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Detection of possible Earth-impacting asteroids is a crucial task in planetary defense. However, impacts of often undetected
small asteroids are not uncommon, as in the case of the Chelyabinsk meteor. A dedicated space-based telescope could vastly improve
the last-minute detection of Earth-impacting asteroids, and increase the warning time to several days. One very promising location
for such a spacecraft is around a Lagrange point of the Sun-Earth system, as stable observation conditions can be achieved. The
solar radiation pressure acceleration can be exploited to obtain perturbed small-amplitude Halo orbits which are seen as circles in the
plane of the sky from Earth, avoiding eclipse periods. In order to effectively achieve station-keeping using solar radiation pressure
and astronomical observations in a small satellite, the concept of the “Transformable Spacecraft” was proposed in ISAS/JAXA in
late 2017, which is characterized by a reconfigurable structure. In this paper, the orbit design for the Transformable Spacecraft is
presented, and the effect of the design parameters is analyzed. Additionally, the low-energy insertion from Earth to the actual orbit
with a Moon flyby is presented using two different models. The first one is the Circular Restricted Three Body Problem considering
the Sun and Earth describing a circular orbit, and including the Moon’s gravitational influence only during the flyby. We also study the
transfer in the context of the Bicircular Restricted Four Body Problem for a more precise result of the necessary Delta-V at departure
from Low Earth Orbit.
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1. Introduction

Detection of possible Earth-impacting asteroids is a crucial
task in planetary defense. Extensive monitoring is routinely
performed for known asteroids by ground-based telescopes and
radars. However, impacts of often undetected small asteroids
are not uncommon, as in the case of the Chelyabinsk meteor or
the asteroid 2018LA which reentered in the skies of southern
Africa on early June 2018. In some cases, an Earth-impacting
asteroid can be detected from surface on its final approach, but
the time to impact is often short and the uncertainty is high.
A dedicated space-based telescope could vastly improve the
last-minute detection of Earth-impacting asteroids, and increase
the warning time to several days. Furthermore, this telescope
could also survey resources in potential asteroid mining can-
didates to support future activities. To do so, the spacecraft
must be able to switch between wide-field surveys for Earth-
impact monitoring and narrow-field observations for resource
surveys. For both mission objectives, it is desired to keep the
spacecraft close to a Lagrange point for steady observation con-
ditions. Moreover, asteroid monitoring requires infrared detec-
tors, which need cooling. This calls for a stable and favorable
thermal environment, which can be achieved at the L2 point of
the Sun-Earth L2 system (SEL2) because the illumination con-
ditions does not change significantly with time and the radiation
from the Sun and the Earth comes from the same direction.

Classically employed Halo orbits have drawbacks such as
eclipses and relatively large amplitudes. Figure 1 shows the
family of planar Lyapunov orbits, and the north halo orbits
which bifurcate from the Lyapunov planar. In order to avoid
eclipses, the magnitude of the orbit amplitude must be on the

This note was presented at the 28th JAXA Workshop on Astrodynam-
ics and Flight Mechanics at Sagamihara (Japan), with manuscript num-
ber B-26

order of 106k̇m, which would cause large variations in the ob-
servation geometry during the orbit. Tanaka et al. proposed
to exploit the solar radiation pressure acceleration to achieve
perturbed small-amplitude Halo orbits which are seen almost
as circles in the plane of the sky from Earth, avoiding being
eclipsed by the Earth 1) . Using this technique, the amplitude of
the orbit can be chosen on the order of ' 104 km (see Fig. 2),
which is two orders of magnitude below the planar Lyapunov
and the north-south halo orbit families mentioned above.

Fig. 1. Traditional Halo orbits families (Planar and North).
The orbit amplitude is on the order of 106 km.

JAXA is working in an innovative mission concept of a
telescope mission that exploits the points mentioned above. 2)

Another novel contribution of the proposal is that the space-

This document is provided by JAXA.



