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Abstract 

This paper investigates the effects of inclination excitations on quasi-satellite orbits in the Sun-Jupiter circular 

restricted three-body problem. Computations of invariant manifolds associated with vertical instability of planar 

periodic orbits enable quantifications of inclination excitations. We find that planar quasi-satellite orbits exhibit long-

term stable, highly eccentric, periodic transitions between in-plane and out-of-plane states of inclination in tens of 

degrees. Analyses of phase-space structures reveal that stable, three-dimensional bifurcated families of periodic quasi-

satellite orbits host long-term stable inclination oscillations. We point out that populations of undetected potentially 

hazardous asteroids of high eccentricity and inclination may reside in Jupiter's vertically unstable quasi-satellite orbits, 

which can intersect the orbits of the terrestrial planets, including the Earth by reducing their inclinations down to near 

zero via vertical instability. The existence of an asteroid 2004 AE9 exhibiting a substantial inclination oscillation 

through a nearly coplanar state and a close approach to Mars during its Jupiter's quasi-satellite motion may support our 

conjecture.  

 

軌道傾斜角の変化における平面不安定周期軌道の役割 

 

大島 健太 (国立天文台) 

 

摘要 

本論文では，quasi-satellite orbit の軌道傾斜角の励起現象を太陽-木星系の円制限三体問題におい

て探求した．軌道傾斜角の励起を定量的に調べるため，平面周期軌道の軌道面外方向の不安定性に付随す

る不変多様体を計算した．その結果，平面 quasi-satellite orbit に付随する不変多様体は，長期安定か

つ大きな離心率の状態で数十度の振幅をもつ軌道傾斜角の周期的な振動を示すことがわかった．相空間構

造を調べることで，軌道傾斜角の振動の長期安定性は，三次元の安定な周期 quasi-satellite orbitによ

って引き起こされることを示した．木星の高い離心率の quasi-satellite orbit に捕捉されており，軌道

傾斜角が小さい時期に発見された小惑星 2004 AE9は，火星への接近や数十度からほぼゼロ度までの軌道傾

斜角の振動を示すことに基づき，太陽-木星系の軌道面外方向の不安定性を持つ quasi-satellite orbit

の高い軌道傾斜角の位置に，未発見の潜在的に危険な小惑星が存在する可能性を示唆した． 
 

1. Introduction 

Three types of co-orbital orbits are typical stable 

residences for large populations of asteroids revolving 

around the Sun for similar periods as planets. A tadpole 

orbit stays around one of the triangular Lagrange points 

L4 and L5, whereas a horseshoe orbit encompasses L3, L4 

and L5 [1]. A quasi-satellite orbit stays near a planet like 

a retrograde satellite [2]. From the perspective of 

Spaceguard, low-inclination objects have a greater 

likelihood of impacting the Earth [3], and it was 

estimated that the large part of potentially hazardous 

asteroids has not been found [4]. The incompleteness of 

detecting high-eccentricity and high-inclination objects 

[5] indicates that highly eccentric, highly inclined, stable 

orbits which will reduce their inclinations in the future 

could be candidates for hosting populations of undetected 

dangerous objects. Taking into account the strong ability 

of capturing objects of co-orbital orbits resulting from 

their stable nature, it could be interesting to explore 

inclination excitations or reductions of co-orbital orbits 

to prefigure possible orbits of hazardous asteroids. 

Vertical instability of planar periodic orbits may 

induce inclination excitations, where a small out-of-plane  

 

deviation asymptotically grows. In the circular restricted 

three-body problem, Refs. [6, 7] showed that various 

planar periodic orbits have linear instabilities not only in 

in-plane directions but also in out-of-plane directions. 

We remark that Ref. [6] demonstrated one example of the 

significance of vertical instability in driving out 

vertically perturbed states from the vicinity of the 

original planar periodic orbit by propagating in the full 

nonlinear equations of motion in the case of equal masses 

of primaries. After the work of Refs. [6, 7], many studies 

have identified bifurcations from planar to three-

dimensional families and vertical critical orbits, from 

which vertical instability emerges [8, 9]. Strongly related 

to the present paper, Ref. [10] found a vertical critical 

orbit and a three-dimensional family of a periodic quasi-

satellite orbit in the circular restricted three-body 

problem, and Ref. [11] identified them not only in the 

circular model but also in the elliptic and general three-

body problems.  

