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Abstract: Multirevolutional periodic quasi-satellite orbits bifurcate from singlerevolutional periodic quasi-satellite 

orbits and complete one orbital period after several revolutions around the secondary of a three-body system. One of 

the important characteristics is that their amplitude with respect to the central body changes significantly for each 

revolution. As a result, it is expected that multirevolutional periodic quasi-satellite orbits can be applied for transfers 

between quasi-satellite orbits of different amplitudes. In this study, we generate multirevolutional periodic 

quasi-satellite orbits from the bifurcation points of singlerevolutional ones and consider their dynamical 

characteristics such as stability and bifurcation points. 

 

多周回周期 QSOの生成とその性質 
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摘要：惑星や衛星の周回探査軌道として考えられている QSO（Quasi-Satellite Orbit）の一種として，多周

回周期 QSOというものがある．多周回周期 QSOとは周回中心の天体を複数回周回した後に閉じる QSO

であり，中心天体に対する振幅が一周回毎に大きく変化するという性質を持つ．この性質を利用した QSO

間遷移手法の提案が期待されている一方で，多周回周期 QSO自体の分布や力学的性質はあまり解明され

ていない．この理解の為，本研究では，一周回後に閉じる単周回周期 QSOの分岐解析の結果を用いて多

周回周期 QSOの生成を行い，その安定性や分岐点をはじめとする力学的性質について考察する． 

 

1. Introduction 
In recent years, small asteroids and planetary satellites become very attractive for space exploration because of 

their capability to elucidate the solar system formation. Especially for the Martian moons Phobos and Deimos, 

several countries and international teams are currently planning to send probes and explore them [1][2]. Martian 

Moons eXploration, or MMX, is the next flagship mission being developed at the Japan Aerospace eXploration 

Agency (JAXA) and will be launched in 2024 [2]. The goal of MMX is to retrieve pristine samples from the surface 

of Phobos and bring them back to the Earth. To that end, the spacecraft will first orbit Phobos for steady 

observations and precious scientific measurements using singlerevolutional periodic quasi-satellite orbits, or 

SP-QSOs. SP-QSOs are retrograde orbits found in the three-body system that repeat after one single revolution 

around Phobos as shown in the left-hand side of Figure 1. While the characteristics of SP-QSOs and quasi-periodic 

invariant tori nearby have been elucidated by many researchers [3][4][5][6], it is still unclear how to design 

appropriate strategy for orbit transfer, such as transfer between SP-QSOs of different sizes and insertion from 

Mars-centric orbits to SP-QSOs. 

In this paper, we will introduce multirevolutional periodic quasi-satellite orbits, or MP-QSOs, to explore novel 

transfer opportunities between different SP-QSOs. MP-QSOs are retrograde orbits that repeat after multiple 

revolutions around the target small body and can be obtained as bifurcated solutions from SP-QSOs [7]. As shown 

in the right-hand side of Figure 1, their amplitude changes drastically in each revolution enabling high-resolution 

measurements during the coasting phase of the transfer. Although this feature might be of interest for missions like 

MMX, the dynamical characteristics of MP-QSOs are yet to be fully explored. Accordingly, the main goal of our 

research is to generate MP-QSOs and understand fundamental characteristics of them. Based on this analysis, we 

will also introduce a transfer example between different-altitude SP-QSOs. 

The dynamical model assumed in this research is explained in the second section. Next, the method to generate 

MP-QSOs and its results are shown in the third section. Finally, an example of orbit transfer between SP-QSOs of 

different size is shown in the fourth section. Conclusions and final remarks are summarized in the fifth section. 
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Figure 1. SP-QSOs (left) and an example of MP-QSOs (right) in Mars-Phobos synodic frame. The 

positions of them are normalized with the distance between Mars and Phobos. The black crosses are the 

positions of Phobos. All the SP-QSOs are closed after single revolution around Phobos while MP-QSOs 

are closed after multiple revolutions with various amplitudes along 𝐲-axis. 

