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Abstract
Adaptive Range Multi-Objective Genetic Algorithm (ARMOGA) has been developed to obtain trade-offs more efficiently than
conventional Multi-Objective Evolutionary Algorithms. In this paper, the performance of ARMOGA is demonstraied through a
multi-objective design optimisation of Bypass Fan Outlet Guide Vanes as part of the Low Pressure Compression (LPC) system.
In the present optimisation, the objectives of the LPC system are to reduce the circumferential pressure variation at the inlet
boundary and mixed-out total pressure loss at selected radial. Those objective functions are evaluated by an in-house, parallel,
high-fidelity CFD solver. Throughout the optimisation, ARMOGA shows the reasonable performance for obtaining trade-offs
even with a small number of evaluations.

i. Intreduction

Industrial problems often have many design objectives, that may
have conflicting each other. Hence, trade-off studies may be
required. To identify global tradeoffs, the problem can be treated as
Multi-Objective (MO) optimisation. MO optimisation seeks to
optimise components of a vector-valued objective function. In
general, the solution to this problem is not a single point like
single-objective optimisation, but a family of points known as the
Pareio-optimal set. Pareto solutions, which are members of the
Pareto-optimal set, represent trade-offs among multiple objectives.
Conventionally, gradient-based methods have been used for MO
problems. However, gradient-based methods are not so efficient to
obtain trade-offs because weights between objectives and initial
starting points have o be changed to obtain different Pareto
solutions not known at priori.

Nowadays, MOEAs (Multi-Objective Evolutionary Algorithms)
have gained popularity because of its efficient and effective search
for obtaining Pareto solutions [1]. As it is well known, MOEAs
require a large number of evaluations. This could be a major
inhibitor in using MOEAs for aerodynamic optimisation using
time-consuming high-fidelity Computational Fluid Dynamics
(CFD). The latter is required to obtain accurate aerodynamic
performance. Hence, a real-coded Adaptive Range Multi-Objective
Genetic Algorithm (ARMOGA) has been developed for the
reduction of number of evaluations to make it practical to apply
ARMOGA to aerodynamic optimisation problems [2].

The aim of this research is to demonsirate a multi-objective
design optimisation of Bypass Fan Cutlet Guide Vanes (OGVs) as
part of the Low Pressure Compression (LPC) system as shown in
Fig.1 In this study, an in-house, parallel, high-fidelity CFD solver
is used to compute the flow solutions for this system.

2. Evolutionary Algerithm

EA is a generic term of population-based stochastic optimisation
methods such as- Genetic Algorithm (GA), BEvolutionary Strategy
(ES) and BEvolutionary Programming (EP). GAs simulate the
mechanism of the natural evolution, where a biological population
evolves over generations to adapt to an environment by selection,
crossover and mutation, as shown in Fig.2. In design optimisation
problems, fitness, individual and genes correspond to an objective
function, design candidate and design variables, respectively.

GAs search from multiple points in the design space

simultaneously and stochastically, instead of moving from a single
point deterministically like gradient-based methods. This feature
prevents design candidates from trapped in local optimum.
Moreover, GAs do not require computing gradients of the objective
function. These characteristics lead to foliowing advantages of
GAs: 1, GAs have capability of finding global optimal solutions. 2,
GAs can be processed in parallel efficiently. 3, high fidelity CFD
codes can easily be adapted to GAs without any modification. 4,
GAs are not sensitive to any noise that might be presented in the
results. 5, GAs are not prone to premature.

2.1 Mulii-Objective Evelutionary Algorithm (MOEA)

To identify trade-offs between many objective functions, MO
optimisation has to be conducted. Unlike single-objective
optimisation, the fitness of each design candidate is assigned based
on the Pareto-optimality. The rank of a design is given by the
number of solutions which dominate the design as shown in Fig.3.
The aim of MO optimisation is to seek solutions which are
assigned to rank 7. In the optimisation, Pareto ranking method is
used.

