probability 90%
of RM
High Crossover 33% 20% | 33% | 20%
probability
of RM
Coding 16 bits
Population of RM 3 | 5] 3 |5

Fig. 3 GA strategies for test functions

Rosanbrock N=2
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Fig. 4 Convergence history for Rosenbrock N=2
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Fig. 5 Convergence history for Rosenbrock N=8
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Fig 6 Convergence history for Rastrigin N=2
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Fig 7 Convergence history for Rastrigin N=8
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