Fig. 2. SRP-assisted small-amplitude quasi-circular halo or-
bits (Tanaka et. al. 2006). The orbit amplitude is on the order
of 104 km.

craft is composed of plates connected by hinges and actuators,
which enables fuel-free attitude control by exploiting the non-
holonomic dynamics that characterize the relative rotation of
the plates. 3) The state in a non-holonomic system depends on
the path followed to reach it. Thus, by changing the order of the
rotations of the plates, it is possible to obtain a different attitude
of the spacecraft with respect to an inertial frame, even if the
initial and final configuration of the spacecraft is identical.

Additionally, the capability to change its shape allows the
spacecraft to switch between different observation modes and to
assume a compact shape on the launch vehicle. The temporary
name for this spacecraft is Transformable spacecraft, because
it can transform its shape to achieve all the mission objectives.

The current design considers 19 plates. Each plate has a sur-
face area of 1 m2 and a mean mass of 10 kg, including hinges
and actuators. Six of these plates are covered by solar arrays,
ten are covered by MLI, two have photo-detectors and the last
plate has a mirror with MLI on its back. Figure 3 shows the
plates of the spacecraft and their connections. MLI is shown in
yellow, solar arrays in black, the mirror in white, the photo-
detectors in red, and the connection between the plates are
shown in blue. With this configuration, the spacecraft can
switch between different modes, as shown in Fig. 4

In this paper, we first present the orbit design for the trans-
formable spacecraft, and then evaluate the impact of the space-
craft and control law parameters in the orbit. Finally, we present
the orbit insertion into the SRP-assisted halo orbit with a low-
energy transfer exploiting the natural dynamics and a gravity
assist at the Moon.

2. Circular Restricted 3 Body Problem

We employ the Circular Restricted 3 Body Problem (CR3BP)
of the Sun-Earth (SE) system to design the orbit of the Trans-
formable spacecraft. In the frame of the CR3BP, the spacecraft

Fig. 3. Transformable spacecraft composed of 19 plates con-
nected by hinges and actuators.

Fig. 4. Different configuration modes of the Transformable
spacecraft.

is considered to have negligible mass compared to two mas-
sive bodies which describe circular orbits around the system
barycenter. 4) We define the synodic frame 〈x, y, z〉 centered at
the Lagrange Point L2. This frame rotates around the z axis
solidary with the Earth and the Sun, and the x axis is oriented
in the Sun-Earth direction. The coordinates of Earth’s center in
this frame become (−γ, 0, 0)>, where γ is given by the only real
root of 4)

γ5 + (3 − µ) γ4 + (3 − 2µ) γ3 − µγ2 − 2µγ − µ = 0, (1)

µ =
M⊕

M⊕ + M�
(2)

where ⊕ stands for the Earth and � stands for the Sun. For the
Sun-Earth system, µ ' 3.0395 × 10−6 and γ ' 0.01008. The
geometry of the CR3BP is shown in Fig. 5

The equations of motion of the CR3BP are:

ẍ − 2ẏ = −
∂U
∂x

+ ax, (3a)

ÿ + 2ẋ = −
∂U
∂u

+ ay, (3b)

z̈ = −
∂U
∂z

+ az, (3c)
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Fig. 5. Geometry of the CR3BP

where U is the effective potential

U = −
1
2

(
(x + 1 − µ + γ)2 + y2

)
−

1 − µ
r�
−
µ

r⊕
, (4)

and where the distances to the Sun and the Earth are

r� =

√
(x + 1 + γ)2 + y2 + z2 (5)

and

r⊕ =

√
(x + γ)2 + y2 + z2, (6)

respectively. Finally, we consider a perturbing acceleration act-
ing on the spacecraft a =

(
ax, ay, az

)>
.

2.1. Solar radiation Pressure perturbation
We model the effect of the solar radiation pressure (SRP) per-

turbing acceleration considering the effects of diffusion, spec-
ular reflection and absorption over a flat plate. The perturbing
acceleration takes the form

aSRP = −
PS
m

(s · n)
{(

1 −Cspe
)

s +

(
2
3

Cdif + 2(s · n)Cspe

)
n
}
, (7)

where P = 4.47× 10−6 Pa is the solar radiation pressure at 1 au,
and S and m are the spacecraft area and mass, respectively. The
optical properties of the surface are defined as follows. Cspe is
the specular reflection coefficient, Cdif is diffusive reflection co-
efficient and we considered Cabs = 1−Cspe −Cdif as the absorp-
tion coefficient. Finally, s is the Sun vector and n is the surface
normal. To give the orientation of the surface normal, we em-
ploy two angles: ψ and ϕ. The angle ψ is a rotation from the
−x direction around an axis perpendicular to the ecliptic plane,
while ϕ is a subsequent rotation outside the orbital plane and
positive towards the Earth orbital angular momentum. These
angles are sketched in Fig. 6, and they allow to write the nor-
mal vector coordinates in the rotating frame as

n = (− cosϕ cosψ,− cosϕ sinψ, sinϕ)> . (8)