2.2 Adaptive Range Multi-Objective Genetic Algorithm

To reduce the large computational burden, the reduction of the *
total number of evaluations is needed. Adaptive Range Genetic
Algorithm (ARGA), which originally proposed by Arakawa and
Hagiwara [3], then extended by Oyama ez al [4], is a quite unique
approach fo solve such problems efficiently.

ARMOGA has been developed based on ARGA to deal with
multiple Pareto solutions for the multi-objective optimisation. The
main difference between ARMOGA and conventional MOEA is
the introduction of the range adaptation. The flowchart of present
ARMOGA is shown in Fig.4. Population is reinitialised every M
generations for the range adaptation so that the population
advances toward promising regions.

The basis of ARMOGA is the same as ARGA, but a
straightforward extension may cause a problem in the diversity of
the population. To better preserve the diversity of solution
candidates, the normal distribution for encoding is changed. Figure
5 shows the search range with the distribution of the probability.
Plateau regions are defined by the design ranges of chosen
solutions. Then the Normal distribution is considered at the both
sides of the plateau.
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ARMOGA is able to find Pareto solutions more efficiently than
conventional EA's because of the concenirated search of the
promising design space out of the large, initial design space.
ARMOGA can adapt its search region as shown in Fig.5. In
confrast, conventional EA's search region remains unchanged.
Re-initialisation helps to maintain the population diversity.
However, there is a conflict between concentrating the search
space and maintaining the population diversity. Re-initialisation
may slow down the convergence to Pareto solutions.

3. Single-Height Optimisation of LPC System

In the present optimisation, an in-house, parallel, 2-D
Navier-Stokes solver is used to evaluate the flow at LPC system to
reduce the large computational burden. Figure 6 shows a 2-D slice
through OGV-Pylon-RDF (Radial Drive Shaft) Bypass Duct
system of a modern jet engine considered in the study. The OGV
ring consists of 52 blades that has a big influence for the
performance of the system. The objective of the present research is
to demonstrate efficient calculation of Pareto fronts to extract
information to reduce the circumferential pressure variation at the
inlet boundary and mixed-out total pressure loss calculated

between inlet boundary and rear of OGVs as shown in Fig.6.

3.1 Optimisation Definition

The objectives of the optimisation is to minimise the mixed-out
total pressure loss and to minimise the root mean square of
circumferential pressure variation at inlet as described below.
LOSS:

Plﬂ - out
Min. Loss(%) = el » 100, (1)
P;otal - ‘Fs!atic
RMSPV:
Min. (2)
DiPe
where P = & =

N

The design parameters conducted in the study consists of the
re-staggering of sections of the 52 OGVs. To reduce the number of
design variables, the geometric patterns of OGVs’ stagger angle are
represented based on the Fourier series (Fig.7) as follows:

Var, = Ay + S {Ajsin -1 2z +B; cos| (i-1) 2\
- |_ Nogy ! Nogy
- .
Var, «— % AMPL @)
max|Var| ’

where N: Number of harmonics,
Nogy: Number of OGVs, i:ith OGV.
The fifty-two design parametess, i.e. VAR, are obtained by 15
design variables (V=7), namely Fourier coefiicients 4; and B;. Each
value of the pattern is then divided by the maximum and multiplied
by an amplitude to maintain 8 maximum practical variation of the
design variables. In this optimisation, the amplitude (AMPL) is set
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to eight degrees. The new geometric patterns are added to the base
geometry that has a uniform distribution of OGVs. Figure 8 shows
the geometric patterns of 52 OGVs’ re-stagger angle.

3.2 Optimisation Resulés

The present optimisation was conducted by nearly 500 CFD runs
(12 individuals for 40 generations). Bach CFD evaluation takes
about 25 minutes using eight CPUs (Pentium3-450MHz). To
reduce the computational time, all CFD computations start from a
fully converged solution of the base geometry. Figure 9 shows a
sample of optimisation results. In the figure, non-dominated
solutions obtained at the initial, 20 and 40 generations are shown.
It represents the overview of the evolution of the design.
Objective-function values in the figure are normalised by the base
geometry as follows:

ngueBase Geometry VazueDesign

x100. @

A(%) =
V@ guesase Geometry

Totally, 11 non-dominated solutions are finally obtained and it
shows the trade-offs between the pressure variation and the total
pressure loss. Final non-dominated solutions having minimum
pressure variation (MIN_RMSPV) and total loss (MIN_LOSS) are
chosen o compare the flow field in Fig.10. The flow field of
MIN_LOSS seems to be smooth. Instead, MIN_RMSPV has thick
wake regions and it causes the rise of total pressure loss.
ARMOGA can obtain 62% reduction of pressure variation
compared to the base geometry. On the other hand, all the designs
have worse total pressure loss values. At mid-height, it is difficult
to reduce the fotal loss with the current design space and partly
because OGVs could have a2 maximum stagger angle of eight
degrees.

4. Multi-Height Optimisation of LPC System

In the previous section, single-height optimisation was
performed. To consider a more realistic design, multi-height
optimisation is conducted here. In addition to 50%, 10% and 90%
heights of LPC system is assumed to demonstrate the
multi-objective optimisation of LPC system as shown in Fig.11.

4.1 Optimisation Definition

The objectives of the present optimisation is the same as
previous, but there are six objectives to be minimised because three
height is considered. It may cause the large increase of
computational time, because EA generally requites more
evaluations if the number of objective function increases. To
prevent the large amount of computations, six objective functions
are combined to form the new two objectives: the average of fotal
pressure lossess in Eq.{1) and the average of pressure variation in

Eq.(2) at three heights.
Average LOSS:
. LOSS(10%) + LOSS (50%) + LOSS (90%)
3
Average RMSPV:
Min. RMSPV(10%) + RMSPV (50%) + RMSPV (90%)
3
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In the main routine of the ARMOGA, above two
objective-function values are used to select parenis to generate new
offspring. Six objectives are direcily considered to form the new
search range of each design variable to keep the search region
where six-objective non-dominated solutions exist.

Re-staggering angles of the 52 OGVs at three heights has to be
defined in an efficient manner to control the number of design
variables. The patterns of OGVs’ stagger angle are represented by
the Fourier series and three zero harmonics are introduced to
change the base angles of each OGV’s paitern as shown in Fig.12.

Var‘i=2y_l A}.sin((i—l) 2z )4-31.cos((i--l}j\{rzjZ )

NOGV oGV
height
B}Qr eigs

b

= AP 4 Var, G)

where N: Number of harmonics,
Nogy: Number of OGVs, i: ith OGVY,
height

Ap  :Zero harmonics at three heights (10, 50, 90%).
The OGVs’ re-stagger patterns are represented by 17 variables
(W=7 and three zero harmonics). Table 2 describes the upper and
lower boundaries of the design variables. Unlike the previous
opiimisation, maximum amplitude (AMPL) is not used to provide
more freedom to the geometric patterns of OGVs. However, it is
possible that the geometry has impractically large angles. To
prevent this problem, the amplitude of each design must be lower
than four degrees.

ARMOGA is used to solve the optimisation problem having six
objective functions, 17 design variables and a constraint. Selection
for crossover and mutation is based on the Pareto ranking method
(Fig.3) coupled with Best-N selection considering two objectives
of the average. Instead, six objectives are directly used to evaluate

the solutions fo sample the better solutions for the range adaptation.

The range adaptation starts at Sth generation and it is occurred
every 5 generations. To prevent the waste of time computing
infeasible solutions, new design candidates are generated again and
again until they satisfy the constraint.

4.2 Optimisation Results

Population size and number of generation are set to 12 and 20,
respectively to solve the present optimisation problem by
ARMOGA. Each individual requires 1.5 hours for the evaluation
because each CFD evaluation takes about 30 minutes using eight
CPUs (Pentium3-450MHz). To reduce the computational time, all
CFD starts from a fully converged solution of the base geomeiry at
each height.

