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An Application of Conservative Scheme
to Structure Problems (Elastic-Plastic Flows)
ABOUZIAROV, Moustafa, AISO, Hideaki and TAKAHASHI, Tadayasu”
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We present an explicit high order method to solve the dynamics of metal materials numeri-
cally. The governing equations consist of two parts. The first part is the conservation law of
mass, momentum and energy. The second is the equation of state and Hook’s law. For those
equations we apply the method of retroactive characteristics” to establish high order accu-
rate Godunov method. We finally verify our method through a few computational examples.

The method gives rather good resolution for elastic and plastic waves.

Introduction

Godunov method® is a finite volume method
mainly used in numerical simulation of conser-
vation laws. In finite volume methods, we di-
vide the space into small finite volumes (cells)
and estimate each numerical flux, the flux that
passes the contacts between each pair of neigh-
boring cells. In Godunov method the numerical
flux is estimated through the exact solution to
the Riemann problem that is determined from
the two states of neighboring cells that intersect
at the contact. If an approximate solution to the
Riemann solution is used instead of the exact
solution, the algorithm is called Godunov type

method.

The big advantage of Godunov method is a
theoretical background derived from the exact
Riemann solver, even though the convergence of
method is still open in many cases. Hspecially
when the nonlinearity is strong, like the com-
pressible gas, Godunov method is rather reliable.
But the order of accuracy is still of the first order.

We have already established high order accu-

rate Godunov method for the compressible Eu-
ler equations using the retroactive characteristics
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method and the switching of accuracy based on
parabolic spline criterion” The retroactive char-
acteristics method gives precise information on
the region of independence at each contact of
cells. As well known, the high order accuracy
gives side effect of numerical oscilation where the
spatial change of gradient of numerical data is
large. We employ the swithing of accuracy based
on parabolic spline criterion to suppress the in-
convenience. The idea of this switching is rather
natural and easy. It does not any harm with the
accuracy in the region where the data is smooth.
We also emphasize that in the practical coding
our algorithm is almost like a 3-stencil scheme
like Godunov method, while many high order
accurate methods require us to treat 5 or more
stencils in a complicated procedure. In brief] the
methods employed are rather successful in the
case of compressible Euler equations.

We here extend the methodology into the
problems of elastic-plastic flow in solid contin-
uum to develop a methodology to calculate the
numerical solution for strong impact problems,
where a piece of material collides with another
at a very high speed or a fast and strong shock-
wave in fluid collides with some solid material etc.
In the case, instead of the primitive variables,
the Riemann invariants are interpolated by the
method of retroactive characteristics. When we
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calculate the numerical flux, only the elastic part
of Hook’s law is taken into account. The plastic
behavior of the material is included in the correc-
tor step. Finally we show some numerical results

to verify our methodology.

Equation Modeling FElasticity and
Plasticity

The governing equations are wrriten in the fol-
lowing form with independent variables z; (i =
1,2,3) and ¢ for space and time coordinates, re-

spectively. While many different ways are pro-

posed to model the plasticity, which is closely

related with nr

1ateg witn j 3

nper#y of material. we emnlov the
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concept of so called ideal plasticity determined
by von Mises criterion.

Op 0
o + % ——axj (puj) =0, (1)
3(pu;)
P (50 (g ) =0, 121,23 (2

D .
B%Sij + ASi; = pegg, 4,5 =1,2,3 (4)

e=¢€(p,p), ()
where
p: density {mass per unit volume)
Ugt the velocity component in the direction
of z;-axis
e: total energy per unit volume.
(specific energy and kinetic energy)
€ specific enerygy per unit volume
(04): stress tensor
7% shear modulus
D o
—:  Jaumann derivative.
Dt

We need some additional explanation. The stress
tensor (oy;) is symmetric and devided into two
parts, the part from pressure and that from de-

viatoric stress.
1
0ij = —=pbij + Sig, p=—3 > 0w, (6)
i

where 6;; is so called the Kronrcker’s delta;
L =y
‘5”‘{ 0, i) @)

FHEL I 2 b— 33 VEMRY Y RY T L2003 Lk

The tensor (e;;) is determined by
6"—E aui +8U]'
v 2 8a:j 8351-

D
The Jaumann detivative i is determined by

6uk> (8)

Oxy,

Sij — Sapwir — SjpWik, }
9)

. The Jaumann

D 5‘5”
E( +z{uk

8U,Z‘ 8Uj
2 8.’Ej 6901
derivative is free from the rotation of stress ten-

where w;;

sor in Buler variables. For transition from elas-
ticity to plasticity von Mises criterion is assumed;
if ESijSij > %052, the property changes to be
plazgtic from elastic, where o, is the yield point
of material that is subject to uniaxial dilatation-
compresson. Then the components of the devi-
atoric stress are corrected by projecting them-
selves onto the yield surface, i.e. multiplying

1
them by ?.1 The parameter characterizes the
A

procedure associated plastic deformation and is

calculated by

32245 51554

A =
2 042

(10)
About the governing equations, especially the
modeling of ideal plasticity. See ref. 6.

