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Abstract

In recent years, a large space membrane structure attracts attention and various storage methods have
been studied. The difference in circumferential length that occurs when rolling-up and storing a folded
membrane structure has been improved by contrivance of folding such as forming a crease of a curved
line, but it is difficult to manufacture on a large membrane used in space is there. Therefore, there has
been proposed a rolling-up method in which the membrane on which the crease of the straight line is
formed is slacked at regular intervals, and the difference in circumferential length is locally reduced to
zero. Until now, experiments have succeeded in rolling-up with suppressed formation of new fold lines
and demonstrated effectiveness. However, because the tension during rolling-up was not controlled, the
thickness of rolling-up was uneven. In addition, a dynamic model considering stiffness of membrane and
tension has not yet been constructed. In this research, we aim to derive a dynamic model and clarify
deformation characteristics by the above method.
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1. Introduction of film when rolling up a cylindrical shape here, there is a
1.1 Background problem that circumferential difference occurs inside and

In recent years, a large membrane structure having a outside the folded membrane. However, in IKAROS,
thickness of several micro and a shape of several to inner and outer circumference differences did not matter.

several tens of meter attracts attention, and various
storage methods have been studied®™®. As an example,
there is the IKAROS® solar power sail demonstration
spacecraft launched by JAXA in 2010. In IKAROS, a
huge membrane with a thickness of 7.5 um and a size of
14 x 14 m was folded and wrapped around the side of the
cylindrical body by Z-folding. Considering the thickness
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Fig. 1.1.

IKAROS and how to fold of IKAROS by
Z-folding.

Currently JAXA is considering the plan of
"OKEANOS™" next-generation solar power sail
spacecraft in the 2020s. Compared to IKAROS, this
probe has a larger membrane size, the number of
Z-folded and the number of devices to be mounted are
very large, so it is impossible to ignore the difference in
inner and outer circumferences when rolling-up the
membrane. As a result, the position of the polygonal line
is stored in a state deviated. In order to solve this
problem, by managing the phase by predicting the inner
and outer circumference differences arising from the
membrane and the thickness of device, and further by the
mechanism that does not propagate the wave shape
generated by the inner and outer circumference
difference to the leading end side, a method of
eliminating the circumferential difference has been
proposed (Fig.2).

1.2 PREVOIUS RESEARCH

Up to now, the rolling-up experiment®® under
conditions close to the actual machine was performed,
and it was confirmed that reproducible rolling-up with
suppressed generation of new fold lines is possible. On
the other hand, it is not possible to predict the rolling-up
thickness beforehand because i in figure 1.2 does not
become constant interval due to the rolling-up phase, and
as a result of creating Wave shape, its slack causes
unevenness in circumferential thickness The problem
was pointed out. Also, studies on this rolling-up method
have been limited to simple geometric models so far, and
a model considering the rigidity of the membrane and
the tension at the time of rolling-up has not yet been
constructed. Furthermore, actual size rolling-up test
requires a lot of manpower from film production to
rolling-up test, modeling in wave shape rolling-up to
know the thickness of rolling-up beforehand from the
viewpoint of the spacecraft design is urgent.
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Fig. 1.2. Method of roll-up by wave shape.

In this research, we aim to deepen the understanding
of the mechanical properties at the time of rolling-up of
Z-folded membrane structure. Specifically, the following
two points are summarized.
® Model the membrane structure when it is wrapped
in Wave shape and verify the validity of the
analysis model by comparing it with the
experiment.

® Confirm the possibility of realization of Wave
shape rolling-up after managing the tension which
has not been considered in the conventional model.

2. Modeling in rolling-up process of multilayer folded
membrane structure
2.1 Brazier effect

Figure 2.1 shows the innermost layer and the
outermost layer of the Z-folded membrane structure
wound by wave shape. In this study, we apply a previous
study of Brazier®and model it at the time of winding a
cross section of a Z-folded membrane structure, and
when the wave shape repeats at a constant angle of
rolling-up vy at the radius of center hub r is analyzed.
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Fig. 2.1. Rolling-up model.

As shown in figures 2.2 and 2.3, the cross section is
flattened as the curvature increases when the thin
circular tube is bent. As the cross section becomes
flattened and becomes an ellipse, the second moment of
area decreases and the flexural rigidity decreases. This
effect is called the Brazier effect, and Brazier derived the
relational expression of bending moment and curvature

to the above phenomenon
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Flg. 2.2. Tube used for Brazier effect.
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Fig. 2.3. Cross-section of tube used for Brazier effect.