For the nominal orbit, we consider the station-keeping mode
shown in Fig. (4), in which 6 solar arrays and 11 MLI plates are
exposed to the Sun. This gives a surface S equal to 17ṁ2. The
mass of the spacecraft is equal to 190 kg. The optical properties
of each type of panel are summarized in Table 1.

Table 1. Optical properties.
Cspe Cdif Cabs

MLI 0.375 0.255 0.370
Solar cells 0.086 0.060 0.854

Perfect mirror 1 0 0

Fig. 6. Angles for the flat-plate spacecraft orientation.

2.2. Control law for the linearized system
After subsituting Eq. (7) into Eq. (3), the equations of motion

can be linearized around the L2 point as 1)

ẍ − 2ẏ − (1 + 2c2) x = k1 (9a)
ÿ + 2ẋ + (c2 − 1) y = k2ψ (9b)

z̈ + c2z = − k2ϕ (9c)

with

c2 =
µ

γ3 +
1 − µ

(1 − γ)3 ' 3.9405645

k1 =
PS
m

(
Cabs +

5
3

Cdif + 2Cspe

)
,

k2 =
PS
m

(
2
3

Cdif + 2Cspe

)
.

Equation (9) admit a solution of the type:

x = −
Az

α
cos (ωt) + xe, (10a)

y = Az sin (ωt) , (10b)
z = ± Az cos (ωt) , (10c)

and by substituting into Eq. (9), the following necessary condi-
tions are found: 1)

xe = −
k1

1 + 2c2
, (11a)

α =
ω2 + 1 + 2c2

2ω
, (11b)

ψ =

(
c2 − ω

2 + 2
ω

α
− 1

) Az

k2
sin (ωt) , (11c)

ϕ = ∓
(
c2 − ω

2
) Az

k2
cos (ωt) . (11d)

Under linear dynamics, the proposed orbit is circular in the
plane of the sky as seen from Earth, and its amplitude can be
freely chosen. However, the amplitude should be greater than
13460 km to avoid eclipses, as sketched in Fig. 7. For the nomi-
nal orbit, we will add a margin to account for nonlinearities and
operational margins and will use Az = 18000 km.

The frequency of the orbit ω is another free parameter, but
must be chosen in the vicinity of ω = 2 so the control angles
ψ and ϕ remain small as can be seen in Fig. 8. If ω is cho-
sen far from this value, the control angles may become greater
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Fig. 7. Minimum amplitude for eclipse avoidance.

than 90 deg, which would be physically unfeasible. For specific
values of ω, ϕ or ψ vanishes:

ω =
√

c2 ' 1.985, ϕ = 0 (12a)

ω =

√
1
2

√
c2(9c2 − 8) −

c2

2
+ 1 ' 2.057, ψ = 0 (12b)

Moreover, there is a value of ω that minimizes the maximum
amplitude of the control angles. This happens when the ampli-
tude in Eqs. (11c, 11d) coincides, which yields

ω =
1
2

√√
(2c2 − 1)(18c2 + 7) − 2c2 + 1 ' 2.0172. (13)

In order to reduce nonlinear effects in the next section, we will
employ ω = 2.0172 as the orbital frequency. With this choice,
the orbital period becomes around 181.05 days.

Fig. 8. Amplitude of the control angles as a function of the
control frequency.