  

2. Dynamical Model 
In this research, three-body problem of Mars, Phobos and a spacecraft is assumed. Considering that the 

eccentricity of Phobos’ orbit is very small (0.0151 [6]), and the mass of a spacecraft is relatively much smaller than 

those of Mars and Phobos, the problem can be dealt through the equations of the circular restricted three-body 

problem, or CR3BP. Defining the state vector in non-dimensional Mars-Phobos barycentric synodic frame as 𝒙 ≡
[𝑥, 𝑦, 𝑧, �̇�, �̇�, �̇�]𝑇, the equations of motion of CR3BP are expressed as 

 

 �̇� = 𝑓𝐶𝑅3𝐵𝑃(𝒙) =

[
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The function �̅�(𝑥, 𝑦, 𝑧) is called the effective potential defined by Equations (2.2), (2.3) and (2.4). 
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 𝜇 ≡
𝑀𝑃ℎ𝑜𝑏𝑜𝑠

𝑀𝑀𝑎𝑟𝑠 + 𝑀𝑃ℎ𝑜𝑏𝑜𝑠
 (2.3) 

  

 𝜌1 ≡ √(𝑥 + 𝜇)2 + 𝑦2 + 𝑧2,   𝜌2 = √(𝑥 + 𝜇 − 1)2 + 𝑦2 + 𝑧2 (2.4) 

  

𝑀𝑀𝑎𝑟𝑠 and 𝑀𝑃ℎ𝑜𝑏𝑜𝑠 are the masses of Mars and Phobos, 𝜌1 is the distance between Mars and the spacecraft and 

𝜌2 is the distance between Phobos and the spacecraft. In this dynamical system, there is only one conservative 

quantity 𝐶 defined by Equation (2.5). It is called Jacobi constant, 

 

 𝐶 ≡ −(�̇�2 + �̇�2 + �̇�2) − 2�̅�. (2.5) 
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3. Generation of MP-QSOs 
In this section, the method to generate MP-QSO families is explained. There are three main steps; generation of 

SP-QSO family, detection of MP-QSO bifurcation points and generation of MP-QSO families. 

 

3.1. Generation of SP-QSO Family 
MP-QSO families may be generated from bifurcations of the SP-QSO family branch [7]. As a result, the first 

step for generating MP-QSOs is to analyze the SP-QSO family branch. 

The fundamental problem to generate periodic orbits is to find sets of variables 𝑋 ≡ [𝒙𝑜
𝑡 , 𝑇]𝑡 which satisfy 

Equation (3.1); 

 

 𝐹(𝑋) ≡ [
𝜑(0, 𝑇, 𝒙𝑜) − 𝒙𝑜

𝑦𝑜
] = 𝟎, (3.1) 

  

where 𝒙𝑜 ≡ [𝑥𝑜, 𝑦𝑜, 𝑧𝑜, �̇�𝑜, �̇�𝑜, �̇�𝑜]
𝑡 is the initial state vector, 𝑇 is propagation time from 𝒙𝑜 and 𝜑(0, 𝑇, 𝒙𝑜) is 

the terminal state vector obtained after propagating from 𝒙𝑜 for time 𝑇. The upper component of Equation (3.1) is 

called periodicity condition and ensures the periodicity of the orbit. The lower component is called phase condition 

by which 𝒙𝑜 is determined uniquely. 𝑋 of SP-QSO family and MP-QSO exist continuously [7], so we can 

generate a continuous curve of periodic orbits in a real coordinate space which has the same number of dimensions 

with 𝑋 by applying predictor-corrector scheme. In this step, we apply pseudo-arclength continuation [8] as a 

predictor and shooting method as a corrector. 

Pseudo-arclength continuation is a continuation method based on the tangential vector to the solution curve 

𝐹(𝑋) = 𝟎. Defining �̃� as a solution of 𝐹(𝑋) = 𝟎, we obtain �̃�′ as the unit tangential vector to the curve 𝐹(𝑋) =
𝟎 at �̃� and 𝛥𝑠 as a certain step size of prediction. Then, a first guess for the next correction step 𝑋𝑓𝑔 along �̃�′ 

can be obtained: 

 

𝑋𝑓𝑔 = �̃� + Δ𝑠�̃�′. (3.2) 

  

In the correction step, a guess 𝑋𝑔 is iteratively updated under a constraint defined by Equation (3.3), 

 

(𝑋𝑔 − �̃�) ⋅ �̃�′ − 𝛥𝑠 = 0. (3.3) 

  

Equation (3.3) constrains 𝑋𝑔 on the orthogonal plane with 𝑋′ so that 𝑋𝑔 can converge to the solution for any 

tangential directions. 

