CEHY L RY Y L2008 L E 23

Abnormal Amplification of Sound Waves
Refracted by an Oblique Shock Wave

Igor MEN’SHOV and Yoshiaki NAKAMURA
Nagoya University, Department of Aerospace Engineering

ABSTRACT

Reflection and refraction of linear disturbance waves by an oblique shock wave is studied by a linear analysis. Several
different cases are considered, when the incident plane wave is a fast acoustic, slow acoustic, entropy, or vorticity wave.
Results show that (i) a critical angle of the wave incidence exists, beyond which the regular wave solution of the linear
problem can not be realized, (ii) strongest sound waves are generated behind the shock wave, if the incident wave strikes
the shock wave at the critical angle, and (iii) at large Mach numbers of the upstream flow, the sound amplification factor
asymptotically increases as the Mach number squared, while at the critical incidence, it is increased as the Mach number

cubed.

Introduction

The present paper addresses the problem of the interaction
of small flow disturbances in the form of a monochromatic
plane wave with plane, stationary, oblique shock waves.
There exist three types of small disturbances that propa-
gate in a uniformly moving compressible fluid. One rep-
resents isentropic pressure and density fluctuations, which
propagate with the speed of sound relative to the fluid.
The other two are fluctuations of vorticity and entropy
that are carried with the fluid velocity. The impingement
of such disturbance on the shock generates the waves that
are composed of all three types.

The problem of the interaction of small disturbances
with shock waves has been studied by several researches.
Blokhintsev [1] solved the problem for the case of an acous-
tic wave normally striking a plane, normal shock wave in
a perfect gas. Brillouin [2] studied oblique incidence of
an acoustic wave on a normal shock wave, but obtained
incorrect results. These results were later corrected by
Kontorovich [3]. Kontorovich also extended the solution
t0 the case of an arbitrary compressible medium.

In the present paper we would like to analize the inter-
action of plane weak waves with an oblique shock wave.
The purpose is to evaluate the waves generated in the
compressed flow behind the shock wave. After this study
was completed, we learned of the paper by McKenzie and
Westphal [4] where the similar problem has been already
treated. We found that most of the results obtained are
in fact not new and were published earlier. Nevertheless,
we decided to submit the present results for publication by
two reasons: to confirm the McKenzie and Westphal’s re-
sults by solving the problem with an alternative approach
and to stress an interesting phenomenon that is an abrupt
amplification of transmitted waves at certain incidence an-
gles, so-called critical angles.

1. Problem statement

We consider the interference of a plane monochromatic
wave with an oblique shock wave. The basic flow consists

of two uniform flows separated by the shock wave. This
flow is defined by two parameters: the Mach number of
the rarefied flow M and the angle between the shock plane
and the rarefied flow direction 3. The compressed flow
parameters are denoted by the subscript s. Unit normal
and tangential vectors to the shock plane are denoted by n
and T, respectively. The normal directs downstream of the
shock. A system of coordinates is taken, in which the shock
is at rest, and one ort is aligned with the rarefied flow.
Figure 1 shows the flow configuration and basic notations.
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Figure 1: Flow configuration and basic notations.

The field of disturbances to be investigated is repre-
sented by the superposition of monochromatic plane waves
of the following form:

5z = 2’ exp{i{(k, x) — wt]} (1)

where z' is the amplitude, w (w > 0) is the circular fre-
quency that is assumed to be positive, k is the wave vector.
The propagation velocity of disturbances, i.e., the group
velocity of the wave ¢, is related to w and k by means of
(k,c) = w. The phase velocity of the wave propagation is
defined as the projection of ¢ onto k.

Monochromatic plane disturbance waves that propagate
in a homogeneous flow of velocity u are classified into 4
types: fast and slow sound waves, entropy waves, and vor-
ticity waves. Dispersion relations between the wave vector
and the frequency, group velocities, and amplitudes for
these types of waves are as follows.
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Fast sound waves

w=(u,k)+ak; c=u+ak/k (2)
p=e o= %; u' = ;—’;%
Slow sound waves
w=(u,k)—ak; c=u-—ak/k (3)
P=e; o= Z—Z u' :—;—2%
Entropy waves
w=(a,k); c=u (4)
p=0 p=c; u=0
Vorticity waves
w=(uk); c=u (5)
P=0 p=0 u=em

where a is the speed of sound, p and p denote pressure and
density, ¢ denotes a characteristic amplitude of the wave,
m is a unit vector normal to the wave vector k.

