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Abstract: This paper proposes a new method to design low-energy transit trajectories, in which a halo orbit is 

regarded as hub, for deep space missions such as JAXA’s Martian Moons eXploration (MMX). First, we 

consider the Sun-Mars-Spacecraft system and compute a halo orbit in the context of Circular Restricted 

three-Body Problem (CR3BP). In order to use invariant manifolds, we attempt to make use of eigenvectors of 

the halo orbit and give them as perturbations to a reference point, which is each state vector on the halo orbit. 

By propagating the reference point with perturbations in backward and forward time, we search trajectories so 

that a spacecraft can depart from the vicinity of Mars and go through a neighborhood of Sun-Mars Lagrange 

point. As a result, we realize to design the trajectories escaping from the vicinity of Mars to Sun-side region in 

low-energy. In addition, we consider a method to reduce a Delta V, which is an amount of impulsive velocity 

maneuver at departing point, for practical use. 

 

 

ハロー軌道をハブとした低エネルギー輸送軌道の設計

と増速量低減化手法 

 

田仲 悠（早大院），川勝 康弘（ISAS/JAXA），吉村 浩明（早大） 

 

摘要：本研究では，JAXA の MMX ミッションのような深宇宙探査機に適用し得る，ハロー軌道をハ

ブとした低エネルギー輸送軌道の新しい設計手法を提案する．初めに，太陽—火星—宇宙機系の円制限

3 体問題の枠組みでハロー軌道を計算する．次に，ハロー軌道の各点を基準点とし，基準点における

ハロー軌道の固有ベクトルを摂動として基準点に与える．その状態量を前後の時間に軌道伝播するこ

とで，火星近傍を出発して太陽—火星系のラグランジュ点近傍を通るような軌道を探索する．その結果

として，火星近傍を脱出して太陽側の領域へ輸送される低エネルギーの軌道設計を実現する．また，

より実用的な軌道のために，出発時の増速量∆𝑉を低減化する手法について検討する． 

 

 

I. Introduction 

In a trajectory design for deep space missions, a lot of fuel and large rockets are needed when all of energy is 

provided by chemical propulsion. It causes an increase in spacecraft’s weight and launch costs. In particular, a 

sampling return mission needs energy to escaping from gravity of a target planet and energy to transfer a 

round-trip. Therefore, trajectory using the Hohmann transfers or swing-by trajectories in two-body problem has 

been studied in order to make fuel smaller. On the other hand, since it is not sufficient to approximate by 

two-body problem in a case of considering an influence of multiple planetary gravity, trajectory design in the 

context of three-body or four-body problem has been also studied.  

The merit to enable to design a low-energy transit trajectory by using these multi-body problems has been 

revealed. As a study of trajectory design from a point of view of low-energy transit, a trajectory design method 

based on the tube dynamics by Koon et al. [1] is well familiar. This method proposes a low-energy trajectory 

design by coupling the planer circular restricted three-body problems using a property of invariant manifolds 

called as tube. In other words, this method connects trajectories so that the two tubes of a stable manifold and an 

unstable manifold can link together on an arbitrary connecting plane. On this occasion, a velocity modification 

maneuver ∆𝑉 is necessary, since each state vector of a spacecraft in two tubes is different on the connecting 

plane in general. Recently, regarding a whole system as a coupling system of the three-body problems 

considering two perturbations in the context of planer bi-circular four-body problem, a method connecting with 

nulling velocity modification maneuver at the connecting point has been proposed. [2] On the other hand, 

though it is necessary to consider the tube dynamics in three dimensions for more practical trajectory design, it 

is hard to reveal a dynamical behavior at a boundary of the tube because of the existing of quasi-halo orbit. 

Besides, a grid search has been also studied as a different design method from the tube dynamics. [3] This 

method can be used in a case of escaping from a target planet of a sampling return mission, and propagates 
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various initial conditions at an escaping point. However, this is not a systematic method because this just 

changes the initial conditions globally, and it is not clear whether a spacecraft can escape from a target planet, 

without propagating the trajectory in advance. 