Finally, the equation to be solved in correction step is defined by Equation (3.4). In this step, the equations of 

motion of CR3BP is re-scaled by 𝑇 so that propagation time can be normalized for any 𝑇. 

 

𝐹𝑆(𝑋) = [

𝜑(0, 𝑇, 𝒙𝑜) − 𝒙𝑜

𝑦𝑜

(𝑋 − �̃�) ⋅ �̃�′
] = 𝟎 (3.4) 

  

By merging Equation (3.2) with (3.4), the SP-QSO family branch can be generated. 

 

3.2. Detection of Bifurcation Points to MP-QSO Families 
The second step is to detect the bifurcation points from the SP-QSO family to MP-QSO ones with a set of 

parameters called stability indices [7][9]. These new parameters indicate linear stability of each periodic orbit. When 

a monodromy matrix of a periodic orbit has [1,1, 𝜆1, �̅�1, 𝜆2, �̅�2] as its eigenvalues, the stability indices are defined 

by Equation (3.5). 

 

𝑏𝑗 ≡ 𝜆𝑗 +
1

𝜆𝑗
, 𝑗 = 1,2 (3.5) 

  

When |𝑏𝑗| < 2 and real, the eigenvalues of the monodromy matrix consist of complex conjugate pairs with unitary 

magnitude. In this case, the orbit is stable along j-th eigenvector. When the stability index reaches any resonant 
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value as described in Equation (3.6), the orbit corresponds to a bifurcation point to the 𝑛-fold MP-QSO family [7]. 

Here, it is possible to bifurcate from the SP-QSO branch and generate entire families of MP-QSOs. In the following, 

we consider bifurcated branches of the form (𝑑, 𝑛) = (1,3), (1,4), (1,5), (1,6), (1,7), (1,8), (1,9), (1,10) and 
(1,11). Figure 1 (right) discloses an example of a 1: 5 MP-QSO. 

 

𝑏𝑗 ≡ 2 cos 2𝜋
𝑑

𝑛
, 𝑑, 𝑛 ∈ ℕ (3.6) 

  

Figure 2 shows the stability indices of SP-QSO family for different values of the Jacobi constant. The red curve 

corresponds to 𝑏1 and the green one to 𝑏2. The black broken lines express the values of bifurcation calculated from 

Equation (3.6), so the intersection points of those lines and the colored curves are bifurcation points to MP-QSO 

families. The first eigenvalues pairs (𝜆1, �̅�1) have in-plane eigenvectors, while the second pairs (𝜆2, �̅�2) have 

out-of-plane ones, which means the bifurcation points on 𝑏1 curve corresponds to in-plane bifurcation and 𝑏2 

curve to out-of-plane bifurcation. In this research, we generate MP-QSOs only from in-plane bifurcation points 

shown as black points in Figure 2 because it is considered unlikely to design more efficient transfer between 

in-plane SP-QSOs via out-of-plane MP-QSOs than in-plane MP-QSOs. 

 
Figure 2. Stability indices profile of SP-QSO family along C. The red curve corresponds to 𝒃𝟏 related 

with in-plane bifurcation and the green one to 𝒃𝟐 related with out-of-plane bifurcation. The 

intersection points of the black horizontal lines and the curves are bifurcation points. 
 

3.3. Generation of MP-QSO Families 
From each of bifurcation point, we apply predictor-corrector scheme again to generate MP-QSO families. In this 

step, pseudo-arclength continuation is applied as a predictor while multiple shooting method is applied as a corrector 

for robust convergence. 

Defining 𝑋 ≡ [𝒙1
𝑡 , ⋯ , 𝒙𝑁

𝑡 , 𝑇]𝑡 where 𝒙𝑖 = [𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖 , �̇�𝑖 , �̇�𝑖 , �̇�𝑖]
𝑡 is the state vector of i-th node, the equation to 

be solved is 

 

𝐹𝑀(𝑋) =

[
 
 
 
 
 
 
 
 𝜑 (𝒙1, 0,

1

𝑁
𝑇) − 𝒙2

⋮

𝜑 (𝒙𝑁−1,
𝑁 − 2

𝑁
𝑇,

𝑁 − 1

𝑁
𝑇) − 𝒙𝑁

𝜑 (𝒙𝑁,
𝑁 − 1

𝑁
𝑇, 𝑇) − 𝒙1

𝑦1

(𝑋𝑔 − �̃�) ⋅ �̃�′ − Δ𝑠 ]
 
 
 
 
 
 
 
 

= 𝟎. (3.7) 

  

By merging Equation (3.2) with (3.7), we can generate MP-QSO for each pair of (𝑑, 𝑛). 