It should be noted that because of w > 0, the wave vec-
tor must satisfy the inequality (I,k/k) > 1/M for slow
acoustic waves, (L, k/k) > —1/M for fast acoustic waves,
and (L, k/k) > 0 for entropy and vorticity waves. Particu-
larly, if the flow downstream of the shock is subsonic, no
slow acoustic waves can exist behind the shock wave.

Depending on the group velocity, we distinguish inci-
dent and reflected or refracted waves, which are hereafter
referred to as i-waves and r-waves, respectively. In i-
waves, disturbances propagate towards the shock wave so
that the group velocity vectors satisfy (¢, > 0) for the
waves upstream of the shock wave, and (¢, nn < 0) for the
downstream waves. On the other hand, disturbances in r-
waves travel away from the shock wave so that the above-
mentioned inequalities are opposite. As the rarefied flow
is supersonic, no r-waves exist upstream of the shock.

The problem to be considered is to determine the resul-
tant disturbance field when an i-wave strikes an oblique
shock wave. Specifically, this problem may be classified
under two types, namely reflection and refraction. In the
refraction problem, a given i-wave, i.e., specific fast or slow
acoustic, entropy, or vorticity wave, impinges on the plane
of the shock wave from the side of the rarefied gas. This
generates a set of r-waves downstream of the shock. In the
reflection problem the incidence of the i-wave occurs from
the side of the compressed flow, which also causes the ap-
pearance of several r-waves. All r-waves that are generated
downstream of the shock have the same circular frequency
as the i-wave. Therefore, to solve the problem, one has to
determine which waves constitute the r—field and define
their wave vectors and characteristic amplitudes.

2. Determination of wave vectors

The wave vector of a r—wave is determined on the base
of the law of reflection and refraction. This law states a
relation between wave vectors and propagation velocities
of the i-wave and the generated r-wave. Using subscripts
1 and r to denote parameters of the i— and r—wave, the
law can be written in the following form:

(Ci7 1’21‘) — (CT7 nT)
(ni, ) (nr, 7)

(6)

where n;, = ki, /ki,» denotes the normalized wave vec-
tors.
Eq. (6) can be recast as

(fr — ks, 7) =0 (7

which means that the projections of the wave vectors of
the - and r-waves onto the plane of the shock wave must
be the same. Therefore, the r-wave vector can be found as

k, = k; +on (8)

where « is a scalar parameter which has to be defined.

Assuming that the length scale is taken so that the i-
wave has a wave vector of the unit length, i.e., k; = n,
the dispersion relation of the r-wave is then written in the
following form:

w = (s, n;) + Qs + arks 9

where a, should be taken as —as, +as, or 0, depending
on whether the r-wave is a slow acoustic, fast acoustic,
or etropy (or vorticity) wave. The subscript n in eq. (9)
indicates the projection of the velocity onto the normal to
the shock, usn = (u,, n).

Eq. (9) states a linear dependence between a and k..
Another relation between these two parameters results from
(8):

E2=1+¢" 4 20(n,n;) (10)

Eqgs. (9) and (10) serve to determine « and specify the
wave vector k. in eq. (8). In the case of non-acoustic
r-wave, a» = 0 and the wave vector is simply defined as

k, = n; + w—(us,n) (11)
usn

In the case of an acoustic r-wave, the solution to equa-
tions (9) and (10) exists under a certain condition on the
incident angle. By introducing the vector ¢ as

w— (u,s,ni)n

¢ =n; + (12)

uSTL
the bound condition for the incident angle can be written
as
Ehn >/ (pEn — 1) (1 - 2?) (13)
where plon = as/tsn = 1/Msn and 2 = (n,1;). The up-
per sign in this equation should be used for fast acoustic
r—waves, while the lower one for slow acoustic r—waves.
Once eq. (13) is satisfied, the parameter « is obtained:

b F p2 /0% — (3 — 1) (1 — 22)
“ M%n - 1

(14)

a=-
and the wave vector k, can be determined with eq. (8).

