FEHNEF LR RSB IE R JAXA-SP-04012

]
o
S

Fiow Simulation Method based on Hexahedra Grid

by
Paulus R. Lahur
Institute of Space Technology and Aeronautics, Japan Aerospace Exploration Agency

ABSTRACT

Research in automatic grid generation around realistic 3D geometry is being conducted in Japan Aerospace Exploration Agency. This
research aims at reducing the time required to generate computational grid for inviscid as well as viscous flow simulations. The method is
based on hexahedra grid method, as the exiension of Cartesian grid method. As the result, the method inherits significant advantages of
Cartesian grid: it is automatic and fast. Because an efficient viscous flow simulation requires grid with high aspect ratio near solid surface,
a hybrid with prismatic grid is necessary. The hexahedra grid extends naturally to this approach, because there is consistency in grid
topology (both Cartesian and prismatic grids have the same hexahedral shape). The main idea of the method is as follows: construct
Cartesian grid, remove the cells near solid surface, and construct hexahedral cells based on the Cartesian cells” faces toward the surface.
Note that both grids are not constructed from the solid surface. This leads to another advantage: the method is not sensitive to defects in
solid surface (e.g. crack, overlap), because it actually reconstruct the solid surface grid. However, because of the way the hexahedral celis
are constructed (simple projection from Cartesian grid cells’ faces toward solid surface), there is a disadvantage: it can not capture sharp
concave features. A method to overcome this problem is devised in the present research. This paper provides the summary of the method
being developed as well as some current results.

1. Introduction 5) Recover features
This research is motivated by the fact that grid generation for a The solid surface taken as input by the present implementation
complex, 3D geometry is still a major bottleneck in CFD, of this method is assumed to be in its discretized form. The
especially for the case of structured grid, where significant output grid is in an unstructured format, suitable for a flow solver
amount of time and manual labor is required. Our objective is to developed = in-house, UPACS-UGS (Unified Platform for
automatically generate grid suitable for inviscid and viscous flow Aerospace Computational Simulation -~ Unstructured Grid
computation within a short time. Solver).
A number of grid generation methods were considered. Some
methods are body-fitted, i.e. they are generated from the solid 2.1. Cartesian Grid Generation
surface outward, such as structured grid,! prismatic grid,? and Generating  Cartesian grid is a simple task, since the grid
tetrahedron-based unstructured grid.® The other is non-body-fitted follows the Cartesian coordinate system (i.e. non-body-fitted
approach, usually known as Cartesian grid.4’5 For automatic grid grid). To increase local resolution, a cell is divided into eight sub-
generation, usually tetrahedron-based unstructured grid or cells. This type of local refinement can be handled easily by
Cartesian grid is employed. octree data structure. Bach cell points at its parent and children. A
In computation of viscous flow, especially at high Reynolds neighboring cell can be found by traversing the tree to find
number, we have a strict requirement for the grid near solid common ancestor.
boundary. This flow region is best handled by prismatic grid. The grid generation starts with a single Cartesian grid cell
Consequently, it is common to take the hybrid approach: one grid covering the whole computational domain. The cell is then
to resolve boundary layer, and either tetrahedron-based refined. The children cells that intersect the body surface are
unstructured grid®’ or Cartesian grid®™? to resolve the rest of the subsequently refined until a certain grid resolution is achieved.
domain. To ensure smooth transition between cell sizes, the neighboring
A hybrid between Cartesian grid and prismatic grid is chosen ells within a certain distance are also refined. Further refinement
in this study. There are two options in constructing the interface takes place around curved body surface, which is determined by
between the two grids: cutting the Cartesian grid cells to fit the evaluating the angle between surface elements intersecting a
prismatic grid (which is constructed from solid surface),*® or Cartesian grid cell. If the angle between the normal vectors of any
constructing the prismatic grid from Cartesian grid toward the two faces i, j is greater than a specified value, then the cell needs
solid surface.”"™ The second approach is chosen because it to be refined. In terms of dot product, this can be expressed as
produces only hexahedral cells. In contrast, the first approach follows.
results in cutcells of polyhedral shape, with less regular size and
shape distribution, which is not desirable in viscous computation mm(ﬁi o ﬁj)< cos(@_ ), Vi, j, i#j (1

(Fig. 1). This also simplifies the grid generation algorithm,
because the uniformity in grid topology allows one to worry
about geometric issue only (in the cutcell approach we have to
compute both topolegy and geometry). Another significant
advantage is that the approach tolerates a certain degree of
defects in solid surface definition, such as overlaps or small gaps,
which can reduce the effort necessary to clean up the geometry
obtained from CAD. In fact, the method reconstructs the solid
surface grid. The grid generation method will be discussed in
more detailed in the following.