As a preliminary step due to deformation of the
circular tube, as shown in figure 2.1, the tendency due to
bending of the two elastically connected beams was
investigated. It is assumed that the beam before
deformation is linear and stress is not applied to the
whole. When a uniform bending moment is applied, one
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beam is tensioned and the other beam is compressed.
Since the beam deforms according to Hooke's law, we
assume that the plane part of the beam is perpendicular
to the bent axis. At this time, since it is performed
symmetrically for stable and uniform bending, the
deformed shape has a uniform curvature with respect to
the beam. Thus, the two beams are curved members in
tension and compression, respectively, and the spring is
in a compressed state. As these springs become infinitely
stiff, their lengths do not change, there is no change in
the cross-sectional dimensions of the beams, which is a
classical equation for the bending of the elastic beam as
shown in equation (2.1). On the other hand, if these
springs are relatively soft, the distance between the
beams decreases, increasing the curvature for the beam
for a given bending moment. At this time, the entire
buckling of the beam is caused by the bending, but the
local buckling that partially buckles does not occur. The
spring occupying the unit length of the original shape of
the beam has a spring constant k;, and these are
assumed to be uniformly distributed along the length of
the beam.

Below the beam receives deformation by bending and
compression, so we derive the strain energy of each term
from the following. Here, the bending moment M,, the
distance Hj, between the beams, the strain {;, of the
spring due to bending, the cross-sectional area of the
beam before deformation has A, and the Young's
modulus is Ej.
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Fig. 2.4. Two beam used for Brazier effect.

Using the flexural rigidity E,I,, and the curvature Cp,
the equation by the net bending of the beam can be
expressed by the following equation.

My, = C Epl, (2.1)

Here, I, is the geometrical moment of inertia about
the center of gravity axis.

1
I, = ZAng(l —{p)? (2.2)

The distortion energy U”p..q due to the bending of
the beam per unit length can be expressed as follows.

uP =1MC =1c2E1(()
bend 2 b%“b bebb

(2.3)
1 2 2 2
= ngEbAbe (1 - {b)

The distortion energy chomp due to compression of
the spring per unit length can be expressed as follows.

1
chomp = Ekb{l?Hg (2-4)

Since the total potential energy U” can be
represented by the sum of the respective strain energies

minus the work by external force (W = 0)
Ub = Ubbend + chomp -w

1., 2 2
= 8 CoEpApHp(1 = {p) (2.5)

1
+ Ekbngg

Here, the displacement in rolling-up is the curvature
C, by bending and the strain ¢, of the spring.
Therefore, according to the principle of minimum
potential energy, the following two equations hold in
order to minimize U? at a position where the gradient
of the function UP of total strain energy becomes 0, that
is, when the partial differential regarding a certain
parameter becomes O .

au’ 1

3, = _ZCgEbAb(l — ) + kg, =0 (2.6)

an 1 2 2 2 2

ac, 2 CoEpApHy (1= 8p)" + kploHy (5 7

=0
From equation (3.6), {; can be expressed as follows.
X 1245
LA 7 28)
b — - .
1+ c2 1 2ApEp

As shown figure 2.1, in this theory, it is assumed that
the occurring wave shape is a repeating structure as
shown in the figure, and one element is analyzed as
shown in figure 2.5. One element is the belly part of the
cross section, that is, the layer thickness is from the
thickest position to the next thickest position. Here, X is
the object coordinate of the membrane element, v is the
angle of rolling-up of the membrane element, that is, the
angle at which wave shape occurs, and H,, is the layer
thickness when wave shape is rolling up.

The spring constant k in this study is modeled as the
crease rigidity of the Z-folded membrane structure.

Also, as described above, the spring constants of the
two elastically connected beams are all equal, and since
the entire beam is bent, the two beams have the same
shape. Therefore, in order to model the distortion ¢ of
the spring due to bending in this research, it is necessary
to change the location of the spring and change it
according to the position of the center hub. Therefore, in
order to give periodicity to the placement position of the
spring, we introduce a function such as equation (2.9)
where { = 0 for x = 0, ryp and ¢ x = ry/2,
maximizing modeling in this study.

¢ (mx
¢= T+czoh (@)
C2AE
~ 4k + C2AE
X,C?
X, +x,c2°

sin? <7:—x> (2.9)

inzéx
Y

where X, = 4k ,X, = AE , X, =§.
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Fig. 2.5. A figure focusing on one element of Fig. 2.1.

We derive the strain energy according to each
deformation mode as in the formulation in the previous
section.

L
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The strain energy due to spring compression can be
expressed as follows.

L ~(H 1
Ucompress = f f 2 k{Hdzdx
0 Y0

L1
:f —k{?H?%dx
0 2
Lq ( X,C? X; \
= | -kH? —sinz—x) dx
j;) 2 X, +X,C? Y

1 3, 1
=~ kH?X} 8—¢3L =~ kH?X{Xerip

(2.11)

X,C?
Xy

_ 3%

Where X4=X1+X2C2,X5= ’X6_81/}'

Here, work W due to external force is thought to be
caused by the tension loaded on the membrane element
as shown in figure 2.6, so it can be expressed by the
following equation(2.12).