2.1. Refraction problem

In the refraction problem, the dispersion relation of an
incident wave is given by

w=(u,n;) —ea (15)

where € should be taken as —1, +1, or 0 depending on
whether the incident wave is a fast acoustic, slow acoustic,
or entropy or vorticity wave. For this case, eq. (13) leads
to the following conclusion: In addition to entropy and
vorticity r-waves that have a wave vector defined by (11),
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only one acoustic wave, fast or slow, can exist in the r-
field generated behind the shock. The type of the acoustic
r—wave depends on the incidence angle. If this angle is
so that 2z < z < 1, the wave is fast. If —1 < z < 2],
the wave is slow. The limit values 2 are functions of the
normal Mach number upstream of the shock wave, only:

s Mexf /M f?—¢
o M2+ f?

where f = f(M,.) = asV1 — M2, /a. _

If the incidence angle is so that z lies within the range
27 to z§, neither fast, no slow acoustic wave can exist. In
this case, ouly entropy and vorticity waves can form the
r-field. However, this is not sufficient to resolve matching
conditions for disturbances at the shock wave. Therefore,
the regular refraction does not occur, if the incident wave
strike the shock wave in the sector zJ < 2 < z7.

Thus, the structure of the generated perturbation field
in the refracted problem depends on the angle of incidence
; = arccos z. By introducing Hmit angles 1F = arccos 27,
which we will refer to as critical angles of incidence, the
structure can be described as follows.

(16)

If ¥ <i<wm or —a<ih <, (17)

then the r—field consists of one entropy wave, one vorticity
wave and one slow acoustic wave;

if  —uf <<l (18)

then the r—field consists of one entropy wave, one vorticity
wave and one fast acoustic wave;

if Y <<yl oor —YD <y < - (19)

no acoustic waves can exist in the r—field .

As previously noted, the latter situation means that the
regular structure of the r—field, which consists of a set of
monochromatic plane waves, does not exist. In this case,
an additional surface wave appears that penetrates a finite
distance the compressed flow region.

The wave vector of the incident wave must also satisfy
the condition (n:,1) > €/M to ensure w > 0. This imposes
an additional restriction on the angle of incidence in the
refraction problem that is given by

arcsin (%) — B < < mw—f — arcsin (%) (20)
Figures 2 to 4 show the limits for the incidence angle
given by (20) vs the rarefied flow normal Mach number at
different shock wave angles. The markered curves corre-
spond to the critical incidence angles (17): "triangle-up”
marker indicates 47 angles and ”triangle-down” marker
indicates &1/, angles. For nearly normal shock waves, i.e.
3 = 90°, the refraction of all types of i—waves is realized
with a fast acoustic wave in the r—field. This is quite
reasonable because the compressed flow is subsonic, and
slow acoustic waves are not admitted. For moderate and
small shock angles, 3 < 50°, the refraction can be realized
with both fast and slow acoustic waves depending on the
incidence angle.

The critical angle depends on the parameters of the base
flow, the upstream flow mach number A and the shock an-
gle 3. In Fig. 5 the critical value for the angle between
k;—direction and the upstream flow direction is given ver-
sus the shock angle for two values of the upstream Mach
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Figure 2: Critical angles vs normal Mach number for
fast acoustic i-waves.
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Figure 3: Critical angles vs normal Mach number for
slow acoustic i-waves.

number. As seen from these figure the critical angle is
slightly less than the shock angle in almost all range of
shock angles from normal to the Mach angle. That is, the
critical incidence occurs when the incident wave vector is
almost collinear with the shock plane.

2.1. Reflection problem

In the reflection problem, the i-wave strikes the oblique
shock wave from the side of the compressed flow. Therefore
this wave is allowed to be either a fast or a slow acoustic
wave, only; entropy and vorticity i-waves are not admit-
ted. The incidence angle is restricted in this case by the
following two inequalities:

(ni,l) > E/A[s, (n, l’li) < E/j‘jsn (21)

where e = —1 is assumed for fast waves, and ¢ = 1 for slow
waves.