Another tree data structure, Alternating Digital Tree (ADT),14
is also used to speed up the process in finding the faces of solid
surface grid possibly intersected by a given Cartesian grid cell.

2.2. Cartesian Grid Cell Removal

For computational grid, only the Cartesian grid cells that do
not have children are used. Thus, all parent cells are removed.
Additionally, the following Cartesian grid cells are also removed:
1) all cells inside the solid
2) all cells intersected by the solid surface
3)some cells around solid surface, to allow for some space in
hexahedra layer construction

The third point needs further consideration, because simply
removing cells within a certain distance from the solid surface
may cause problem at later stage, particularly during the

2. Grid Generation
The main procedure of the grid generation is as follows:
1) Generate Cartesian grid
2) Remove Cartesian cells near solid surface
3) Construct surface grid
4) Construct hexahedra layer

This document is provided by JAXA.



MEFHEFRES L2 b—va VERCCRYT L 200 48KE 255

construction of surface grid. A “proper” surface may not touch, or
worse, infersect itself. In other word, at any given point on the
surface, the neighborhood of the point is topologically like a disk.
Thus there are certain cell configurations that are not allowed, as
shown in Fig. 6. For the configuration at the bottom left, for

example, a point at the shared edge does not have a disk topology.

In the current implementation, check for illegal cell configuration
is performed, and when found, removed. The logic to perform
this task can be rather tricky, because the cells may belong to
different level of refinement. The sample result of this stage is
shown in Fig. 2.

2.3. Surface Grid Construction

The outer faces of the remaining Cartesian grid cells now form
the boundary surface of computational domain. The portion close
to the original solid surface forms a surface grid. As discussed
previously, this surface has a proper topology. It is also watertight
and its elements have regular size and shape. Geometrically, the
surface is an approximation of the original solid surface, albeit a
poor one, due to its stair-like appearance. Nevertheless this
surface forms the basis for the next steps, which will successively
improve the Ievel of approximation.

Winged-edge data structure® is used to represent the surface.
This structure is widely used in surface modeling. The structure is
known for its efficiency in adjacency search (a search of any item
adjacent to any item, where an item can be a node, a face, or an
edge).

The surface grid is then smoothed to make the subsequent step
easier. To obtain the new position (x) of a vertex, a weighted
average of the surrounding faces’ center coordinates are
computed, as in Eq. (2).

Edvf"’f

x % =(1-w Yx, tw S=——2 )

v Ydf

where the subscript v indicates a vertex, f indicates face
surrounding the vertex, and d,; is the distance between the vertex
and the face center. The weighting factor w is set to 0.5, and the
power p is usually taken as unity. The smoothing is carried out 5
times.

To further enhance the quality of the grid, after each smoothing
step, the hanging node is repositioned so that it is exactly in the
middle between its two opposing neighbor nodes. The sample
result of the smoothing is shown in Fig. 3.

2.4. Hexahedra Layer Construction

A layer of hexahedra grid cells is generated on the surface grid.
Initially, the new surface of the layer coincides with the old one
(thus the layer has zero thickness). Then each node of the new
surface is “projected” onto the solid surface. The projection is
carried out simply by moving a node to the closest location on the
solid surface.

The search for solid surface elements that are candidates for
projection can be performed at reasonable speed because the
elements are already stored in ADT. The actual distance
computation is performed only for these candidates. The sample
result is shown in Fig. 4.

Having done this, prismatic layers can be constructed by
dividing the layer as appropriate, as shown in Fig. 5. In some
cases, however, the thickness of the layers is not sufficient to
capture the whole boundary layer of the flow. To increase the
thickness, it is necessary to deform the surrounding Cartesian grid
cells outward, or to allocate more space during the Cartesian grid
removal step. This will be considered in future work.