2.3. Periodic orbit with nonlinear dynamics
When the fully nonlinear dynamics governed by Eq. 3 are

considered, the solution proposed for the linear case (Eq. 10)
will fail to describe periodic orbits. In general, it is possible to
adjust the initial state to generate periodic orbits. We employ
a Newton-Raphson method using the linear solution as initial
guess x0, and numerically calculate the initial conditions that
will satisfy the periodicity condition F(x0) after a period T :

F(x0) = x(T ) − x0 = 0. (14)

The gradient of the periodicity condition is given by

∂F
∂x0

= φ(T ) − I, (15)

where φ(T ) is the state transition matrix after one period, also
called the monodromy matrix. Using Newton-Raphson method,
the update in the initial conditions is given by

δx0 = −

(
∂F
∂x0

)−1

F(x0). (16)

We update the initial conditions until the periodicity condition
is satisfied up to some tolerance, and the variation in δx0 is
small enough.

We described above a single-shooting algorithm: we modify
the initial condition to adjust the state after one orbital period.
To improve convergence of the Newton-Raphson method, it is
possible to divide the trajectory into multiple arcs and impose
continuity conditions between them, constructing a multiple-
shooting method. The multiple-shooting method can improve
the convergence to the periodic orbit since the unstable nature
of the dynamics around L2 has less time to act on the trajec-
tory in each arc. A detailed description of a multiple-shooting
algorithm for periodic orbit calculation can be found in 5) .

3. Sensitivity analysis

In this section we explore the sensitivity of the nominal orbit
with respect of several parameters that affect the size and shape
of the period orbits that can be achieved.

3.1. Effect of the frequency of the control law
The frequency of the control law has a direct efect on the pe-

riod of the orbit, as we always employ orbits which are in a 1 : 1
resonance with the control law. We introduced previously how
the amplitude of the control angles change with the frequency
(see Fig. 8). A larger control angle will yield a larger differ-
ence between the periodic orbits constructed in the linear and
the nonlinear systems. This can be observed in Fig. 9, where
we present periodic orbits for different values of ω. For val-
ues of ω smaller than the nominal, the orbit amplitude outside
the ecliptic plane increases, and the amplitude in the y direction
decreases slightly. For larger values of ω, the orbit becomes
smaller until it is eventually inside the eclipse limit.

Fig. 9. Family of orbits changing the orbit frequency.

3.2. Effect of the amplitude of the control law
The amplitude Az in the control law (see Eqs. (11c, 11d)) is

equivalent to the orbit amplitude only in the linear case. When
considering nonlinear dynamics, the amplitude in the y and z di-
rections becomes different in the general case. Figure 10 shows
the orbit amplitudes as a function of the amplitude of the con-
trol. We have included as a reference the nominal orbit as an
asterisk, and the prediction of the linear system with a black
dashed line. It is interesting to note that the amplitude of the
control cannot be made arbitrarily large: for some value of Az

the control saturates and the orbit amplitude decreases. This is
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associated to a saturation of the maximum SRP force that a flat
surface can provide when changing the attitude.

Fig. 10. Effect of changing the orbit amplitude Az.

Figure 11 shows the family of orbits that can be obtained
by changing the control amplitude. The saturation effect of the
control is also present in this figure. For higher values of Az,
the orbits grow larger and larger until they reach a maximum,
becoming smaller for increasing values of Az. Additionally, for
very small values of Az the orbits are closer to circles. This is to
be expected, as the linear approximation holds for sufficiently
small orbits.

Fig. 11. Family of orbits changing the control amplitude Az.

3.3. Effect of the number of panels

Fig. 12. Effect of using only a number of MLI panels.

If the spacecraft fails to implement the attitude control law, it
will start to depart from the periodic orbit owing to the saddle
structure of the dynamics around SEL2. It is interesting to the

Fig. 13. Family of orbits using only a number of MLI panels.

performance of the system when only a fraction of the panels
are used in the nominal control law, so the panels kept as a
backup can offer an increment in SRP force to recover and come
back to the nominal orbit. The orbit amplitude as a function
of the number of MLI panels used is shown in Fig. 12. For
reference, the nominal orbit is using 11 MLI panels. It becomes
clear that in order to avoid eclipses, the number of panels must
be at least 8. A similar conclusion can be drawn from the y–z
plot of these periodic orbits, shown in Fig. 13.

Fig. 14. Effect of adding perfect mirrors.

Fig. 15. Family of orbits adding perfect mirrors.