These two conditions define the limits of the incident an-
gle in the reflection problem, which can be obtained from
the diagram shown in Fig. 6 and written in the following
form.
slow acoustic i—wave (Ms > 1):

() oro ()
arcsin ]\fs arcsin ]\[s

i (22)

arccos(Mqn)

IN

A

fast acoustic i—wave: if M, > 1,

w —arccos(Ms,) <
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Figure 4: Critical angles vs normal Mach number for

entropy and vorticity i-waves.
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Figure 5: Critical angle versus shock angle.

) —resin (572)
- arcsin ]\/fg

-

< 7w+ arcsin (

=

otherwise

P;
7+ arccos(Msn)

7w — arccos(Msn)

A IA

The bound condition on the angle of incidence given by
eq. (13) for the reflection problem yields

F(Menz—€) > /1 — MZ\/1 - 22 (23)

In the case of incidence of a slow acoustic wave, i.e., when
€ = 1, the inequality of eq. (23) is met with the lower sign,
only, which corresponds a slow acoustic r—wave; with the
upper sign it is never satisfied. If e = —1, i.e., in the case of
a fast acoustic i—wave, the opposite is true: The condition
of eq. (23) is met with the upper sign and never satisfied
with the lower one. In other words, the reflection of a slow
acoustic i—wave is always realized with the generation of
a triple-wave r—field, which consists of one entropy wave,
one vorticity wave and one slow acoustic wave. On the
other hand, the reflection of a fast acoustic wave is always
accompanied by the formation of a fast acoustic r—wave
along with an entropy wave and a vorticity wave. The
wave vector of the acoustic r—wave is determined by egs.
(10) and (14), where the upper sign should be used for fast
waves, while the lower one for slow waves.
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Figure 6: Diagram for admissible incident angles in
the reflection problem.

3. Determination of wave amplitudes

The foregoing analysis allows us to determine the structure
of the r—fleld generated by the incidence of an i—wave on
the oblique shock wave and the wave vectors of all three
r—waves that compose this fleld. Once this has been done,
the wave amplitudes are next defined on the base of the
linearized Rankine-Hugoniot relations which can be writ-
ten in the following form:

where z denotes the primitive vector, z = (p, un, ur, p),
Q = Q(») is the vector of corresponding conservative vari-
ables, and f = f(z) is the flux vector in the direction nor-
mal to the shock wave. The super prime denotes distur-
bance parameters: Z,, Z represent the disturbance prim-
itive vector downstream and upstream of the shock wave,
and C, the perturbation of the shock normal velocity.

It should be noted that v/, and u). in the disturbance vec-
tors ' and 2| are the normal and tangential components
with respect to the perturbed shock wave surface. They
must take into account the perturbation of the normal and
tangential unit vectors, i.e.,

(u',n)+ (u,n) (25)
= (W, ")+ (u7)

!
n
’
P

The latter can be expressed in terms of the perturbation
of the shock wave velocity as follows:

n = ———~—~(k:)?) +C (26)
o o= (ki; '7‘) nC’
w

The substitution of egs. (25) and (26) into eq. (24)
vields an equation in terms of the perturbation vector =,
which is similar to &’ with the exception of the velocity
components that are also normal and tangential, but with
respect to the non-perturbed shock wave surface. This
equation can be written in the following form:

(Sg)s z, = %Z, =G, ([Q} (k:}ﬂ [b]) (27)

where b = 8f/82{0, u,, —u,,0}” and the square brackets
denotes the change at the shock wave, [[] = (-}, — ().
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In the problem on wave reflection, the disturbance field
is presented downstream of the shock, only, which is com-
posed of the field of the incident wave and the field of
the r—waves, i. e, 2 =0, and 2, = z,, + = .. In the
refraction problem, the disturbance field upstream of the
shock wave is represented by the i—wave, ie., 5 = 2},
while downstream of the shock wave it consists of only the
generated r—waves, 2, = 2, .. The i—wave is assumed to
be given, i. e., its type, wave vector and amplitude are
known. The r—waves to be determined are one entropy
wave, one vorticity wave and oue acoustic, fast or slow,
wave. Therefore, the disturbance vector of the r—field can
be written as
7, = €pCen + €pCac + €uCury (28)