W = Tsiny (r — rcosyy) + Tcosy(rsiny
L)
=rTsiny — ripTcosy (2.12)

= g(sinlp — Ycosy)

Fig. 2.7. Work by external force.

Therefore, the total potential energy can be expressed
as follows.
U = Upena + Ucomp -w

=%C2X2H2r1/) (1
8 2

—§X6X5 +X6X5> (2.13)
1, 22

+§kH XX

—g(sinlp — Pcosy)

Equations (2.14) and (2.15) are obtained from the
principle of minimum potential energy as in the previous
section.

0U  0Upeng  OUcomp OW

ac - ac o ac 0
+ X X2(1 + 2X9)] (2.14)
8X.X,Xgk T
+X—4+E(sm¢
—YcosyP) =0
0U _ Upena , Weomp _ W _
g ¢ A
X, 1. o (2.15)
®$_ZkH XeX5C T+El/JSll‘11[)=0
— 2y py2 = 2%C X%
where X7—8C XoH Ty, Xg = X ,Xg—Xs.

These two equations are the governing equations in
the rolling-up. By simultaneous establishment of these
two equations, two unknownsy, H, three unknowns, are
determined. On the other hand, the spring constant k is
obtained by a experiment.

3. Results of analysis

Table 2.1 shows the parameters for performing the
analysis in this section. This is actually a material
parameter similar to that used in the solar power sail
OKEANOS.
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Table 2.1 Parameter.

Fixed parameters
Young’s modulus E [GPa] 4.1 GPa
Thickness t [m] 10e-6 m
Width of folding d [m] 30e-3m
Radius of center hub r 150
[mm]

3.1 Relation between tension T and height of wave
shape H

First, in order to confirm the tendency of the analysis
result, we analyzed the tension in a wide range of orders.
Figure 3.1-3.3 shows the tension T- height of wave shape
H graph when the radius is fixed, in which the spring
constant k is changed in order. As an example, the result
when the spring constant is k = 10 N / m is shown. As a
result, as the overall tendency, the height of wave shape
is smaller with increasing tension, which shows that it
agrees with the physical tendency. On the other hand,
there was no significant change depending on the spring
constant.

Spring constant & = 10 N/m , Center hub of radius » = 150 mm
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Fig. 3.1. T-H graph atk =10 N/m.

Spring constant & = 100 N/m , Center hub of radius » = 150 mm
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Fig. 3.2. T-H graph at k = 100N/m.
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Fig. 3.3. T-H graph at k = 1000N/m.

3.2 Relationship between tension T and winding angle
Y

In order to confirm the trend similarly to the previous
section, we analyzed the tension in a wide range of
orders. Figure 3.4-3.6 shows the tension T — angle of
rolling-up ¢ graph when the radius is fixed. Hereinafter,
as an example, the result when the spring constant is k =
10 N / m is shown. As a result, it can be seen that the
winding angle v is constant regardless of the increase
of the tension as the overall tendency. On the other hand,
there was no significant change depending on the spring
constant.

QBlnmg constant £ = 10 N/m , Center hub of radius » = 150 mm
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Fig. 3.4. T-y graph at k=10 N/m

QBl“mg constant £ = 10 N/m , Center hub of radius » =315 mm
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Fig. 3.5. T-y graph at k=100 N/m

This document is provided by JAXA.



Sgl[';‘ng constant k = 10 N/m , Center hub of radius r = 650 mm 10, 31]
» (7) SAITO, Kazuya, et al. "Experimental Research on
Roll-up Storage Method for a Large Solar Sail”, In
4th International Symposium on Solar Sailing 2017,
pp. 1-5.
5 (8) S.Kadanishi, "Research on the storage method of
E solar sails considering the thickness of members",
master thesis, Tokyo Institute of Technology, 2012.
(99 C. R. CALLADINE, "THEORY OF SHELL
v STRUCTURES", CAMBRIDGE UNIVERSITY
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Fig. 3.6. T-y graph at k=1000 N/m.

4. Conclusion - Future tasks
The conclusion in this research is summarized below.
® \We modeled method of roll-up by wave shape by
Brazier theory.

®  Analysis results show that the height of wave shape
decreases due to the increase in tension. In addition,
it was found that the angle of rolling-up is constant
regardless of the tension. It was confirmed that the
value of the spring constant does not greatly affect
the result in this analysis.

In the future, we plan to carry out the experiment,
verify the validity of the model, and improve the
analytical model considering the change of wave shape
depending on the material.
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