Note that the simple projection works even if the solid surface
contains defects such as overlap, small gap, or even internal
elements, because it always ignores the elements that are located
farther away than other elements, as in Fig. 7. However, this is

also the source of the method’s biggest weakness: capturing
concave features. In some cases, this may not be a problem. One
case is when high fidelity of solid boundary representation is not
very important, usually when the flow is dominated by separation
around blunt objects. Another is when the feature is rounded, so
further grid refinement may be sufficient to capture the feature.
Alternative approach is required, however, when the concave
feature is also sharp, hence grid refinement is not a practical
choice. This is the subject of the next step: feature recovery.

2.5. Feature Recovery

First the features of the solid surface is extracted. A feature
consists of a series of edges. An edge of a feature is shared by
two faces whose normal vectors form an angle greater than a
specified value.

Next, we need to determine the faces of the surface grid that
fails to capture the solid feature. An estimate of approximation
error, e, is used. After projection, the position of a surface grid’s
vertex is exactly on the solid surface. It is reasonable to guess that
the worst approximation error is somewhere around a face center.
Thus the face center is chosen as a convenient location to
estimate the maximum approximation error. In Eq. (3), the
distance from the face center to the solid surface, dg is used for
this purpose. Note that the value is normalized using the
characteristic length of the element (estimated from its area), in
order to put more weight on small elements, which are supposed
to capture the solid surface better than the larger ones. A face is
said to have a large value of error if it exceeds a threshold value,
which is determined from the mean value and standard deviation
of the error distribution, as shown in Eq. (4). Here the constant ¢
is taken as unity.

e; = d 3)
4
e; >e tcey, C)

Now we have a set of features and a set of surface grid’s faces
that have large approximation error. Shown in Fig. 8 is the case
where there is one feature and a set of faces. The method to
capture the feature is as follows:

1) Capture the endpoints of the feature by moving the closest

veriex to these points.

2) Capture the feature curve by traversing from the starting

vertex obtained in 1) to the other.

3. Flow Solver

The flow solver is based on finite volume method for Euler
equations, currently under extension to Navier-Stokes equations.
It is capable of handling a cell of arbitrary shape, in an
unstructured format. A cell is allowed to have any number of
faces. The face, in turn, can have any number of vertices, which
can be listed without any particular order. Thus, all types of cell
described above can be treated by this flow solver as a general
case. A major advantage of the unified approach is that the code
can be streamlined, and no modification is necessary when other
types of cells are to be used in the future.

At its present state, both explicit and implicit methods are
available for time integration, whereas for flux computation, Roe
and AUSMDYV methods are used. To achieve second order
accuracy, the solution at cell center is extrapolated to cell face.
The flow solution gradient is computed using 2 least square
method, which is particularly well suited for unstructured grid
containing cells of irregular shape.

This document is provided by JAXA.



256 FEHMEFEREREEINER JAXA-SP-04-012

4. Results

The grid generation algorithm outlined above has been
successfully applied in the following cases. All grid generations
are automatic, and the time consumed is quite reasonable. All
results exhibit globally smooth and fine grid, although in some
region such as wing’s leading edge, especially toward the tip,
refinement is still not sufficient. At this stage, the flow solution is
shown only to demonstrate the integrity of the grid. A study of
the solution accuracy will be performed later.

4.1. ONERA M6 Wing

This is a simple case, because the solid surface is either convex
or flat. The number of cells, faces, and vertices are around
600,000, 1,900,000, and 700,000 respectively. The time to
generate the grid is less than 15 minutes (CPU time). The grid is
shown in Figs. 2-5 during the generation process, and the final
grid is in Fig. 9. The pressure distribution is shown in Fig. 10,
which suggests that the well-known lambda-shaped shock paitern
on upper surface is captured.

4.2. ONERA MS5 Aircraft Model

This is a more difficult case, because now we have concave
region in the wing-fuselage junction. However, since the concave
feature is rounded, it can be handled simply by refining the cells
in that region. The final grid is shown in Figs. 11-13. In Figs. 12
and 13 we can see that the fillet in wing-fuselage junction is well
captured. Other fillets in the horizontal-ail junction and vertical-
tail junction are also captured. The number of cells, faces and
vertices are around 400,000, 1,100,000, and 400,000, respectively.
The time to generate is less than 15 minutes. The flow solution is
shown in Fig. 14. As before, the lambda-shaped shock pattern is
also captured. ’