)

where €c,,, €uc, and e,,; are normalized amplitude vectors
that can be recognized from egs. (2)-(5), and ¢,, €p, and ¢,
are characteristic wave amplitudes that have to be defined.
Substituting eq. (28) into eq. {27) leads to a linear system
of 4 equations to determine 3 characteristic amplitudes and
the perturbation of the shock velocity.

4. Results

Figures from 7 to 10 illustrate some results of solving this
system of equations for the refraction of incident from the
upstream fast and slow acoustic waves. In these figures,
characteristic amplitudes of the r—waves made dimension-
less by the incident wave amplitude and upstream flow pa-
rameters (density and speed of sound) are given versus the
shock angle 3 for different values of the upstream Mach
number M. The incident waves are considered, which
have the wave vector collinear with the direction of the
upstream flow. The shock angle is varied from normal to
the limit Mach angle.

The refraction of the fast acoustic wave under these con-
ditions is always realized with a fast acoustic r—wave; no
regimes with the refraction in a slow acoustic wave were
found. On the other hand, the slow acoustic wave is re-
fracted with forming both fast and slow r—waves, with
the latter being realized on weak shocks with § near to
the Mach angle. Also, there is a range of shock angles, for
which the regular reflection of slow acoustic waves does
not exist, as seen in Fig. 8.

In Fig. 10 we show the ratio of pressure amplitudes
in the incident and refracted waves for the case of a fast
acoustic wave incident on the shock in the direction collinear
to the upstream. This amplification factor is shown versus
the shock angle. The maximal value of this factor is at-
tained at normal shocks and then rapidly decreases as the
shock angle decreases. The amplification factor increases
with the increase of the upstreamn Mach number taking
asymptotically the order O(A42). This is an expected re-
sult because the amplification of the base pressure itself
behind the shock has the same order.

Fig. 11 shows the ratio of pressure amplitudes versus the
incidence angle for the normal shock wave. A small atten-
uation of the transmitted wave is observed as the incident
angle increases. However, an interesting thing occurs when
this angle approaches the critical value: The amplification
factor abruptly increases much exceeding the normal inci-
dence factor. The ratio of pressure amplitudes in transmit-
ted waves at critical and normal incidence angles is shown
in Fig. 12 versus the shock angle. The amplitude at critical
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Figure 7: Amplitudes of entropy and vorticity

r—waves vs shock angle for the fast acoustic wave re-
fraction.
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Figure 8: Amplitude of the acoustic r—wave vs shock
angle for the slow acoustic wave refraction.

angles exceeds that at normal incidence more than one or-
der. The difference between the amplitudes becomes much
stronger as upstream Mach number increases. This can be
seen in Fig. 13, which shows the dependence of the ampli-
tudes on Mach number. The critical amplification factor
behaves asymptotically as O(A?), while the normal that
as O(M?).

Conclusions

The interaction of plane monochromatic waves of small dis-
turbances with a stationary oblique shock wave has been
investigated in the framework of the linear analysis. Main
results have been obtained from this study are as follows.

(1) The regular interaction exists provided that the angle
of incidence does not exceed a critical angle; beyond this
angle no solution exists in the form of plane waves.

(ii) When the normal incidence occurs from the side of
the rarefied medium, the pressure amplitude of the trans-
mitted wave is asymptotically O(M?) greater than that in
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Figure 10: Ratio of pressure amplitudes in incident
and refracted waves versus shock angle.

the incident wave, where M is the Mach number upstream
of the shock wave. As the angle of incidence increases tend-
ing to the critical one, the amplitude amplification factor
is gradually decreased.

(iii) However, in a region very close to the critical an-
gle the amplification of the transmitted waves is abruptly
grows up; the amplitude amplification factor at the crit-
ical angle of incidence much exceed that at the normal
incidence and has asymptotically the order O(M?®) as M
increases.
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