Namely, the tube dynamics has problems to eliminate necessity of maneuver at a connecting point and to 

expand to the three-dimensional system, and it is a neck that the grid search is not a systematic method. 

Therefore, this paper proposes a new trajectory design method to overcome these problems. This is a method to 

realize low-energy transit trajectory with no-maneuver, which takes a reference point on a halo orbit to make the 

halo orbit as hub and uses local invariant manifolds on the reference point. As a validation model, this paper 

attempts to design transit trajectories escaping from the Martian moon “Phobos” with low-energy and a short 

time of flight in the context of three-dimensional Sun-Mars-Spacecraft circular restricted three-body problem. In 

addition, a method to reduce a departing ∆𝑉 is also considered for designing more practical trajectories. 

 

II. Dynamics in CR3BP 

A. Equations of motion  

As shown in Fig.1, we assume the system, which the two bodies, 𝑃1 and 𝑃2 are regarded as particles 

moving around the barycenter under each of gravitational influences, and the 𝑃3 of negligible mass as a 

spacecraft or an asteroid is influenced by other two bodies. The model, adding an assumption that the motions of 

the two bodies are circular to this system, is called Circular Restricted Three-Body Problem (CR3BP). We refer 

to 𝑃1 as the primary with its mass 𝑚1 and 𝑃2 as the secondary with its mass 𝑚2. We assume that the two 

bodies have circular orbits about the barycenter with its period 𝑇 respectively, and that the 𝑃3  cannot 

influence of its own gravity on other bodies. Then, let us introduce the mass parameter 𝜇 representing the 

system as 𝜇 = 𝑚2/(𝑚1 + 𝑚2), and we make the system non-dimensional in the following manner: the sum of 

mass is 1, i.e., 𝑚1 + 𝑚2 = 1, the distance between the two bodies is 1, and the period 𝑇 = 1. Representing a 

position of 𝑃3 as (𝑥, 𝑦, 𝑧) ∈ ℝ3, the equations of motion of 𝑃3 in the rotational frame as Fig.1 are given by 

�̈� −  2�̇� = −
𝜕𝑈

𝜕𝑥
 , 

�̈� +  2�̇� = −
𝜕𝑈

𝜕𝑦
 ,  

�̈� = −
𝜕𝑈

𝜕𝑧
 , 

where 

𝑈(𝑥, 𝑦, 𝑧) = −
1

2
(𝑥2 + 𝑦2) −

1 − 𝜇

𝑟1

−
𝜇

𝑟2

−
1

2
𝜇(1 − 𝜇) 

is the effective potential, and each distance between 𝑃3 and the two bodies are 𝑟1 = √(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2,

𝑟2 = √(𝑥 − 1 + 𝜇)2 + 𝑦2 + 𝑧2 respectively.  

 

 
 

Fig. 1 CR3BP model  

B. Lagrange point, halo orbit, and invariant manifold 

 The energy of 𝑃3, E is defined as a function of positions and velocities by 

𝐸(𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�) =
1

2
(�̇�2 + �̇�2 + �̇�2) + 𝑈(𝑥, 𝑦, 𝑧), 
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which preserves constant along the solution curve. The CR3BP is a conservative system and able to define the 

Hill region (region of possible motion) by the projection of the constant-energy surface onto position space, 

while there are forbidden regions in which a spacecraft cannot enter. Moreover, the five equilibrium points 

called Lagrange points are well known in three-body problem, 𝐿1, 𝐿2, 𝐿3 exist on the 𝑥-axis and 𝐿4, 𝐿5 

exist on the point make an equilateral triangle with 𝑃1 and 𝑃2. In particular, 𝐿1, 𝐿2, 𝐿3 each have a local 

topology with the saddle×center×center structure, and halo orbits, which are an unstable periodic orbit, exist 

in that vicinity. Furthermore, the existence of invariant manifolds called tube approaching to a halo orbit 

asymptotically is known. Fig.2 shows the invariant manifolds in two-dimensional CR3BP, which the red lines 

are stable manifolds attracting to the periodic orbit asymptotically in forward time and the blue lines are 

unstable manifolds attracting to the periodic orbit asymptotically in backward time, i.e., repelling to it in 

forward time. A trajectory existing in the tube is regarded as a transit trajectory, which can pass two regions 

isolated by a neck region around the Lagrange point. 
 