However, only a few studies have addressed the fates 

or roles of vertical deviations excited by vertical 

instability. Ref. [12] showed that the vertical instability 

of a planar 3:1 resonant periodic orbit is weak and has 
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little impact on the Interstellar Boundary EXplorer 

mission by propagating vertically perturbed states in the 

circular restricted three-body problem. Ref. [13] pointed 

out resonant gravity assists can increase inclinations of 

planar initial states to substantial levels based on the 

inspection of a three-dimensional Tisserand graph. 

Remarkably, recent studies for formations of planetary 

systems have shown that the vertical instability of planar 

resonant periodic orbits and bifurcated stable three-

dimensional families can drive coplanar configurations to 

mutually inclined stable configurations in the general 

three-body problem Refs. [14, 15, 16]. 

This paper explores the effects of inclination 

excitations on quasi-satellite orbits in the Sun-Jupiter 

circular restricted three-body problem, which is a suitable 

model to focus on the fundamental dynamics of vertical 

instability. We investigate the vertical instability of 

planar quasi-satellite orbits and compute associated 

invariant manifolds of several values of the Jacobi 

constant to assess the fates of vertically perturbed states. 

As a result, inclination excitations occur and invariant 

manifolds associated with the vertical instability exhibit 

long-term stable, highly eccentric, periodic inclination 

oscillations between near zero and tens of degrees. 

Analyses of bifurcation and phase-space structures reveal 

that stable, three-dimensional bifurcated families host the 

stable inclination oscillations by trapping the invariant 

manifolds of the planar family around them, which 

appears similar to the mechanism of formations of the 

mutually inclined, resonant planetary systems mentioned 

above. The values of eccentricity of vertically unstable 

planar quasi-satellite orbits are so large that many of the 

orbits cross the orbits of the terrestrial planets, including 

the Earth. The ability of the inclination oscillations to 

capture objects due to their stable nature as well as the 

incompleteness in detecting high-eccentricity and high-

inclination objects [5] indicate that Jupiter's vertically 

unstable quasi-satellite orbits may host undetected 

potentially hazardous asteroids at high-inclination 

locations. The existence of a Jupiter's high-eccentricity 

quasi-satellite 2004 AE9 exhibiting a substantial 

oscillation of inclination through a nearly coplanar state 

and a close approach to Mars [17, 18] may support the 

conjecture.  

The remainder of this paper is organized as follows. 

Section 2 introduces the background of this study. 

Section 3 presents the results of investigating inclination 

excitations of planar quasi-satellite orbits. Section 4 

discusses a conjecture from the results as well as 

limitations and possible future prospects of this paper. 

Section 5 summarizes concluding remarks. 

 

2. Backgrounds 

This section introduces a mathematical model, the 

linear stability of a periodic orbit, and a computational 

method of invariant manifolds associated with the linear 

instability of a periodic orbit. 

 

2.1 Circular restricted three-body problem 

The circular restricted three-body problem is 

concerned with the motion of a massless particle, P3, 

under the gravitational attractions of two massive bodies, 

P1 and P2, of masses m1 and m2 (m1 > m2), respectively. 

This model assumes that P1 and P2 revolve in circular 

orbits around their barycentre. The normalized equations 

of motion for P3 in the P1-P2 rotating frame are (see Ref. 

[19] for details) 

𝑥̈ − 2𝑦̇ = − ∂𝑈/𝜕𝑥 , 𝑦̈ + 2𝑥̇ = − ∂𝑈/𝜕𝑦, 𝑧̈ = − ∂𝑈̅/𝜕𝑧, 

where  

𝑈 = −
1

2
(𝑥2 + 𝑦2) −

1−𝜇

√(𝑥+𝜇)2+𝑦2+𝑧2
−

𝜇

√(𝑥−1+𝜇)2+𝑦2+𝑧2
, 

and 𝜇 = 𝑚2/(𝑚1 + 𝑚2) is called the mass parameter.  

   This model is an autonomous system and possesses an 

integral of motion called the Jacobi constant: 

C = −(𝑥̇2 + 𝑦̇2 + 𝑧̇2) − 2𝑈. 

