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In this study, spacecraft orbital motion around a small asteroid is considered. By taking differences of orbital elements between the
spacecraft and the asteroid as independent variables, basic equations of the relative motion are derived. The small gravitational force
exerted on the spacecraft from the asteroid is considered as a perturbation force. From the basic equations, conditions on the stable
orbital motion of the spacecraft around the asteroid are provided.

小惑星回りの逆行周回軌道の解析

西村和真（阪大・院），山田克彦（阪大）

本講演では主天体の回りを軌道運動する小惑星のまわりの宇宙機の軌道運動について考察する．宇宙機と小惑星の軌道要素の

差分を変数にとり，小惑星から宇宙機に働く微小重力を摂動力としてとらえて相対運動の方程式を導く．この方程式をもとに

宇宙機が小惑星の回りを安定的に軌道運動する逆行周回軌道の条件を考察する．
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Nomenclature

x, y, z : normalized coordinates
τ : normalized time
α : the mass ratio of the two primary bodies

ax, ay, az : normalized amplitudes
ωxy, ωz : normalized orbital angular velocities
ϕz : phase difference between x and z
T : orbital period under the effects of

the gravity force from the asteroid

1. Introduction

Nowadays, distant retrograde orbit (DRO) attracts consider-
able attention from researchers and engineers. DRO is a peri-
odic orbit in the circular restricted three-body problem that, in
the rotating frame, looks like a large quasi-elliptical retrograde
orbit around the secondary body (Fig. 1). DROs are stable over
long periods. All the eigenvalues of the monodromy matrix of
the DRO equal 1. This indicates that DRO is Lyapunov stable
and the relative distance of the spacecraft from the DRO dose
not diverge under small perturbations. Thanks to its stability,
DRO is an ideal orbit for the spacecraft to collect scientific data
and samples.

DRO has been studied in systems with large relative mass
such as the Earth-Moon system or Jupiter-Europa system for
a long time. 1) 2) In recent years, DRO has been expected for
use in asteroid exploration because DROs around a small mass
satellite, such as Phobos or Deimos, show periodic orbits and
are convenient for a observation satellite. 3)

DRO around the Martian Moon has obtained by numerical
calculation such as Newton’s method using the initial value ob-
tained from the analytical solution ignoring the gravitational

force exerted on the spacecraft from Martian Moon. For that
reason, if the size of DRO is relatively small, the numerical
calculation does not converge due to the influence of the grav-
ity term, and the closed orbit may not be obtained. Even if
a closed orbit can be computed, another problem is possibly
time-consuming computation.

In this paper, we analytically study DRO around the Martian
moon, not numerically as in the conventional approaches. Par-
ticularly, we provide the analytical relations between the ampli-
tude ratios and the orbital angular velocities, which are valid for
not only planar DROs in the xy plane but also for DROs with
vertical component (3D DROs). The outline of the proposed
analytical approximation is as follows. First, independent vari-
ables in basic equations of the relative motion are approximated
by trigonometric functions. Second, basic equations of the rela-
tive motion are transformed into a time-independent form using
a Fourier series. Since the gravitational force exerted on the
spacecraft from the Martian Moon contains plural frequency
components, this makes difficult to obtain a Fourier series for
the fundamental frequency component. To overcome the diffi-
culty and to obtain the analytical relations between the ampli-
tude ratios and the orbital angular velocities, we introduce an
approximation scheme.

By the analytical expression of this paper, it is possible to
obtain candidates of closed orbits in various conditions without
searching based on numerical calculation. Since the proposed
analytical expression is obtained by an approximation, the re-
sultant trajectory is not necessarily a closed orbit. Even in such
a case, however, a closed orbit can be easily obtained by pro-
viding the resultant trajectory to Newton’s method as an initial
solution.
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Fig. 1. Typical DROs

2. Modeling

2.1. Hill equation
An asteroid is assumed to move around a primary body based

on a two-body problem. By setting a spacecraft position around
the asteroid as r = [x, y, z]T in the LVLH coordinates with the
origin at the center of mass of the asteroid, the time evolution
of the spacecraft is governed by the following equations:

x′′ − 2y′ − 3x = − α
r3 x (1)

y′′ + 2x′ = − α
r3 y (2)

z′′ + z = − α
r3 z, (3)

where the distance is normalized by dividing by the reference
values of 1 AU, and the time is also normalized by dividing the
orbital period of the asteroid by 2π. r are given by

r =
√

x2 + y2 + z2. (4)