Numerical Algorithm

As written in the beginning of previous sec-
tion, there are many different modelings of plas-
ticity, while the modeling of elastisity given in the
governing equations is rather general. Therefore,
we separate the discretized temporal evolution
intc two parts. The first part is the discretized
temporal evolution governed by the equations
(1)-(5) with A = 0 in (4).
evolution governed by the elasticity. The second

It is the temporal

!The (hyper) surface determined by E S8 = 2052
in the S;;-space, which is 3 or 6 dlmensmnal is called von
Mises surface. It is possible to understand that the plas-
ticity works when the tensor (S;;) grows to reach the sur-
face. If A = 0 in the equation (4), the governing equations
(1)-(5) represent only the elastic motion.
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is that governed by the equation

D
B%Sij + A5 =0, (11)

where we take the evolution caused by plasticity
into account. In other words, in the predictor
step we only take the machinery of elasticity into
account and the plasticity is included only in the

corrector step.

In the cases of our interest the experience
shows that the accuracy of calculation depends
much more on the accuracy of the estimate of
numerical flux in the first part than on the treat-
ment of viscosity in the second part. The treat-
ment of plasticity in the second part is free from
the construction of numerical flux in the first
part, and it means that many different modeling
of plasticity can be used. Because of the reason
above it is reasonable to divide the discretized
temporal evolution into the two parts. Also in
ref. 6, they treat the discretized temporal evolu-

tion dividing them into the two parts.

Construction of Second Order

Accurate Numerical Flux

3.1.

Then we apply the idea to improve the accu-
racy of scheme by retroactive characteristics to
the first part. We restrict ourselves into the two
dimensional case with usual Descartes coordinate
(z,y). The equations (1)-(5) with A =01in (4) is
written in the form of conservation law

o ]
b
U
U+ F+Gy=0,U=| v (12)
Sﬂ?l‘
Syy
L Smy A
and linearized into the following form.
Ui+ AU+ BU, =0 (13)

The matrix A is given as follows.

u 0 pc>=fSyy —fSuy 0 0 0
0 u ) 0 0 0 O
1 1
A=100 0 u 0 0 —
00 —%u Sy v 0 0
00 Zu — Sy 0 u O
0 0 0 5Eyy—Sew)—1 0 0 u |
(14)
1

where f is determined by f = { 0 (—8—€> } ,
op/,

but in the case of metal material it is enough to

agsume [ = 0. The matrix B is given in a similar

manner.

We come to the stage to discuss the construc-
tion of numerical flux. We assume structured
mesh for the computation. Each cell (finite vol-
ume) is numbered (i,7) by a pair of integers ¢
and j. Each contact is naturally numbered like
(i+1%,) or (3,j+12). The contact (i+3,7) is the
boundary of neighboring cells (4, j) and (i+1,7),
(3,7 + 3) is that of (4,7) and (4,7 + 1). To esti-
mate the numerical flux at the contact (¢ + 3, 7),
we may assume that the contact is perpendicular
to z-axis without the loss of generality.

Let U7; and Ujy, ; be numerical data of U
for a pair of finite volumes (4,7) and (i + 1,7)
at the time step n. The size of finite volumes in
z-direction is Az} and Az, respectively. To
construct the numerical flux F;jr 1 at the contact

7. i . . 1 a e 1
(i + 5,7) we consider the initial value problem

U+ AU, =0, (15)
noUP (L
_ 7 i )
2

. n+1 n+i
Then we determine U 2 by U 2
$+§1.7 Z+§:j

U(%2At™, LAt"), using the exact solution to the

initial value problem, where w is the moving

speed in z-direction of the contact? and At" is
the time increment between the time steps n and

n 4 1. Finally F’g L is given by

_ —n+i
F'  =FU 2
3.9 (U2+%,J

). (17)

2We assume that the change of normal of the contact
is small enough even if the contact moves.
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Because the problem (15), (16) is linear, we ob-
tain Uzbj%%? by the following procedure.

The characteristic speeds of the linearized sys-
tem (15) are equal to the eigenvalues of matrix
A,‘ [
5 =U, cg = u+b, cv =u-+ a, where u, a, b are

u—a, g = u—0b 3 =u ¢ = u,
the x-component of velocity of material itself, the
longitudinal sound wave, the shear sound wave,
Then we de-

respectively. A is diagonalizable.

compose (15) into the form;

(ai)t +(:‘i(&i)r - 07 L= 17273747536a7a (18)

where each «; is a function of (2, t); oy = oy(x, ),
so that U is a linear combination of some set
of linearly independent seven vectors r;, ¢ =
1,2,3,4,5,6,7;

U= z&ﬂ‘i. (19)
i
Then we obtain (J 2 by
UTH_% _ _/r) 1/ )\\At .
5.3 Eam (W= 2)AY s (20)
(2
where the “initial value” 7;(0,%) is naturally

given by the initial value of U given by (16).

We easily observe that the conservative differ-
ence scheme with the numerical flux determined
above is of the second order accuracy.