 

2.2 Linear stability of periodic orbits 

The time evolution of a state transition matrix (STM) 

Φ in a dynamical system of the form 𝒙̇ = 𝒇(𝒙) is  

Φ̇(𝒙, 𝑡𝑖 , 𝑡) = Dxf Φ(𝒙, 𝑡𝑖, 𝑡), Φ(𝒙, 𝑡𝑖, 𝑡𝑖) = 𝐈, 

where the subscripts 𝑖  and 𝑓  represent initial and final 

values, respectively, Dxf  is a Jacobian matrix of the 

system, and 𝐈 is an identity matrix. 

   Eigenvalues 𝑫 of a monodromy matrix (STM over one 

full period of a periodic orbit) determine the linear 

stability of a periodic orbit, which come out in reciprocal 

pairs in Hamiltonian systems, such as the circular 

restricted three-body problem. This property results in 

the linear stability condition that a periodic orbit is 

linearly stable if and only if magnitudes of all 

eigenvalues are unity [9]. Linear instability arises from 

the condition |𝐷| > 1, and a reciprocal pair (1/D, D) and 

associated eigenvectors indicate stable and unstable 

modes, respectively. Horizontal and vertical instabilities 

emerge if eigenvectors associated with stable and 

unstable eigenvalues of (1/D, D) with |𝐷| > 1 have in-

plane and out-of-plane components, respectively. A 

robust numerical continuation scheme, such as the 

pseudo-arclength continuation [20, 8] adopted in this 

study is able to track the linear stability of a family of 

periodic orbits to its full range of existence. 

 

2.3 Computation of invariant manifolds 

We follow Ref. [21] to summarize a method of 

computing invariant manifolds associated with linear 

instability of a periodic orbit. Let one point on a periodic 

orbit be 𝒙𝟎  at the initial time 𝑡 = 0 and the associated 

stable and unstable eigenvectors at that point be 𝒀𝑠(𝒙𝟎) 

and 𝒀𝑢(𝒙𝟎), respectively. Applications of an STM to the 

eigenvectors yield those for arbitrary points 𝒙(𝑡) on the 

periodic orbit: 
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𝒀𝑠(𝒙(𝑡)) = Φ(𝑡, 0)𝒀𝑠(𝒙𝟎), 𝒀𝑢(𝒙(𝑡)) = Φ(𝑡, 0)𝒀𝑢(𝒙𝟎) . 

   Giving a small perturbation of ±ε (ε = 10−4  in this 

study) to the stable and unstable eigenvectors yields 

states of stable manifolds and unstable manifolds, 

respectively: 

𝒙𝑠±(𝒙(𝑡)) = 𝒙(𝑡) ± ε𝒀𝑠(𝒙(𝑡)), 

𝒙𝑢±(𝒙(𝑡)) = 𝒙(𝑡) ± ε𝒀𝑢(𝒙(𝑡)). 

   One can globalize stable and unstable manifolds by 

numerically propagating 𝒙𝑠±(𝒙(𝑡))  backward in time 

and 𝒙𝑢±(𝒙(𝑡)) forward in time, respectively, for various 

𝒙(𝑡)  along the periodic orbit. In this paper, we only 

propagate unstable manifolds due to the time reversal 

symmetries of the model [21].  

 

3. Results 

This section presents the fates of vertically perturbed 

states excited by vertical instability associated with 

planar periodic quasi-satellite orbits. 

Fig. 1 shows reciprocal pairs of vertically stable (blue, 

|D|<1) and unstable (red, |D|>1) eigenvalues of 

monodromy matrices in terms of the Jacobi constant of 

the family of planar periodic quasi-satellite orbits. The 

strength of vertical instability is weak (|D| is near unity) 

but exists over the wide range of the Jacobi constant. 

 

 

 

 

 

 

 

 

Fig. 1. Reciprocal pairs of vertically stable (blue, |D|<1) 

and unstable (red, |D|>1) eigenvalues of monodromy 

matrices in terms of the Jacobi constant C of the family 

of planar periodic quasi-satellite orbits. 

 

We select 5 samples of vertically unstable, planar 

periodic quasi-satellite orbits (see Fig. 2) for subsequent 

computations of unstable manifolds associated with 

vertical instability. Note that we avoid choosing orbits 

too close to the Sun, but the selected orbits cross the 

orbits of the terrestrial planets, including the Earth. They 

also reach the vicinity of the Saturn's orbit. 