2.2. Approximation of solution
Consider a planar DRO in the xy plane, the trajectory is ap-

proximated as a clockwise elliptical orbit. Then x and y are
expressed as follows:

x= ax sin(ωxyτ) (5)
y= ay cos(ωxyτ), (6)

where ωxy is the normalized orbital angular velocity, and in the
case of ignoring the asteroid’s gravity, ωxy = 1. On the contrary,
consider a 3D DRO, z is expressed as follows:

z = az sin(ωzτ + ϕz). (7)

If ωxy/ωz is a rational number, s closed orbit is obtained as 3D
DRO. By substituting Eqs. (5)-(7) into Eqs. (1)-(3), the follow-
ing equations are obtained:(

−ω2
xy + 2ξωxy − 3

)
sin(ωxyτ) = − f sin(ωxyτ) (8)(

−ξω2
xy + 2ωxy

)
cos(ωxyτ) = f ξ cos(ωxyτ) (9)(

−ω2
z ϵ1 + ϵ1

)
sin(ωzτ + ϕz) = − f ϵ1 sin(ωzτ + ϕz), (10)

where ξ, ϵ1 and f are given as follows:

ξ =
ay
ax
, ϵ1 =

az

ay
,

f =
α

a3
y

(
sin2(ωxyτ)
ξ2

+ cos2(ωxyτ) + ϵ21 sin2(ωz + ϕz)
) 3

2

.(11)

2.3. New analytical relations between the amplitude ratios
and the orbital angular velocities

Here, we derive analytical relations between the amplitude
ratios ξ and ϵ1, and the orbital angular velocities ωxy and ωz by
comparing the coefficients of trigonometric functions in Eqs.
(8)-(10). Since they are also included in f , let us extract only
the fundamental frequency component by expanding f into a
Fourier series. Since, however, f contains two frequency com-
ponentsωxy andωz, this makes difficult to obtain a Fourier coef-
ficient for the fundamental frequency component. To overcome
the difficulty and to obtain the analytical relations between the
amplitude ratios and the orbital angular velocities, we introduce
an approximation scheme for f . First, we impose the following
assumptions:

• Assume ϵ21 ≪ 1 and ignore the higher order terms;
• Let ϵ2 be 1 − ωz/ωxy and assume |ϵ2| ≪ 1; and
• f ≈ f |ϵ21=0,ϵ2=0 +

∂ f
∂ϵ21

∣∣∣∣
ϵ21=0,ϵ2=0

ϵ21 +
∂ f
∂ϵ2

∣∣∣∣
ϵ21=0,ϵ2=0

ϵ2.

1. On the basis of ωxy

Substituting ωz = (1− ϵ2)ωxy with Eq. (11), f is expressed
as follows:

f≈ α

a3
yR3(ωxy)

1 − 3 sin2(ωxyτ + ϕz)
2R2(ωxy)

ϵ21

 . (12)

2. On the basis of ωz

Substitutingωxy = ωz/(1−ϵ2) with Eq. (11), f is expressed
as follows:

f≈ α

a3
yR3(ωz)

[
1 − 3 sin2(ωzτ + ϕz)

2R2(ωz)
ϵ21

+
3
(
ξ2 − 1

)
sin(ωzτ) cos(ωzτ)ωzτ

ξ2R2(ωz)
ϵ2

]
, (13)

where R(ω) =
√

sin2(ωτ)/ξ2 + cos2(ωτ). The Fourier series
of Eq. (8) and Eq. (9) are obtained using Eq. (12), and the
following equations are obtained:

ωxy

π

∫ 2π
ωxy

0
f sin2(ωxyτ)dτ

=
2αξ2

πa3
y

(
2gξ + hξϵ21 sin2(ϕz) + jξ + ϵ21 cos2(ϕz)

)
(14)

ωxy

π

∫ 2π
ωxy

0
f sin(ωxyτ) cos(ωxyτ)dτ =

2αξ2

πa3
y

hξϵ21 sin(ϕz) cos(ϕz)