 
 

Fig. 2 Invariant manifolds in 2D CR3BP 
 

III. Trajectory Design Method Using a Halo Orbit as Hub 

A. State transition matrix and monodromy matrix 

The state transition matrix (STM) Φ is used to gain the linear approximation between small initial 

displacement 𝛿�̅�1 and small finial displacement 𝛿�̅�0 by 

𝛿�̅�1 = Φ𝛿�̅�0 . 

The STM of one lap around a halo orbit is called monodromy matrix, whose eigenvalues are 

𝜆1 > 1, 𝜆2 =
1

𝜆1

, 𝜆3 = 𝜆4 = 1, 𝜆5 = 𝜆̅
6, |𝜆5| = 1 

in the context of CR3BP. The eigenvectors corresponded with 𝜆1, 𝜆2 are associated with stable and unstable 

motion of a halo orbit respectively. 

 

B. Transit trajectory design  

In the context of CR3BP, a linear approximation of the invariant manifolds can be obtained by using the 

eigenvectors of the monodromy matrix as perturbations. As shown in conceptual figure Fig.3, let 𝒗𝑠 ∈ 𝑅6, 𝒗𝑢 ∈
𝑅6 be the stable and unstable eigenvector respectively, and let 𝑿0 ∈ 𝑅6 be a state on a halo orbit to define the 

initial states of the stable and unstable manifold by 

𝑿𝑠 = 𝑿0 + 휀𝒗𝑠, 𝑿𝑢 = 𝑿0 + 휀𝒗𝑢 

respectively, where 휀 is a small displacement from 𝑿0 and this makes the eigenvectors into perturbations.  
 

 
 

Fig.3 Conceptual figure of generating the manifolds 
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Propagating these local manifolds along with the equation of motion can generate the approximation of global 

invariant manifolds such as Fig.2. Furthermore, propagating the combination of the stable and unstable local 

manifold as 

𝑿−𝑠+𝑢 = 𝑿0 − 휀𝑠𝒗𝑠 + 휀𝑢𝒗𝑢 

can obtain a transit trajectory as shown in Fig.4. Note to be careful to choose the appropriate sign of 

perturbations so that the trajectory can look like a transit one. 
 

   
 

Fig.4 Transit trajectory (left one is looked by x-y plane, right one is by x-z plane) 
 

C. Design of Mars escaping trajectory  

In this study, we try to design trajectories escaping from Martian moon “Phobos” and passing the vicinity of 

𝐿1 in the context of Sun-Mars-Spacecraft CR3BP by following procedure. We define the size of halo orbit by 

its maximum amplitude of z-direction 𝐴𝑧. 

1. Take a reference point at each point of a halo orbit divided by 100 segments. 

2. Give the stable and unstable perturbations to the state on the reference point. 

3. Search trajectories crossing the Phobos orbit around Mars by propagating in forward and backward time 

with changing the size of perturbations. 

4. Calculate a velocity vector and time of flight for escaping from Mars vicinity. 

5. Repeat above processes for each size of halo orbits from 𝐴𝑧 = 0.8 × 10−3 to 𝐴𝑧 = 1.5 × 10−3 by 

0.1 × 10−3 step. 

The each of planetary parameters is cited from NASA Planetary Fact Sheet [4]. The definition of the time of 

flight is from departing Phobos to a connecting point [5], in which we can see the system as the context of 

Sun-Spacecraft two-body problem. In addition, we assume the Phobos orbit is circular and co-planar with Mars 

orbit. 