4.3. DLR F6 Aircraft Model

This is a difficult case, because there are sharp concave regions
in the wing-fuselage junction and the engine pylon junctions. The
final grid is shown in Figs. 13-18. The grid contains arcund
800,000 cells, 2.6 million faces, and 1 million nodes. The surface
mesh contains 124,000 faces. The time to generate is around 30
minutes. Note that even though the grid is reasonably fine around
the features, improvement is still needed, as can be seen in Fig.
16. In Fig. 17, the feature lines of the solid surface are shown,
together with faces of large approximation error (which can be
seen as dark spots), as computed using Egs. (3,4). These faces
appear most prominently in the regions of wing-fuselage junction,
pylon junctions, engine inlet, and the leading edge of the
outboard wing. Of these regions, only the junctions are sharp
feature. The other regions are rounded, but they are still not
sufficiently resolved. This demonstrates that the error indicator,
Egs. (3,4), is quite effective in pinpointing the problematic area.
The traversing method captures the feature cleanly, as shown in
Fig. 18.

5. Concluding Remarks

A hexahedra grid generation method has been presented. The
results suggest that the method is quite effective. It is automatic
and fast. It is also quite robust, at least for the class of geometries
tested here. As a future work, we would like to be able to capture
sharp features of more complex geometry, and to improve the
overall grid quality, especially in the concave region, as well as
the region interfacing Cartesian grid and prismatic grid. The
assessment for proper comstruction of prismatic grid is also
currently underway, together with the completion of the
extension to viscous flow solver. Higher order projection is also
being considered, because in some cases, the original solid
surface grid (on which the re-meshing is performed) may not be
fine enough. By incorporating these points, we believe the
method can still be improved significantly.

References

1)  Yamane, T., Yamamoto, K., Enomoto, S., Yamazaki, H,,
Takaki, R., and Iwamiya, T., “Development of A Common
CFD Platform — UPACS,” Proc. Parallel CFD 2000 Conf.,
Elsevier Science, 2001, pp. 257-264.

2) Kallinderis, Y. and Ward, S., “Prismatic Grid Generation for
Three-Dimensional Complex Geometries,” ATAA Journal,
Vol. 31, No. 10, 1993, pp.1850-1856.

3) Lohner, R., “Generation of Unstructured Grids Suitable for
RANS Calculations,” AIAA-99-0662, 1999.

4)  Aftosmis, M.J., “Solution Adaptive Cartesian Grid Methods
for Aerodynamic Flows with Complex Geometries,” VKI
Lecture Series, 199702, 1997.

5) Lahur, P.R. and Nakamura, Y., “Anisotropic Cartesian Grid
Adaptation,” ATAA 2000-2243, 2000.

6) Tto, Y. and Nakahashi, K., “Unstructured Hybrid Grid
Generation based on Isotropic Tetrahedral Grids,” AIAA
2002-0861, 2002.

7) Kallinderis, Y., Khawaja, A., and McMorris, H., “Hybrid
Prismatic/Tetrahedral Grid Generation for Viscous Flows
around Complex Geometries,” AIAA Journal., Vol. 34, No.
2, 1996, pp. 291-298.

8) Leatham, M., Stokes, S., Shaw, J.A., Cooper, ], Appa, J.,
and Blaylock, T.A., “Automatic Mesh Generation for Rapid-
Response Navier-Stokes Calculations,” AIAA 2000-2247,
2000.

9) Deister, F. and Hirschel, E.H., “Adaptive Cartesian/Prism
Grid Generation and Solutions for Arbitrary Geometries,”
AIAA 990782, 1999.

10) Karman, S.L.Jr., “SPLITFLOW: A 3D Unstructured
Cartesian/Prismatic Grid CFD Code for Complex
Geomeiries,” ATAA 95-0343, 1995.

11) Tchon, K.F., Hirsch, C., and Schneiders, R., “Octree-based
Hexahedral Mesh Generation for Viscous Flow
Simulations,” AIAA 97-1980, 1997.

12) Wang, Z.J. and Chen, R.F., “Anisotropic Solution-Adaptive
Viscous Cartesian Grid Method for Turoulent Flow
Simulations,” AIAA Journal, Vol. 40, Ne. 10, 2002, pp.
1969-1978.

13) Wang, Z.J. and Srinivasan, K., “An Adaptive Cartesian Grid
Generation Method for ‘Dirty” Geometry,” Int. J. Numer.
Meth. Fluids, Vol. 39, 2002, pp. 703-717.