(15)

ωxy

π

∫ 2π
ωxy

0
f cos2(ωxyτ)dτ

=
2αξ2

πa3
y

(
2 fξ − lξϵ21 sin2(ϕz) + hξ + ϵ21 cos2(ϕz)

)
, (16)

where fξ, gξ, hξ, jξ, lξ are functions of only ξ and are defined by

fξ =
Kξ − Eξ
ξ2 − 1

(17)

gξ =
−Kξ + ξ2Eξ
ξ2 − 1

(18)
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hξ =
ξ2[2Kξ − (ξ2 + 1)Eξ]

(ξ2 − 1)2 (19)

jξ =
ξ2

[
(ξ2 − 3)Kξ − 2ξ2(ξ2 − 2)Eξ

]
(ξ2 − 1)2 (20)

lξ =
(3ξ2 − 1)Kξ − 2(2ξ2 − 1)Eξ

(ξ2 − 1)2 . (21)

Here, Kξ, Eξ are defined by the following equations with K(k)
and E(k) as complete elliptic integrals of the first kind and the
second kind:

Kξ = K


√

1 − 1
ξ2

 , Eξ = E


√

1 − 1
ξ2


K(k) =

∫ 1

0

1
√

1 − t2
√

1 − k2t2
dt

E(k) =
∫ 1

0

√
1 − k2t2
√

1 − t2
dt.

Further, the Fourier series of Eq. (10) is obtained using Eq.
(13), and the following equations are obtained:

ωz

π

∫ 2π
ωz

0
f sin2(ωz + ϕz)dτ

=
2α
πa3
y

[
C1,1 +C1,2ϵ

2
1 +C1,3ϵ2

]
(22)

C1,1 = 2ξ2 fξ − 2(ξ2 − 1)hξ cos2(ϕz)

C1,2 = −ξ2lξ + (2mξ + nξ cos2(ϕz)) cos2(ϕz)

C1,3 =
3
2
ξ3(ξ2 − 1)

(
k31 sin2(ϕz)

+2k22 sin(ϕz) cos(ϕz) + k13 cos2(ϕz)
)

ωz

π

∫ 2π
ωz

0
f sin(ωz + ϕz) cos(ωz + ϕz)dτ

=
α

πa3
y

[
C2,1 +C2,2ϵ

2
1 +C2,3ϵ2

]
(23)

C2,1 = 2(ξ2 − 1)hξ sin(ϕz) cos(ϕz)

C2,2 = −(mξ + nξ cos2(ϕz)) sin(ϕz) cos(ϕz)

C2,3 = 3ξ3(ξ2 − 1)
(
(k31 − k13) sin(ϕz) cos(ϕz)

+k22(cos2(ϕz) − sin2(ϕz))
)
,

where mξ, nξ, k31, k22, k13 are functions of only ξ and are defined
by

mξ =
ξ2

[
(9ξ2 − 1)Kξ − (3ξ4 + 7ξ2 − 2)Eξ

]
(ξ2 − 1)2 (24)

nξ =
ξ2

[
(ξ4 − 18ξ2 + 1)Kξ − 2(ξ6 − 5ξ4 − 5ξ2 + 1)Eξ

]
(ξ2 − 1)2

(25)

k31 =

∫ 2π

0

u cos3 u sin u[
1 + (ξ2 − 1) cos2 u

] 5
2

du (26)

k22 =

∫ 2π

0

u cos2 u sin2 u[
1 + (ξ2 − 1) cos2 u

] 5
2

du (27)

k13 =

∫ 2π

0

u cos u sin3 u[
1 + (ξ2 − 1) cos2 u

] 5
2

du. (28)

When Eqs. (8)-(10) cannot be represented by a single sinusoidal
function depending on the value of ϕz. In this case, it is not
expected that a closed orbit exists. On the other hand, when ϕz

is an integral multiple of π/2, Eqs. (8)-(10) can be represented
only by sin(ωxyτ), cos(ωxyτ) and sin(ωzτ + ϕz), respectively.
Therefor, equations are expressed with these coefficients. Then
Eqs. (8)-(10) are reduced to the followings:

1. In the case of ϕz = 0,

−ω2
xy + 2ξωxy − 3 +

2αξ2

πa3
y

(2gξ + jξϵ21 ) = 0 (29)

−ξω2
xy + 2ωxy +

2αξ3

πa3
y

(2 fξ + hξϵ21 ) = 0 (30)

−ω2
z + 1 +

2αξ2

πa3
y

[
2gξ + jξϵ21 +

3
2
ξ(ξ2 − 1)k13ϵ2

]
= 0.