Figure 3 shows the generated SP-QSO and MP-QSO families with their maximum absolute value of 𝑏𝑗 in 

(𝐶, 𝑥𝑜) plane. In parallel, Figure 3 (right) displays the amplitude distribution along the 𝜂-axis which is the 

along-track axis of Phobos centric synodic frame. In Figure 3, the curves except for those indicated as “SP-QSO” 

are MP-QSO’s. As we see in the left-hand side of Figure 3, there are many MP-QSOs in which maximum absolute 
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values of stability indices are less than or a little larger than 2, which means they are stable or weakly unstable and 

applicable to trajectory design. We also see in the right-hand side of Figure 3 that MP-QSOs cover a very large band 

of amplitude and there are many choices for transferring between SP-QSOs. 

 

 
Figure 3. The solution curves of MP-QSO families with their stability information (left) and their 

amplitude distribution along 𝜼-axis (right). The SP-QSO family is indicated as “SP-QSO”. The color of 

each dots indicates the maximum absolute value of stability indices. There are many MP-QSOs which 

are stable or weakly unstable with large ranges of amplitude. 
 

4. Application to Orbit Transfer 
In this section, we show a transfer example between SP-QSOs via MP-QSO. Specifically, we pursue a transfer 

from the SP-QSO which has 119.7km amplitude along 𝜂-axis to the one with 48.8km amplitude using two 

impulsive 𝛥𝑉. To that end, we adopt a MP-QSO in the branch of (𝑑, 𝑛) = (1,5). In this case, we can design those 

two 𝛥𝑉 only in the figure of amplitude distribution as shown in the left-hand side of Figure 4. Because both two 

maneuver points are fixed on 𝜂-axis, we can calculate 𝛥𝑉1 and 𝛥𝑉2 as differences of Jacobi constant between the 

initial SP-QSO and the transfer MP-QSO, and the transfer MP-QSO and the terminal SP-QSO. The actual transfer 

trajectory is shown as a red curve in the right-hand side of Figure 4. The blue and green curves are the initial and 

terminal orbits respectively. The spacecraft flies along a transfer trajectory with 6.7352m/s as the total 𝛥𝑉. 

Several problems about transfer design remain. At first, if the maneuver points are fixed on one of three axes, we 

cannot set the initial and terminal orbits independently. It is because a pair of MP-QSO’s amplitude is determined by 

only one parameter, which means there is only one degree of freedom to specify a pair, while two are needed to 

choose both initial and terminal orbits. To solve this problem, it is needed to make a strategy with free departure or 

arrival points. Also, it is not clear how much the strategy with MP-QSOs relaxes the requirement of spacecrafts and 

operation than the conventional one such as application of Hill-Clohessy-Wiltshire equations [10]. It is needed to 

compare those strategies quantitatively from various points of view. 
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Figure 4. Transfer Strategy on the amplitude distribution figure (left) and the transfer trajectories with 

the initial and terminal orbits in Phobos centric synodic frame (right). As shown in the left panel, the 

𝜟𝑽𝟏 and 𝜟𝑽𝟐 can be calculated as simple differences of Jacobi constants. In the right panel, the red 

curve is the transfer trajectory and blue and green curves are the initial and terminal orbits respectively. 

The spacecraft flies along the colored arrows. 

 

5. Conclusion and Future Work 
This paper has explored the application of multirevolutional periodic quasi-satellite orbits for transfer problems 

between retrograde orbits around the secondary of three-body systems. We have confirmed there are many orbits 

which are stable or weakly unstable and applicable to trajectory design. Then we have shown an example of transfer 

design between different SP-QSOs. Under the constraints of maneuver points, we could calculate 𝛥𝑉 as difference 

of Jacobi constants between those orbits. Future work will focus on improving the transfer design by addressing the 

complexities and issues outlined in this paper. 
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