14) Bonet, J. and Peraire, J., “An Alternating Digital Tree
(ADT) Algorithm for 3D Geometric Searching and
Intersection Problems,” Int. J. Numer. Meth. Eng., Vol 31,
1991, pp. 1-17.

15) Baumgart, B.G., “Winged-edge Polyhedron Representation
for Computer Vision,” National Computer Conference, 1975.
Also available from:  http://www.baumgart.org/winged-
edge/winged-edge. html

This document is provided by JAXA.



WiZeEm Ml I 2 L— Y a VEHIF VRS A200 45k 30E 957

»

Figuré.S. Prismatic layers.

i S

Figure 6. (top) Legal cell configuration, (bottom)
illegal cell configuration. Figure 7. Projection in the case of gap, overlapped
elements, and internal elements.

This document is provided by JAXA.



258 EHMZT RN E R JAXA-SP-04-012

Figure 8. Feature recovery by traversing.

S

Figure 9. Hexahedra surface grid around ONERA
M6 geometry.

Figure 10. Pressure distribution around ONERA M6 Figure 11. Hexahedra surface grid around ONERA
wing. MS5 geometry.

e RaT e
FATAR g‘Eﬁ'ﬁf R

SORAREY W

Figure 14. Pressure distribution on ONERA MS5. Figure 15. Hexahedra surface grid around DLR Fé6
geometry.

This document is provided by JAXA.



MZEFEREY I 2 Lb—va VRV URY T L2 00 453 259

7 1?% >
o
17

Wi
LIRS
1%‘{#{;}?{,5‘1:,; ey

T
% i,
atgpttteg i apidmney

‘\ ’h@:“‘ LTI ";"’" :';,";r(/f
S
==
- ST RN T A
= STALLHI, / N =
e el Ny gy lsminiingee ., Tl 3
== ﬁ%ﬁ%ﬁ,ﬂ"ﬁg&‘ff ’@if}%ﬁ{%@iﬁ%ﬁ%'mﬂ mrfi'ﬁgf%%%?ﬁg‘;ﬁ‘ﬁt\
A T TR e A T
sy, N L AL e i
N5 0, 77 '4} L7 Q"" [T iy Bt i iy LT
&,‘g:,‘,’lmg%’,.." L7 ""f"’ / "". 1] ,l...ml!é},‘{ﬁiﬂl,'{}‘llml um!ll'ﬂllmm
N L L T T o T T s
N L -"' AT A TR
T ;lzgnrftﬁ,,,,h;"'};ﬁ%“”ﬁu‘ﬁlﬁ?”"‘"n?\
7 i g AN
g‘%. S 2

N A AT Yo { iy 1

Lie ey B 'I it ity
/R
= a.'.'n»'}-‘s",ta’;?{ﬁf:f.‘,’{;;&”“ ey "’\\\é\\ﬁ\

Figure 17. Features of DLR F6 geometry (grey lines), and face elements that have large appreximation
error (dark spots).

P
Wi
=X pg il "'I
S ;’l iz s ==
= ey 77 — ==
A AL AL == —
Sty ity i o gy ) S =
N R === ————

5

SN A st S SIS :
= ———

77
et = :
i, = = ST
i, - == S
i 'ﬁ#ﬁ%@%#ﬁmﬁﬁmmwmmuy%EE§§§%§§%aﬂ
AL LT T LK T P e e e T RN
T LA A L ety 7 TR
e A TR T P e i L T
"#i’g&,{"l:f'f’.’"l’:‘}"lr’lllfv" LT "I’n T s T e L E
Rconilturscaritiiti oyl U0 9y SOy gy NN Y g o O ittt
R R S 4 Ty oAty Sosrip i oyl ot St e 0o g Vi
*’«..4:.'.«’,’,"::,"':7!:,,—’h‘,’»,‘?ﬂm"l:”’ll[f.‘“«i"l:,’llrt‘;’,’,‘"nn44;"’!m’.’}"”l.'ﬂ;,""ll:n{""lm{“ma"#ln,""llta"’lllu,"llln,,“
S Sttty s ettt g
ey e it g ’—'w!‘(}‘fynﬂllmlllx N T
Mgttt < e
ﬁ@@%%%mm&ggm -
— S s
= N T TS

Figure 18. DLR F§, engine pylon, after feature capturing.

This document is provided by JAXA.