(31)

2. In the case of ϕz = π/2,

−ω2
xy + 2ξωxy − 3 +

2αξ2

πa3
y

(2gξ + hξϵ21 ) = 0 (32)

−ξω2
xy + 2ωxy +

2αξ3

πa3
y

(2 fξ − lξϵ21 ) = 0 (33)

−ω2
z + 1 +

2αξ2

πa3
y

[
2 fξ − lξϵ21 +

3
2
ξ(ξ2 − 1)k31ϵ2

]
= 0.

(34)

By setting ωz = (1−ϵ2)ωxy, there are five unknowns in these ex-
pressions, namely, ay, ωxy, ξ, ϵ1, and ϵ2. Therefore, if we spec-
ify two of them, for example ay and ϵ1, the remaining unknowns
can be determined. It is necessary for the resultant trajectory to
form a closed orbit that the ratio ofωxy andωz is a rational num-
ber. For example, if a trajectory revolves (N +1) times in the xy
plane, while its z-axis component has period N, the following
condition must hold:

ωxy

ωz
=

N + 1
N
. (35)

Substituting ωz = (1 − ϵ2)ωxy with Eq. (35), ϵ2 is expressed as
follows:

ϵ2 =
1

N + 1
. (36)

Actually, a closed orbit when ϕz = 0 is not obtained by numeri-
cal calculation in many cases. In the following, we examine the
nature of the solution mainly for the case of ϕz = π/2.

By the analytical expression, it is possible to obtain candi-
dates of closed orbits in various conditions without searching
based on numerical calculation. Since the proposed analytical
expression is obtained by an approximation, the resultant tra-
jectory is not necessarily a closed orbit. Even in such a case,
however, a closed orbit can be easily obtained by providing the
resultant trajectory to Newton’s method as an initial solution.
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3. Orbital Stability

3.1. Linearization around the equilibrium point
When a 3D DRO is obtained, its stability is analyzed by lin-

earizing the equations of motion around the DRO. It can be
determined from the eigenvalues of the monodromy matrix by
obtaining the solution numerically. On the other hand, in this
section, by linearizing the variables around the analytically ob-
tained equilibrium point, the eigenvalues of the analytical mon-
odromy matrix can be obtained. Thus, it is not necessary to
perform numerical calculation,and the stability under various
conditions can be easily analyzed. The equilibrium point r̃ is
given by:

r̃ =

 x̄
ȳ
z̄

 =


ay
ξ

sin(ωxyτ)
ay cos(ωxyτ)

ϵ1ay sin(ωzτ + ϕz)

 . (37)

The equation of motion for the deviation from the equilibrium
point, which is denoted by η = r − r̃, becomes as follows:

ζ′ = (A + δA)ζ, ζ =
[
η
η′

]
(38)

A =



0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
3 0 0 0 2 0
0 0 0 −2 0 0
0 0 −1 0 0 0


δA =

[ 03×3 03×3

− αr̃3

(
I3×3 − 3ˆ̃r ˆ̃rT

)
03×3

]
r̃ = |r̃|, ˆ̃r =

r̃
r̃
,

where δA is a perturbation matrix that represents the effects of
the gravitational force exerted on the spacecraft from the aster-
oid in linearization equations into account.
3.2. State transition matrix

When the gravity effects are expressed by a small linear term,
the stability of the system can be determined from the state tran-
sition matrix of the linearized equation. Because the state tran-
sition matrix is difficult to be obtained directly, it would be cal-
culated perturbatively. By regarding δA as a perturbation term,
the state transition matrix Φ including the effects is expressed
as follows:

Φ = Φ0(I6×6 + δΦ + · · · ), (39)

where Φ0 and Φ are both linear state transition matrices and
satisfy the following expressions:

d
dτ
Φ0(τ, 0) = AΦ0(τ, 0) (40)

d
dτ
Φ(τ, 0) = (A + δA(τ))Φ0(τ, 0). (41)