Fig.5 shows the result of the relationship between ∆𝑉 and time of flight (𝐴𝑧 = 1 × 10−3), and Fig.6 shows 

the behavior of the trajectory picked in Fig.5. From this figure, we can see that we could design the transit 

trajectories escaping from Mars vicinity. By researching of this design method with all size of 𝐴𝑧 from 𝐴𝑧 =
0.8 × 10−3 to 𝐴𝑧 = 1.5 × 10−3, we can see that ∆𝑉 becomes lower, the smaller 𝐴𝑧 is. From this result, we 

try to design with 𝐴𝑧 = 1.0 × 10−9, which is nearly lied on the x-y plane. Fig.7 shows the result of this, and we 

can get lower ∆𝑉 trajectories. 

   
 

    Fig.5 ∆𝑉 v.s. TOF (𝐴𝑧 = 1 × 10−3)   Fig.6 Example of Mars escaping trajectory 
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Fig.7 ∆𝑉 v.s. TOF (𝐴𝑧 = 1 × 10−9) 
 

 

IV. ∆𝑽 Reduction Method 

  In a view of practical use, small ∆𝑉 is better for actual missions. Therefore, we confirm a method to 

reduce ∆𝑉 of the designed trajectories. For ∆𝑉 reduction, we apply the Fixed Time Arrival method (FTA 

method), which is used to modify an actual trajectory of a spacecraft to a planned trajectory at a designated time 

using two times of ∆𝑉. 
 

 
 

Fig. 8 Conceptual figure of ∆𝑉 reduction 
 

 In this study, we give the perturbations to the reference point instead of ∆𝑉, and we use two constraints; the 

departing point at Phobos is not changed for simplification and 𝑣𝑧 at departing is equal to zero. Fig.8 shows its 

conceptual figure. The relationship between the both of displacements at the departing point and at the reference 

point is given by 

(
0

𝛿𝒗2
) = Φ (

𝛿𝒓1

𝛿𝒗1
), 

where Φ is a STM from the reference point to the departing point in backward time. The displacement at the 

reference point is given by 

(
𝛿𝒓1

𝛿𝒗1
) = 𝛼𝒗𝑎 + 𝛽𝒗𝑏 + 𝛾𝒗𝑐 + 𝜅𝒗𝑑 + 𝜏𝒗𝑒 

where 𝒗𝑎 , 𝒗𝑏 , 𝒗𝑐 , 𝒗𝑑 , 𝒗𝑒  are arbitrary vectors and 𝛼, 𝛽, 𝛾, 𝜅, 𝜏  are small constants to make perturbations. 

Therefore, the displacement at the departing point is expressed by following formula. 

(
0

𝛿𝒗2
) = 𝛼Φ𝒗𝑎 + 𝛽Φ𝒗𝑏 + 𝛾Φ𝒗𝑐 + 𝜅Φ𝒗𝑑 + 𝜏Φ𝒗𝑒. 

 Since we have three constraints formulae from the constraint of fixed departing point and one constraint 

formula from the constraint of 𝑣𝑧 = 0, we can reduce the five parameters of above formula, i.e., 𝛼, 𝛽, 𝛾, 𝜅, 𝜏, 

into one parameter so that we can do one-parameter study briefly. Fig.9 shows the result of ∆𝑉 reduction for 

the trajectories with 𝐴𝑧 = 1 × 10−9. The smallest ∆𝑉 of ∆𝑉 reduction is still larger than that of original 

trajectories. However, we can see the ∆𝑉 reduction of individual trajectory as shown in Fig.10, which is a 

magnification of Fig.9. 
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Fig.9 Result of ∆𝑉 reduction (𝐴𝑧 = 1 × 10−9)     Fig.10 A magnification of Fig.9 
 

V. Conclusion 

In this study, we confirmed that we could design transit trajectories departing from Phobos and passing the 

𝐿1 point by the design method using a halo orbit as hub in the context of Sun-Mars-Spacecraft CR3BP. In 

addition, though we couldn’t obtain the minimum ∆𝑉 by the ∆𝑉 reduction method, we could confirm the 

availability of the ∆𝑉 reduction method for individual trajectories. 
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