We then compute 10 unstable manifolds associated 

with the vertically unstable eigenvalues for each of the 5 

sample planar periodic quasi-satellite orbits, in total 100 

unstable manifolds, by taking the signs of perturbation 

±ε  into account. We finish propagation if one of the 

following conditions is satisfied; propagation time 

exceeds 0.5 Myr; a trajectory collides with the surface of 

Sun or Jupiter; or a trajectory reaches |x|=2.5.      

Fig. 3 shows the time evolutions of (a) the semi-major 

axis, (b) the eccentricity and (c) the inclination at 

perihelions of the unstable manifolds. The colour denotes 

the values of the Jacobi constant. The trajectories exhibit 

long-term stable collective behaviours of 𝑎 ≈ 1, highly 

eccentric, substantial inclination oscillations. The values 

of the inclination reach tens of degrees, whereas they 

spend relatively long durations at nearly coplanar states. 

We find that the vertically stable manifolds calculated 

based on the time reversal symmetries always exist in the 

vicinities of the propagated vertically unstable manifolds 

in the phase space, which can explain the asymptotic 

behaviours of the unstable manifolds, not only from but 

also to the planar periodic quasi-satellite orbits in a near-

homoclinic manner. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. 5 samples of vertically unstable planar periodic 

quasi-satellite orbits in the Sun-Jupiter rotating frame 

(SJrf). The colour denotes values of the Jacobi constant.  

 

    

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Time evolutions of (a) the semi-major axis, (b) the 

eccentricity and (c) the inclination at perihelions of 

unstable manifolds emanating from the planar periodic 

quasi-satellite orbits shown in Fig. 2. The colour denotes 

values of the Jacobi constant. 
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Fig. 4 shows northern (blue) and southern (red) 

families of stable, three-dimensional, periodic quasi-

satellite orbits bifurcate from the planar family at 𝐶 ≈
2.43, where vertical instability of the planar family arises 

(see Fig. 1). Fig. 5 shows time evolutions over one period 

of (a) the semi-major axis, (b) the eccentricity and (c) the 

inclination of the northern family of stable three-

dimensional periodic quasi-satellite orbits having the 

same values of the Jacobi constant as the unstable 

manifolds in Fig. 3. A comparison between this figure 

and Fig. 5 indicates two significances of investigating 

behaviours of invariant manifolds associated with 

vertical instability of planar periodic quasi-satellite orbits. 

First, the almost-constant values of inclination in Fig. 

5(c) cannot predict the large inclination oscillations 

through the nearly coplanar states in Fig. 3 (c). The large 

inclination oscillations, which were not found from the 

information of the three-dimensional periodic quasi-

satellite orbits in Refs. [10, 11], are crucial for reaching 

our conjecture, as will be discussed in Section 4. Second, 

the amplitudes of the inclination oscillations in Fig. 3(c) 

are larger than the inclinations of the three-dimensional 

periodic quasi-satellite orbits in Fig. 5(c), and non-

negligible differences are observed, especially for small 

values of the Jacobi constant. 

 

 

 

 

 

 

 

 

 

 

 

Fig. 4. Northern (blue) and southern (red) families of 

stable, three-dimensional, periodic quasi-satellite orbits 

in the Sun-Jupiter rotating frame. 

 

Fig. 6 shows a typical example of an unstable 

manifold (grey) associated with the vertical instability of 

a planar periodic quasi-satellite orbit of C=2.2 

propagated from a coplanar state to its most inclined state. 

The northern family of a stable, three-dimensional, 

periodic quasi-satellite orbit of the same Jacobi constant 

is superimposed (blue). Fig. 6 indicates that the stable, 

three-dimensional, periodic quasi-satellite orbit drives 

the inclination oscillation by trapping the unstable 

manifold around it. 

In order to confirm this inference, we plot all of the 

perihelion states of the computed unstable manifolds 

superimposed on those of the northern and southern 

families of the stable, three-dimensional, periodic quasi-

satellite orbits in Fig. 7. The figure shows that all of the 

unstable manifolds emanating from the planar periodic 

quasi-satellite orbits are trapped around the stable, three-

dimensional, periodic quasi-satellite orbits not only (a) in 

the position space but also (b) in the velocity space. 