Also, δΦ in Eq. (39) is the first order perturbation terms. By
substituting Eq. (39) into Eq. (41) and equating the first order
terms with respect to δ of both sides, the following equation is
obtained:

d
dτ
δΦ(τ, 0) = Φ0(τ, 0)δA(τ)Φ0(0, τ). (42)

Therefor, the state transition matrix including the first order
gravity effects of the asteroid can be approximately obtained by
integrating the above equation. The state transition matrix after
one cycle under the effects of the gravity force from the aster-
oid is expressed as Φ(T, 0), while the deviation caused by the
gravity effects is expressed as δΦ(T, 0). The deviation δΦ(T, 0)
is calculated by

δΦ(T, 0) =
∫ T

0
Φ0(τ, 0)δA(τ)Φ0(0, τ)dτ. (43)

The integral in Eq. (43) can be calculated using an elliptic inte-
gral. Hence, the monodromy matrix Φ(T, 0) is obtained using
Eqs. (39), (43):

Φ(T, 0) = Φ0(T, 0)
[
I6×6 +

∫ T

0
Φ0(τ, 0)δA(τ)Φ0(0, τ)dτ

]
.

(44)

In order to calculate the integral in Eq. (44), it is necessary
to multiply Φ0(τ, 0) from left and Φ0(0, τ) from right. These
matrices are expressed as follows:

Φ0(τ, 0) = exp(Aτ) (45)
Φ0(0, τ) = Φ0(−τ, 0). (46)

3.3. Stability of closed orbits
The stability of the equilibrium point is determined by check-

ing whether Φ(T, 0) has an eigenvalue whose absolute value is
larger than 1. T denotes the period of r̃, and we consider the pe-
riod such that T = 2(N + 1)π/ωxy = 2Nπ/ωz holds. However, it
is difficult to solve Φ(T, 0) analytically because T depends on
N and is also different from the period of the asteroid. Therefor,
considering ωxy ≈ ωz ≈ 1 as in the case of ignoring the grav-
ity of the asteroid, δΦ(T, 0) is approximated by δΦ(2π, 0). The
motion of the spacecraft in the z direction can be regarded as
independent by Eqs. (1)-(3) if the gravity force is small. There-
for, we investigate the influence on the stability in the z direc-
tion due to deviation in the z direction. The (i, j)th component
of Φ(T, 0) is denoted as Φi, j. When ϕz = π/2, its components
in the z direction are obtained using Eq. (44):

Φ3,3 = 1 (47)

Φ3,6 =
4αξ2

a3
y

(gξ + hξϵ21 ) (48)

Φ6,3 =
4αξ2

a3
y

(− fξ + lξϵ21 ) (49)

Φ6,6 = 1. (50)

In order to investigate the influence of the amplitude ratio ϵ1
in the z direction on the stability of the closed orbit, we focus
on only the components in the z direction, and examine the ab-
solute values of those eigenvalues. Although all components
generally interact with each other, the z direction components
are relatively independent of the other directions. Thus we sep-
arately investigate only the z direction components. The eigen-
values can be expressed as follows:

det
(
λI2×2 −

[
Φ3,3 Φ3,6
Φ6,3 Φ6,6

])
= 0

=⇒ λ = 1 ±
√
Φ3,6Φ6,3. (51)
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From the above eigenvalues, the stability in the z direction is
concluded as

Φ3,6Φ6,3 > 0 : unstable. (52)

In the case of Φ3,6Φ6,3 > 0, the system has an eigenvalue larger
than 1, and the closed orbit is unstable. Expanding Eq. (52) and
ignoring the term of ϵ41 , the following sufficient condition for
the closed orbit to be unstable:

ϵ1 >

√
fξgξ

lξgξ − hξ fξ
. (53)

Because the right hand side of the condition in Eq. (53) depends
only on ξ, it is independent of other parameters. Furthermore,
since ξ is the amplitude ratio of the y direction to the x direction
of DRO, it takes a value in 1 < ξ < 2. Figure 2 shows the
sufficient conditionfor the closed orbit to be unstable. As shown
in Fig. 2, the value on the right side of the above equation takes
a value of about 0.55 ∼ 0.58 for the variation of ξ.

unstable

Fig. 2. Analytically derived unstable region

4. Numerical Examples

In this section, we first compare trajectory characteristics be-
tween the numerical solution and the analytical one obtained
from Eqs. (32)-(34). Next, we compare the stability region ob-
tained by the instability condition (53), and that computed from
the numerical solutions.