3.2. Switching between Second and
First Order Accuracy

If we apply the second order accurate nu-
merical flux given by (15)-(20) everywehere, the
numerical oscilation occurs where the spatial
change of gradient of numerical data is large.
To avoid the inconvenience, we have to go down
to the first order accuracy at such exceptional
points. Various algorithms to switch the accu-
racy are proposed. We here apply the method
based on the monotonicity of parabolic spline,
which is already proposed in ref. 1. (See also ref.
2)

The discussion is given in the case of numer-
ical flux in a(or i)-direction. The case of that in

y(or j)-direction is similar.

ST L 20035 LE
Let numerical data of Sy —p be (S, —p)?__w,
(Sez — Py (Szw — D)1y (Sew — P)iya,; for
each finite volumes (¢ — 1,7), (¢,7), (@ + 1,7),
(i + 2,j), respectively. Also assume the size of
finite vlumes are Azl (, Axf, Azl |, Azl ,, re

spectively. Then we take two parabolic splines

pe(z) = arz® +bix+ o

satisfying
P _%(Aaj? 1 +AZY) ) = (Se p)?,lj
{ p-(0) = (Szz — D)7
p- (J(Af+A27,)) = (Sez = D21y
[ ps (—3(227403%0)) = (Saz — D)}
% er(O) = (Smat _p)z’+1,j
| P+ (32 +ATE,) ) = (Seo —P)2ay-

If the both parabolic splines p_(z), —3(Azl +
Azl) <z < (Ax”+Aa:Z+1) and p4(z), ~3(Azl+
Az? ) < 2 < F(Azl+Azx?,) are monotone,
we take the second order accurate numerical flux.
Otherwise, we go down to the first order accu-
racy. The first order accurate numerical flux is
given by the same procedure as the second order
accurate one. But (16) is replaced by the follow-

ing. .
_ Ul z <0
U(z,0) = i Uk, >0, (21)

The advantage of method is that the decision
which accuracy should be taken is very simple.
Just observing the data distribution at the four
finite volumes around the contact concerned, we
decide the formula to obtain the numerical flux.
It means that we do not have to include the data
from outer stencils ¢ — 1,7+ 2 in the main part to
calculate the numerical flux in the program. The
complexity of the program is almost the same
as that in the case of usual first order accurate
Godunov method.

Finally we mention that from theoretical
viewpoint we whould have to take the procedure
to examine the monotonicity of parabolic splines
for the seven variables p, p, u, v, Sgz, Syy, Say-
But, from the experiance of practical computa-
tion, it seems enough to examine it only for the

numerical data of S, — p.
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4. Examples of Computation. ‘
“Wilkins’s flying plate problem”® is simulated
by our method. In the problem, a 5mm thick
alminium plate (A) that is assumed infinitely
wide impacts from the left to another piece of
alminium (B) that is assumed to occupy a half
space to the right.

Both the elasticity and plasticity work in the phe-
nomenon. As soon as the collision occurs, the
shockwave is made and propagates from the con-
tact to the left and right. The left boundary
reflects shockwave changing it into rarefaction
wave. The material of alminium is modeled as

follows. The pressure p = p(p) = 73.0%| 1 — %)-

is a function of the density p, where p is measured
in GPa and py = 2700kg/m>. The sheer modulus
p = 24.8GPa. The constant for von Mises cri-
terion is o5 = 0.2976GPa. 500(in z-direction) x
10(in y-direction) cells of the size 0.1mmx0.1mm
are used in the computation. In z-direction 50
cells are in the Bmm thick plate and 450 cells
in the half space. The left boundary is treated
with the free boundary condition with 0.1MPa.
The right boundary treatment is done in the out-
flow manner, but it has no importance until the
shockwave arrives there. The upper and bottom
boudaries are just virbual. At the both we assume
the reflecting boundary condition.

In Fig.1, we show the density in the case of
initial collision speed 2km/sec. In the figure, we
compare the first and second order methods. The
second order method is what is introduced in the
article. The first order method is usual Godunov
scheme, which is given by numerical flux (17)
with (15) and (21). We observe that the sec-
ond order method gives separation of two sound
waves, the longitudinal and shear, rather well.

5. Concluding Remarks
While the retroactive characteristics are used to
construct a modified Riemann problem whose ex-
act solution gives the numerical flux in the case of
compressible Euler flow, they are rather direlctly
n+35 in

used to determine the numerical flux via U, ;
T
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the case of elastic-plastic flow. But the method-
ology still works well because the nonlinearity is
not so complicated as in the case of compressible
Euler equations. It implies that the combination
of retroactive characteristics may be widely ap-
plied together with the accuracy switching based
on parabolic spline criterion.

Beside what is already mentioned in section 3,
we mention that numerical boundary treatment
is rather easy in this method, because we are still
based on the idea of Godunov method that are
rather physical 7.e. that are based on the exact
solution to Riemann solver.
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FIG. 1.

Density for Wilkins’s problem with impact vel

ond order accuracy schemes.

ocity 2 km/s, comparison of first and sec-
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