Though the unstable manifolds are trapped around the 

stable, three-dimensional, periodic quasi-satellite orbits, 

some of them change signs of z when passing through the 

planar vertically unstable periodic quasi-satellite orbits 

due to chaotic dynamics in the vicinity of unstable 

periodic orbits. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Time evolutions of (a) the semi-major axis, (b) the 

eccentricity and (c) the inclination of the northern family 

of stable, three-dimensional, periodic quasi-satellite 

orbits over one period. The colour denotes the values of 

the Jacobi constant C=1.8, 2.0, 2.2, 2.3 and 2.4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 6. A typical example of an unstable manifold (grey) 

associated with vertical instability of a planar periodic 

quasi-satellite orbit of C=2.2 propagated from a coplanar 

state to its most inclined state. The duration is divided 

into (a) 0-40102 (year), (b) 40102-46849 (year) and (c) 

46849-55796 (year). The northern family of a stable, 

three-dimensional, periodic quasi-satellite orbit of the 

same Jacobi constant is superimposed (blue). 
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Fig. 7. All of the perihelion states of the computed 

unstable manifolds in Fig. 3 superimposed onto those of 

the northern and southern families of the stable, three-

dimensional, periodic quasi-satellite orbits (the large 

dots) projected onto the (a) x-y-z and (b) vx-vy-vz spaces. 

The colour denotes values of the Jacobi constant. 

 

4. Discussions  

The evolutions of eccentricity and inclination in Fig.3 

indicate that vertical instability of quasi-satellite orbits 

can host high-eccentricity and high-inclination objects, 

which will reduce their inclinations down to near zero 

and cross the orbits of the terrestrial planets. Indeed, a 

Jupiter's high-eccentricity quasi-satellite 2004 AE9, 

which was found at its low-inclination state, exhibits an 

inclination oscillation between near zero and tens of 

degrees (see fig. 5 in Ref. [17]). Moreover, this asteroid 

experiences close encounters with Mars [18]. Therefore, 

the existence of 2004 AE9, the ability to capture objects 

due to the stable nature of the inclination oscillations, the 

incompleteness of detecting high-eccentricity and high-

inclination objects, and the greater likelihood of low-

inclination objects impacting the Earth (as mentioned in 

Section 1) suggest that extensive observation of high-

inclination locations of vertically unstable quasi-satellite 

orbits may be helpful in detecting populations of 

potentially hazardous asteroids in advance before they 

reduce inclination. 

   The long-term stable inclination oscillations associated 

with quasi-satellite orbits obtained in the simplified 

model in this study may appear to be contradictory to the 

shorter lifetime of 2004 AE9, of only tens of thousands 

years, on its quasi-satellite motion. We do not expect 

long lifetimes of such objects in the real world 

experiencing close approaches to planets at low-

inclination states [18], but the stable nature of the 

inclination oscillations in the simplified model implies an 

ability to capture objects even in the real world. Certainly, 

2004 AE9 was trapped in the quasi-satellite motion 

exhibiting inclination oscillations from a chaotic orbit 

(see fig. 5 in Ref. [17]). The stable nature is significant in 

our conjecture, not because of the longevity after 

experiencing low-inclination states, but because of the 

ability to capture objects in the inclination oscillations at 

high inclinations before reducing their inclinations.   

   This paper focuses on the fundamental dynamics of 

vertical instability and inclination excitations of co-

orbital orbits in the circular restricted three-body problem, 

but limitations exist due to the simplified assumptions of 

the model and additions of various perturbations, such as 

the eccentricity of Jupiter, and the gravitational effects of 

other planets could be promising directions. In such non-

autonomous systems, computations of invariant 

manifolds associated with resonant periodic orbits [11] 

and quasi-periodic invariant tori [22] would be natural 

extensions of the present work. 

 

5. Conclusions  

This paper explored the effects of vertical instability 

on inclination excitations of quasi-satellite orbits in the 

Sun-Jupiter circular restricted three-body problem. 

Computations of invariant manifolds associated with 

vertical instability of the planar periodic orbits enabled 

quantitative analyses of inclination excitations. Quasi-

satellite orbits exhibited long-term stable, highly 

eccentric, substantial inclination oscillations between 

near zero and tens of degrees without escaping from 

quasi-satellite states. We pointed out the possibility that 

populations of undetected potentially hazardous asteroids 

exist at high-inclination locations of Jupiter's vertically 

unstable quasi-satellite orbits. Analyses of bifurcation 

and phase-space structures revealed that stable, three-

dimensional families of periodic quasi-satellite orbits 

host inclination oscillations in a stable manner.  
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