As a result of the optimisation including nearly 700 CFD runs,
five non-dominated solutions were obtained in objective-function
space of averaged total loss and pressure variation as shown in
Fig.13. In the figure, final non-dominated front progressed largely
compared to initial front in averaged space. As the original
optimisation has six objective functions, all solutions are sampled
to form non-dominated solutions in the six objective-function
space. In total, 21 non-dominated solutions are obtained in the six
objective-function space. It is not easy to understand the trade-off
represented by 21 non-dominated solutions because these solutions
form the trade-off in the six objective-function space. Therefore, all
non-dominated solutions are projected onto the two-dimensional

surface between pressure variation and total pressure loss at each
height in Fig.14. The figures indicates the trade-off between
pressure variation and total loss at each height. Three solutions (A,
B, C) are chosen to realise the trade-off at 10% height. Solution A
has lower pressure variation and higher loss, B has lower pressure
variation and lower loss and C has higher pressure variation and
lower loss. Designers can choose the design from the trade-off
according to their requirements.

To understand the present design
objective-function values of three heights are projected onto the
same normalised axes of pressure variation and loss in Fig.15.
Three trade-offs between pressure variation and loss (J, II, IIT) are
represented in the figure. Non-dominated fronts I, II and IH
represent the trade-off at 10, 50 and 90% heights, respectively. At
10 and 50% heights, it is easy to reduce the pressure variation
while maintaining the loss. On the other hand, front III indicates
that it is impossible to reduce the pressure variation and the loss at
90% height simultaneously. In Fig.16, Mach contours of solutions
D (minimum RMSPV at 90%) and E (minimum LOSS at 90%) are
shown. Solution E has low total pressure loss, but the flow flied
shows still many thick wake regions. Since the distance between
row of CGVs and Pylon or RDF is near, it is not easy to reduce the
loss by changing re-stagger angles of OGVs. Another design
parameters will be required fo reduce the pressure variation while

problems,  six

maintaining the loss at 90% height.

Finally, a solution F is chosen to compare the base geometry. It
has lower values of all six objective functions compared to the base
geometry in Table 3. Figure 17 shows the circumferential pressure
variation at inlet of the design F and the base geometry. Large
reduction of pressure variation can be seen at 10% height.
Pressures near the pylon consistently decrease at all heighis to
reduce the pressure variation at inlet. Indeed, the distribution of
OGVs’ re-stagger angle shows that it tries to reduce the pressure
near the pylon in Fig.18.

5.Conclustion

To evaluate the performance of ARMOGA, MO optimisation
was performed for OGV-Pylon-Bypass Duct system. In total of 500
CFD evaluations were conducted and 11 non-dominated solutions
were obtained in single-height optimisation. The Pareto front
represents the trade-offs between the pressure variation at the inlet
boundary and mixed-out total pressure loss.

Multi-height optimisation was then performed to consider more
practical problems. Six-objective optimisation problem was
efficiently solved by ARMOGA and 21 non-dominated solutions
were obtained in six objective-function space by nearly 700 CFD
runs. Trade-off analysis reveals that it is easy to reduce the pressure
variation while maintaining the loss at 10 and 50%, and it is
difficult to do that at 90% by just changing the re-stagger angles.
The design that is superior to the base geometry in all six design
objectives has the geomeiric patierns of OGVs to reduce the
pressure near the pylon for all three heights,

The Pareto front provides valuable information to designers to
carry out trade-off studies. In addition, ARMOGA can obtain those
trade-offs efficiently. Therefore, ARMOGA has proved to be a
good optimisation tool for turbomachinery acrodynamic design
problems requiring large evaluation time of CFD.
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Table 1 Upper and lower boundaries of design variables
Ag | A7 B g

Upper Boundary] 3.0 | 2.0 | 20
Lower Boundary| -3.0 | -2.0 | -2.0

Table 2 Upper and lower boundaries of design variables

Ao | Az | A A
(10%)i (50%)1{90%)| "
Upper Boundary{ 1.0 | 1.0 | 3.0 [ 2.0 | 20
Lower Boundary| -8.0 | -8.06 | -3.0 1-2.0 | -2.0

7 Bl,...,7

Table 3 Objective-function values of solution F

10% | 50% | 90%
RMSPV | -53.1 | -42.4 | -22.5
LOSS |-25.7{-10.0]-11.5
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Fig.6 Axial locations of OGV-Pylon-RDF system.
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