Another possibility that the project team is considering
is adding additional perfect mirrors to support the orbit-
reinsertion operations. The effect of adding additional perfect
mirrors with no mass increase is shown in Figs. 14 and 15.
Adding perfect mirrors is an effective way to increase the or-
bit amplitude outside the ecliptic plane, but a smaller effect is

This document is provided by JAXA.



obtained in the y direction, which shows saturation for about 6
additional mirrors. Further work is needed in this direction, as
an increased number of panels will likely have an impact on the
spacecraft mass.
3.4. Effect of the surface-to-mass ratio

The surface-to-mass ratio plays a key role in the periodic or-
bits that can be achieved using the control law of Eqs. (11c,
11d). This control law was designed for solar sails, which
feature a large surface area with a small mass and can effec-
tively exploit the SRP acceleration. For instance, IKAROS had
a surface-to-mass ratio of approximately 0.6 m2/kg. However,
the nominal configuration for the Transformable spacecraft has
a ratio equal to 0.089474 m2/kg, and the effectiveness of the
control law will be smaller compared to a solar sail. In this
subsection, we explore how the amplitude of the periodic orbit
changes as a function of the surface-to-mass ratio.

Fig. 16. Effect of changing the surface-to-mass ratio S/m.

Fig. 17. Family of orbits changing the surface-to-mass ratio
S/m.

Figure 16 shows the maximum amplitude of the family of
periodic orbits achieved, with the nominal value indicated by
a marker. Increasing the surface-to-mass ratio seems to be an
effective way of increasing the out-of-plane amplitude, while it
has less effect on the in-plane component. The family of peri-
odic orbits is shown in Fig. 17.

4. Orbit insertion

In this section we explore the insertion into the periodic orbit
after launch from Earth.

It is possible to transfer from Earth to SEL2 in a relatively
short time using chemical propulsion for maneuvers at arrival

in SEL2. The transfer duration is between 30 and 120 days,
with a ∆v at SEL2 arrival between 0.1 and 0.7 km/s. This op-
tion imposes requirements on the spacecraft structure and the
mass budget that were considered to be too strict by the project
team. Hence, the option of a low energy transfer with a lunar
gravity assist is considered here at the expense of a longer time
of flight. First, we consider the consider the natural dynamics of
the CR3BP to obtain orbits that arrive in SEL2 and include an
instantaneous flyby by the Moon. Then, we employ the Bicir-
cular Restricted 4 Body Problem (BR4BP) to better account for
the Moon’s gravitational effect on all the legs of the trajectory
to obtain a more precise result.

4.1. Transfer in the CR3BP
The transfer using the model of the CR3BP is divided in three

legs: Earth departure, instantaneous Moon gravity assist and
periodic orbit insertion following the stable manifold around
SEL2. The design of this phases is best performed in reverse or-
der, starting at the periodic orbit and going backwards on time.
4.1.1. Stable Manifold

The saddle-point nature of L2 implies that a stable and a un-
stable direction exist in this region of space. Associated to each
periodic orbit, stable and unstable manifolds exist such that
when the spacecraft is on them, it approaches or gets away from
the periodic orbit following an exponential function of time.
The stable manifold is especially useful for the orbit insertion,
because if the spacecraft is inserted into the stable manifold, it
will eventually lead to the periodic orbit. Here, we only con-
sider the gravitational forces of the Sun and the Earth.

To calculate the stable manifold, we follow the next steps.
First, we sample N points from the periodic orbit to populate
the manifold. For each of them, we calculate their monodromy
matrix and solve for their eigenvalues and eigenvectors. The
eigenvector associated to eigenvalue smaller than unity is tan-
gent to the stable manifold. To calculate the trajectory on the
stable manifold, we add a shift ε = 10−6 on the the mentioned
eigenvector and propagate backwards in time. Figure 18 shows
the local structure of the stable manifold in the proximity of the
periodic orbit. Note that since an eigenvalue is determined up
to its sign, a part of the stable manifold connects to the proxim-
ity of Earth and the other part leads to deep space. Figure 19

Fig. 18. Stable manifold in the proximity of the periodic orbit.

shows the connection of the stable manifold with the Moon’s or-
bit, shown as a circle around the Earth, which is located about
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15 × 105 km from SEL2 in the direction of the Sun.
Among all the trajectories in the stable manifold, we pick the

one that has the smallest out-of-plane component when crossing
the Moon’s orbit. This result is shown in Fig. 19.