4.1. Analytical solutions
When ϕz = π/2, the analytical results of ϵ2, ωxy and ξ with

respect to the values of ay and ϵ1 are shown in Fig. 3 using Eqs.
(32)-(34). We set the parameters α and ap to those of Mars and
Deimos, namely,

α = 2.8 × 10−9, ap = 23458 [km].

where ap denotes the normalized revolution radius of Deimos
by the relative distance. Since ϵ2 is always positive, it is implied
that ωz is smaller than ωxy. Therefore, when the number of
turns in the z direction is smaller than the number of turns in
the xy plane, there can be a closed orbit. Although ϵ2, ωxy and
ξ change depending on ϵ1, the variations are small when ϵ1 is
between 0 and 0.6. As ay becomes smaller, the value of ωxy

becomes larger.

4.2. Comparisons of numerical and analytical solutions
The proposed analytical solution with Newton’s method en-

ables us to easily obtain a closed orbit. We obtain a numerical
solution for each combination of N = 4, 11, ϵ1 = 0.1, 0.3 and
ϕz = π/2. The results obtained are shown in Fig. 4, where the
relative distance is indicated by the actual distance. The com-
parisons of the numerical and analytical solutions of ϵ2, ωxy, ξ

are shown in Figs. 5 and 6. These figures show that the pro-
posed analytical solutions have good consistency with numeri-
cal solutions. Therefore, it can be concluded that the proposed
analytical equations (32)-(34) properly represent the closed or-
bit behavior.
4.3. Orbital Stability

In this subsection, the stability of the closed orbit is investi-
gated. The stability of the numerical solution can be examined
from the eigenvalues of the monodromy matrix numerically ob-
tained as described above. We compare this with the analyti-
cally derived instability condition in Eq. (53). The results are
shown in Fig. 7. In this figure, the instability condition is indi-
cated by a blue line, and the region above this blue line exhibits
the analytical result of the unstable region. The result of numer-
ical solution is indicated by a circle, and the green indicates that
the absolute value of the eigenvalue of the monodromy matrixis
is 1.5 or less, which is not clearly unstable. On the one hand, the
red indicates that it is greater than 1.5, which is clearly unstable.
Some discrepancies are observed, where the analytical condi-
tion implies instability, though numerical solution shows that it
is stable, and vice versa. Possible reasons for those discrepan-
cies are that the analytical solution considers only the stability
in the z direction, and that derivation of the present analytical
solution requires several approximations. A more exact stabil-
ity condition considering the influence of the xy plane motion
will be a future work.

5. Conclusions

In this paper, the periodic orbits of the spacecraft around the
asteroid has been considered. In particular, we have studied
the trajectory characteristics and stability of 3D-DRO around
Deimos.

Basic equations of the relative motion are transformed into a
time-independent form by using a Fourier series. Then, to ob-
tain the analytical relations between the amplitude ratios and the
orbital angular velocities, we have introduced an approximation
scheme. It can be concluded that the analytical equations prop-
erly represent the closed orbit behavior.

A periodic orbit to be analyzed is linearized around the equi-
librium point, and the stability of the system is concluded by
the eigenvalues of the state transition matrix. We have newly
provided a sufficient condition for a closed orbit to be unstable.

Using the analytical expression of this paper, it is possible to
obtain candidates of closed orbits in various conditions without
searching based on numerical calculation.
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Fig. 4. The resultant closed orbit for each combination of N = 4, 11,
and ϵ1 = 0.1, 0.3. (ϕz = π/2)
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Fig. 5. Comparisons between numerical and analytical solutions of
ϵ2, ωxy and ξ (ϵ1 = 0.1, ϕz = π/2)
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Fig. 6. Comparisons between numerical and analytical solutions of
ϵ2, ωxy and ξ (ϵ1 = 0.3, ϕz = π/2)
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Fig. 7. Comparison of numerical stability results and the analytical instability condition
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