Fig. 19. Connection of the stable manifold with the Moon’s
orbit.

Fig. 20. Intersection of the stable Manifold and the Moon’s
orbit.

4.1.2. Instantaneous Lunar Gravity Assist
We consider the gravitational effect of the Moon only when

the spacecraft is moving in its proximity. For simplicity, we
model this motion as an instantaneous flyby, which results in
a rotation of the Selenocentric velocity around the direction of
the Selenocentric angular momentum vector by an angle δ(rp):

δ = 2 sin−1

 1

1 +
rpv

2
∞

µÁ

 ,
where µÁ ' 4.9 × 103 km3/s2 is the Moon’s gravitational con-
stant, rp is the perilune distance, and v∞ is the hyperbolic excess
velocity of the selenocentric orbit. For this particular applica-
tion, v∞ = 0.815 km/s.

There are two different family of solutions of the instanta-
neous flyby as a function of the perilune distance. The first
one is for a flyby on the leading-side of the Moon, in which

the incoming orbit has a larger velocity than the Moon. The
second one is for a flyby on the trailing-side, characterized
by a lower velocity of the incoming orbit with respect to the
Moon. Figure 21 shows these families of solution, where the
cyan trajectories correspond to trailing-side flybys, and the yel-
low curves are for leading-side flybys.
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Fig. 21. Families of lunar flybys for different perilune dis-
tances.

Only the trailing-side family connects with the vicinity of the
Earth. For this family of solutions, Fig. 22 shows the necessary
deflection angle and the corresponding perigee altitude, which
has a minimum of about 8000 km. This corresponds to a Moon
flyby altitude of about 2500 km and a deflection angle of ap-
proximately 78 deg.

Fig. 22. Earth flyby altitude and Moon flyby velocity deflec-
tion angle for the trailing side Moon flybys as a function of the
Moon flyby altitude.

The transfer trajectory with all its legs is shown in Fig. 23.
This trajectory is characterized by an initial distance from earth
of 1.44 × 104 km with a velocity of 7.34 km/s, which yields a
value of the characteristic energy C3 = −1.38 km2/s2. The total
time of flight is 233.3 days, of which 5.1 of them are spent on
the Earth-Moon transfer.
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Fig. 23. Transfer using the model of the CR3BP and an in-
stantaneous lunar gravity assist.

4.2. Transfer in the BR4BP
In the Bicircular Restricted 4 Body Problem (BR4BP), we

consider that the Moon and the Earth describe circular orbits
around the Moon-Earth barycenter, and that this barycenter and
the Sun follow circular orbits around the system barycenter.

To calculate the transfer trajectory in this model, we use the
same initial condition as in the calculation of the CR3BP mani-
fold. We perform a line search on the Moon phase to minimize
the C3 value of the trajectory that connects with the low Earth
orbit region.

Numeric optimization of the trajectory using a grid-search
method yields a trajectory with time of flight of 197.8 days and
C3 = −2.11 km2/s2. The perigee distance at departure is equal
to 8748.5 km, and the Moon flyby altitude equal to 2130 km.
The optimal trajectory is shown in Fig. 24.

Fig. 24. Transfer using the model of the BR4BP.

5. Conclusions

In the first half of this paper, we presented the design
of the orbit of the Transformable spacecraft under study at
ISAS/JAXA. We revisited the results by Tanaka et al. 1) and
applied them to this spacecraft. We showed how the so-
lar radiation pressure acceleration can be exploited to obtain
low-amplitude, quasi-circular orbits which are free of eclipses,
which is key for this spacecraft in order to have a stable power
and thermal environment. Furthermore, we studied the effect of
the control law and spacecraft parameters on the nominal orbit.

In the second half of the paper, we studied the insertion into
the periodic orbit using low-energy transfers, exploiting natural
dynamics and a Lunar flyby. We presented results obtained in
the Circular Restricted 3 Body Problem and an instantaneous
Moon flyby, and compared them to the results yielded in the
Bicircular Restricted 4 Body Problem.
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